1
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
2
|
Qutub M, Hussain UM, Tatode A, Premchandani T, Khan R, Umekar M, Taksande J, Singanwad P. Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy. AAPS PharmSciTech 2025; 26:137. [PMID: 40379893 DOI: 10.1208/s12249-025-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Epigallocatechin gallate (EGCG), a bioactive polyphenol derived from Camellia sinensis, exhibits multimodal anticancer activity through mechanisms such as apoptosis induction, metastasis suppression, and chemoresistance reversal. Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution. Recent advances in nanotechnology have enabled the development of innovative delivery systems including pH-responsive nanoparticles, lipid-polymer hybrids, and ligand-functionalized carriers that enhance EGCG stability, tumor targeting, and bioavailability by 3- to fivefold in preclinical models. These platforms also facilitate synergistic co-delivery with chemotherapeutics like doxorubicin, amplifying cytotoxicity and overcoming multidrug resistance. Mechanistically, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types. However, translational challenges persist, such as nanoparticle toxicity, variable tumor accumulation, and insufficient penetration in hypoxic microenvironments. Regulatory hurdles, including the lack of harmonized global standards for herbal medicinal products, further complicate clinical adoption. To bridge these gaps, future research must prioritize scalable cGMP-compliant manufacturing, rigorous preclinical toxicity profiling, and robust clinical trials to validate safety and efficacy. Addressing these issues could position nanoengineered EGCG as a paradigm-shifting therapy in precision oncology, aligning with ESCOP's mission to integrate evidence-based phytomedicines into conventional cancer care. This review underscores the necessity of interdisciplinary collaboration to standardize phytopreparations, refine regulatory frameworks, and advance biomarker-driven clinical validation, ultimately unlocking the full potential of EGCG in modern therapeutics.
Collapse
Affiliation(s)
- Mohammad Qutub
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Ujban Md Hussain
- Department of Pharmaceutical Sciences, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Amol Tatode
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India.
| | - Tanvi Premchandani
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Jayshree Taksande
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Priyanka Singanwad
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| |
Collapse
|
3
|
Roman A, Smeu A, Lascu A, Dehelean CA, Predescu IA, Motoc A, Borza C, Draghici GA, Trandafirescu CM, Anton A, Ardelean S. Quercetin Enhances 5-Fluorouracil-Driven Cytotoxicity Dose-Dependently in A375 Human Melanoma Cells. Life (Basel) 2024; 14:1685. [PMID: 39768392 PMCID: PMC11678130 DOI: 10.3390/life14121685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cutaneous melanoma (CM) represents a severe skin cancer with a rising incidence at present and limited treatment options. 5-Fluorouracil (5-FU) is widely used, including for CM; however, the innate resistance of this cancer to conventional therapy remains problematic. Quercetin (QUE) is a flavonoid that can sensitize cancer cells to antitumor agents such as 5-FU. However, the potential sensitization capability of CM cells to 5-FU has scarcely been determined, and is investigated herein. Therefore, A375 CM cells were tested in terms of their cell viability, cell confluence, and morphological changes. Their nuclear and cytoskeletal aspects, clonogenic potential, and in ovo properties were also followed. The results showed that the 50% inhibitory concentrations (IC50s) of 5-FU and QUE determined by a cell proliferation assay were 11.56 and 11.08 µM, respectively. The addition of QUE (10 µM) to 5-FU (5-50 µM) increased the cytotoxic potential. A significant decline in cell viability (up to 43.51%), the loss of cell confluence, chromatin condensation and nuclear dysmorphology, tubulin and F-actin constriction, and a suppressed clonogenic ability were noted. The QUE + 5-FU association was non-irritating to the chorioallantoic membrane and showed an antiangiogenic effect in ovo. Thus, our results highlight that combining QUE with 5-FU can enhance the cytotoxic effect of 5-FU in A375 melanoma cells and present a safe profile in ovo.
Collapse
Affiliation(s)
- Andrea Roman
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 Revolutiei Blvd., 310130 Arad, Romania;
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Andreea Smeu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ana Lascu
- Discipline of Pathophysiology, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Institute for Cardiovascular Diseases of Timisoara, Clinic for Cardiovascular Surgery, Gh. Adam Street, No. 13A, 300310 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andrei Motoc
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Claudia Borza
- Discipline of Pathophysiology, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Centre of Cognitive Research in Pathological Neuro-Psychiatry NEUROPSY-COG, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - George Andrei Draghici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Maria Trandafirescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
| | - Alina Anton
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.S.); (C.A.D.); (I.-A.P.); (G.A.D.); (C.M.T.); (A.A.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Simona Ardelean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Faculty of Pharmacy, “Vasile Goldis” Western University of Arad, 94 Revolutiei Blvd., 310130 Arad, Romania
| |
Collapse
|
4
|
da Silva VRF, da Silva GB, Manica D, Deolindo CTP, Bagatini MD, Kempka AP. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells-a study on leaf and fruit infusions. In Silico Pharmacol 2024; 12:105. [PMID: 39569036 PMCID: PMC11574240 DOI: 10.1007/s40203-024-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The study investigated the efficacy of Campomanesia xanthocarpa infusions on human melanoma cells (SK-MEL-28). The phytochemical profile revealed 18 phenolic compounds in the leaf infusion and 9 in the fruit infusion. After 24 h of treatment, the infusions demonstrated antineoplastic effects, reducing cell viability at all tested concentrations for the leaf infusion. For the fruit infusion, a significant reduction in cell viability was observed specifically at the 800 μg/mL concentration. Fluorescence microscopy and mitochondrial membrane potential results indicated that the leaf infusion was more effective in reducing cell viability and mitochondrial function in SK-MEL-28 cells, possibly due to its greater variety of phenolic compounds compared to the fruit infusion. The leaf infusion also induced higher production of intracellular reactive oxygen species compared to the fruit infusion. Protein sulfhydryl levels were reduced for the leaf infusion. Epigallocatechin gallate, Isoquercitrin, Rutin, Kaempferol-3-O-rutinoside, Chlorogenic acid, and Ellagic acid were identified as the main compounds with activity against SK-MEL-28 cells. Molecular docking analysis underscored factors such as affinity, cavity size, binding mode, and contact residues with specific compounds chosen for their favorable properties in targeting BRAF, CDK4, CDK6, MEK1, and MEK2. The variability in binding affinities may directly influence the compounds' ability to inhibit different signaling pathways related to cancer cell growth and proliferation. The results suggest that phenolic compounds from C. xanthocarpa extracts have therapeutic potential and could contribute to melanoma therapies. Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00286-1.
Collapse
Affiliation(s)
- Vanessa Ruana Ferreira da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Carolina Turnes Pasini Deolindo
- Ministry of AgricultureLivestock, and Food Supply, Federal Agricultural Defense Laboratory, São José, SC Brazil
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC 89870-000 Brazil
| |
Collapse
|
5
|
Corte-Real M, Veiga F, Paiva-Santos AC, Pires PC. Improving Skin Cancer Treatment by Dual Drug Co-Encapsulation into Liposomal Systems-An Integrated Approach towards Anticancer Synergism and Targeted Delivery. Pharmaceutics 2024; 16:1200. [PMID: 39339235 PMCID: PMC11434718 DOI: 10.3390/pharmaceutics16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Skin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects. This review examines the potential of improving the treatment of skin cancer through dual-loaded liposomal systems. The performed analysis focused on the characterization of the developed liposomal formulations' particle size, polydispersity index, zeta potential, encapsulation efficiency, drug release, and in vitro and/or in vivo therapeutic efficacy and safety. The combination of therapeutic agents such as doxorubicin, 5-fluorouracil, paclitaxel, cetuximab, celecoxib, curcumin, resveratrol, quercetin, bufalin, hispolon, ceramide, DNA, STAT3 siRNA, Bcl-xl siRNA, Aurora-A inhibitor XY-4, 1-Methyl-tryptophan, and cytosine-phosphate-guanosine anionic peptide led to increased and targeted anticancer effects, having relevant complementary effects as well, including antioxidant, anti-inflammatory, and immunomodulatory activities, all relevant in skin cancer pathophysiology. The substantial potential of co-loaded liposomal systems as highly promising for advancing skin cancer treatment is demonstrated.
Collapse
Affiliation(s)
- Margarida Corte-Real
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
6
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Xiao L, He R, Hu K, Song G, Han S, Lin J, Chen Y, Zhang D, Wang W, Peng Y, Zhang J, Yu P. Exploring a specialized programmed-cell death patterns to predict the prognosis and sensitivity of immunotherapy in cutaneous melanoma via machine learning. Apoptosis 2024; 29:1070-1089. [PMID: 38615305 DOI: 10.1007/s10495-024-01960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
The mortality and therapeutic failure in cutaneous melanoma (CM) are mainly caused by wide metastasis and chemotherapy resistance. Meanwhile, immunotherapy is considered a crucial therapy strategy for CM patients. However, the efficiency of currently available methods and biomarkers in predicting the response of immunotherapy and prognosis of CM is limited. Programmed cell death (PCD) plays a significant role in the occurrence, development, and therapy of various malignant tumors. In this research, we integrated fourteen types of PCD, multi-omics data from TCGA-SKCM and other cohorts in GEO, and clinical CM patients to develop our analysis. Based on significant PCD patterns, two PCD-related CM clusters with different prognosis, tumor microenvironment (TME), and response to immunotherapy were identified. Subsequently, seven PCD-related features, especially CD28, CYP1B1, JAK3, LAMP3, SFN, STAT4, and TRAF1, were utilized to establish the prognostic signature, namely cell death index (CDI). CDI accurately predicted the response to immunotherapy in both CM and other cancers. A nomogram with potential superior predictive ability was constructed, and potential drugs targeting CM patients with specific CDI have also been identified. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of CM patients, providing unique opportunities for clinical intelligence and new management methods for the therapy of CM.
Collapse
Affiliation(s)
- Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ruifeng He
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Gelin Song
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shengye Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yixuan Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, Hong Kong
| | - Wuming Wang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, 330006, People's Republic of China
| | - Yating Peng
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, People's Republic of China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, People's Republic of China.
| |
Collapse
|
9
|
Dehghani P, Varshosaz J, Mirian M, Minaiyan M, Kazemi M, Bodaghi M. Keratinocyte Exosomes for Topical Delivery of Tofacitinib in Treatment of Psoriasis: an In Vitro/ In Vivo Study in Animal Model of Psoriasis. Pharm Res 2024; 41:263-279. [PMID: 38263341 PMCID: PMC10879239 DOI: 10.1007/s11095-023-03648-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Exosomes are extracellular vesicles in the range of 40-150 nm released from the cell membrane. Exosomes secreted by keratinocytes can communicate with other keratinocytes and immune cells with specific biomarkers at their surface, which may be effective on inflammation of psoriasis and its pathogenesis. OBJECTIVE The present study aimed to formulate and study effectiveness of an exosomal delivery system of tofacitinib (TFC). METHODS TFC was loaded by different methods in exosomes and then characterized for particle size, zeta potential, drug loading efficiency, and release efficiency. By comparing these parameters, the probe sonication method was chosen to load TFC into exosomes. The MTT assay was used to compare the cytotoxicity of the free drug with the TFC-loaded exosomes (TFC-Exo), and Real-time PCR was used to determine the expression levels of several genes involved in psoriasis expressed in the A-431 keratinocyte and their suppression after treatment. Animal model of psoriasis was induced in BALB/c mice by imiquimod and the efficacy of free TFC, and TFC-Exo were studies on macroscopic appearance and histopathological symptoms. RESULTS Exosomes encapsulating TFC showed lower cytotoxicity in MTT assay, higher suppression the expression of TNF-a, IL-23, IL-6, and IL-15 genes in real-time PCR and better therapeutic effect on animal models compered to free TFC. CONCLUSIONS This method of drug delivery for TFC may be effective on enhancing its therapeutic effects and reduction its side effects favorably in chronic administration.
Collapse
Affiliation(s)
- Pouya Dehghani
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Bodaghi
- Department of Engineering School of Science and Technology Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
10
|
Daniels VR, Williams ES. Exploring the complexities of drug formulation selection, storage, and shelf-life for exploration spaceflight. Br J Clin Pharmacol 2023. [PMID: 37940128 DOI: 10.1111/bcp.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Medications have been a part of space travel dating back to the Apollo missions. Currently, medical kits aboard the International Space Station (ISS) contain medications and supplies to treat a variety of possible medical events. As we prepare for more distant exploration missions to Mars and beyond, risk management planning for astronaut healthcare should include the assembly of a medication formulary that is comprehensive enough to prevent or treat anticipated medical events, remains safe and chemically stable, and retains sufficient potency to last for the duration of the mission. Emerging innovation and technologies in pharmaceutical development, delivery, quality maintenance, and validation offer promise for addressing these challenges. The present editorial will summarize the current state of knowledge regarding innovative formulary optimization strategies, pharmaceutical stability assessment techniques, and storage and packaging solutions that could enhance drug safety and efficacy for future exploration spaceflight missions.
Collapse
|
11
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
12
|
Kuras M. Exploring the Complex and Multifaceted Interplay between Melanoma Cells and the Tumor Microenvironment. Int J Mol Sci 2023; 24:14403. [PMID: 37762707 PMCID: PMC10531837 DOI: 10.3390/ijms241814403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. In the past twenty years, our understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression. This review focuses on the key aspects and complex relationship between pathogenesis, genetic abnormalities, tumor microenvironment, cellular plasticity, and metabolic reprogramming in melanoma. By acquiring a deeper understanding of the multifaceted features of melanomagenesis, we can reach a point of more individualized and patient-centered disease management and reduced costs of ineffective treatments.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|