1
|
Xie S, Ma W, Guo Q, Liu J, Li W, McLeod HL, He Y. The pharmacogenetics of medications used in general anesthesia. Pharmacogenomics 2018; 19:285-298. [PMID: 29318929 DOI: 10.2217/pgs-2017-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
General anesthesia is a state of unconsciousness, amnesia, analgesia and akinesia induced by drugs including opioids, hypnotic-sedative agents, muscle relaxants and antiemetics. Clinical and genetic factors are reported to influence the efficacy and side effects of these agents. Based on the evidence, clinical action is needed to improve clinical outcomes. This review summarizes the latest knowledge with regards to the pharmacogenetics of anesthetics and general anesthesia related complications.
Collapse
Affiliation(s)
- Shangchen Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Wenjuan Ma
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33601, USA
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33601, USA
| |
Collapse
|
2
|
Affiliation(s)
- J. J. Pandit
- Nuffield Department of Anaesthetics; Oxford University Hospitals; Oxford UK
- St John's College; Oxford UK
| |
Collapse
|
3
|
Hasan MS, Leong KW, Chan CYW, Kwan MK. Anesthetic considerations in scoliosis patient with dopa-responsive dystonia or Segawa's syndrome. J Orthop Surg (Hong Kong) 2017; 25:2309499016684743. [PMID: 28166704 DOI: 10.1177/2309499016684743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Segawa's syndrome or dopa-responsive dystonia is a rare hereditary disorder characterized by progressive dystonia of childhood onset, diurnal fluctuation of symptoms and complete or near complete alleviation of symptoms with administration of low-dose oral levodopa. From our literature search in PubMed, we found only three related publications: two on anesthesia for cesarean section and one on anesthesia for electroconvulsive therapy. We report our experience in providing anesthesia for corrective scoliosis surgery in two biological sisters with Segawa's syndrome. A review of the literature is also included.
Collapse
Affiliation(s)
- M Shahnaz Hasan
- 1 Department of Anesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Weng Leong
- 1 Department of Anesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chris Yin Wei Chan
- 2 Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Keong Kwan
- 2 Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Fourati Z, Ruza RR, Laverty D, Drège E, Delarue-Cochin S, Joseph D, Koehl P, Smart T, Delarue M. Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State. J Biol Chem 2016; 292:1550-1558. [PMID: 27986812 DOI: 10.1074/jbc.m116.766964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Barbiturates induce anesthesia by modulating the activity of anionic and cationic pentameric ligand-gated ion channels (pLGICs). Despite more than a century of use in clinical practice, the prototypic binding site for this class of drugs within pLGICs is yet to be described. In this study, we present the first X-ray structures of barbiturates bound to GLIC, a cationic prokaryotic pLGIC with excellent structural homology to other relevant channels sensitive to general anesthetics and, as shown here, to barbiturates, at clinically relevant concentrations. Several derivatives of barbiturates containing anomalous scatterers were synthesized, and these derivatives helped us unambiguously identify a unique barbiturate binding site within the central ion channel pore in a closed conformation. In addition, docking calculations around the observed binding site for all three states of the receptor, including a model of the desensitized state, showed that barbiturates preferentially stabilize the closed state. The identification of this pore binding site sheds light on the mechanism of barbiturate inhibition of cationic pLGICs and allows the rationalization of several structural and functional features previously observed for barbiturates.
Collapse
Affiliation(s)
- Zaineb Fourati
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France
| | - Reinis Reinholds Ruza
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France
| | - Duncan Laverty
- the Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Emmanuelle Drège
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Sandrine Delarue-Cochin
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Delphine Joseph
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Patrice Koehl
- the Department of Computer Science, University of California, Davis, California 95616
| | - Trevor Smart
- the Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Marc Delarue
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
5
|
Xie Z, McMillan K, Pike CM, Cahill AL, Herring BE, Wang Q, Fox AP. Interaction of anesthetics with neurotransmitter release machinery proteins. J Neurophysiol 2012; 109:758-67. [PMID: 23136341 DOI: 10.1152/jn.00666.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthetics produce anesthesia by depressing central nervous system activity. Activation of inhibitory GABA(A) receptors plays a central role in the action of many clinically relevant general anesthetics. Even so, there is growing evidence that anesthetics can act at a presynaptic locus to inhibit neurotransmitter release. Our own data identified the neurotransmitter release machinery as a target for anesthetic action. In the present study, we sought to examine the site of anesthetic action more closely. Exocytosis was stimulated by directly elevating the intracellular Ca(2+) concentration at neurotransmitter release sites, thereby bypassing anesthetic effects on channels and receptors, allowing anesthetic effects on the neurotransmitter release machinery to be examined in isolation. Three different PC12 cell lines, which had the expression of different release machinery proteins stably suppressed by RNA interference, were used in these studies. Interestingly, there was still significant neurotransmitter release when these knockdown PC12 cells were stimulated. We have previously shown that etomidate, isoflurane, and propofol all inhibited the neurotransmitter release machinery in wild-type PC12 cells. In the present study, we show that knocking down synaptotagmin I completely prevented etomidate from inhibiting neurotransmitter release. Synaptotagmin I knockdown also diminished the inhibition produced by propofol and isoflurane, but the magnitude of the effect was not as large. Knockdown of SNAP-25 and SNAP-23 expression also changed the ability of these three anesthetics to inhibit neurotransmitter release. Our results suggest that general anesthetics inhibit the neurotransmitter release machinery by interacting with multiple SNARE and SNARE-associated proteins.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Herring BE, McMillan K, Pike CM, Marks J, Fox AP, Xie Z. Etomidate and propofol inhibit the neurotransmitter release machinery at different sites. J Physiol 2011; 589:1103-15. [PMID: 21173083 PMCID: PMC3060590 DOI: 10.1113/jphysiol.2010.200964] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
The mechanism of general anaesthetic action is only partially understood. Facilitation of inhibitory GABAA receptors plays an important role in the action of most anaesthetics, but is thought to be especially relevant in the case of intravenous anaesthetics, like etomidate and propofol. Recent evidence suggests that anaesthetics also inhibit excitatory synaptic transmission via a presynaptic mechanism(s), but it has been difficult to determine whether these agents act on the neurotransmitter release machinery itself. In the present study we sought to determine whether the intravenous anaesthetics propofol and etomidate inhibit the release machinery. For these studies we used an experimental approach that directly regulated [Ca2+]i at neurotransmitter release sites, thereby bypassing anaesthetic effects on channels and receptors in order to allow anaesthetic effects on the neurotransmitter release machinery to be examined in isolation. The data show that clinically relevant concentrations of propofol and etomidate inhibited the neurotransmitter release machinery in neurosecretory cells and in cultured hippocampal neurons. md130A is a mutant form of syntaxin with a truncated C-terminus. Overexpressing md130A in PC12 cells completely eliminated the reduction in neurotransmitter release produced by propofol, without affecting release itself. In contrast, overexpressing md130A in PC12 cells had little or no effect on the response to etomidate. These results suggest that both propofol and etomidate inhibit neurotransmitter release by a direct interaction with SNAREs and/or SNARE-associated proteins but they do so at different sites.
Collapse
Affiliation(s)
- Bruce E Herring
- Department of Neurobiology, The University of Chicago, 5835 S. Cottage Grove Ave, Abbott Hall, Ab131, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
7
|
Propofol and the electroencephalogram. Clin Neurophysiol 2010; 121:998-1006. [DOI: 10.1016/j.clinph.2009.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 12/01/2009] [Accepted: 12/13/2009] [Indexed: 11/15/2022]
|
8
|
Cheng W, Yin Q, Cheng MY, Chen HS, Wang S, Feng T, Zeng YM, Liu GJ. Intracerebroventricular or intrathecal injection of glycine produces analgesia in thermal nociception and chemical nociception via glycine receptors. Eur J Pharmacol 2009; 614:44-9. [PMID: 19445923 DOI: 10.1016/j.ejphar.2009.04.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 12/23/2022]
Abstract
The present study was designed to investigate the role of glycine receptors in analgesia induced by injection of glycine in vivo. Glycine was injected intracerebroventricularly or intrathecally and strychnine, a glycine receptor antagonist, was injected intracerebroventricularly or intrathecally before glycine injection. The effects on the pain threshold index in hot-plate test and the writhing times in acetic acid-induced writhing test were observed. The locomotor activity and motor performance (rotarod test) were also observed. The dosages of glycine and strychnine we choose had no effect on locomotor activity or motor performance in conscious mice. Glycine increased the pain threshold index in hot-plate test and decreased the writhing times of the mice. Strychnine antagonized the effects induced by glycine above. These results demonstrated that intracerebroventricular or intrathecal injection of glycine can produce analgesia in thermal nociception and chemical nociception in vivo, which is mediated by glycine receptors.
Collapse
Affiliation(s)
- Wei Cheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Affiliated Hospital of Xuzhou Medical College, Jiangsu Province, Xuzhou, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kang BJ, Kim SK, Lee GW, Kwon MA, Song JG, Ahn SC. The correlation between the effects of propofol on the auditory brainstem response and the postsynaptic currents of the auditory circuit in brainstem slices in the rat. Korean J Anesthesiol 2009; 56:552-558. [PMID: 30625787 DOI: 10.4097/kjae.2009.56.5.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there have been reports showing the changes of the auditory brainstem response (ABR) waves by propofol, no detailed studies have been done at the level of brainstem auditory circuit. So, we studied the effects of propofol on the postsynaptic currents of the medial nucleus of the trapezoid body (MNTB)-lateral superior olive (LSO) synapses by using the whole cell voltage clamp technique and we compared this data with that obtained by the ABR. METHODS 5 rats at postnatal (P) 15 days were used for the study of the ABR. After inducing deep anesthesia using xylazine 6 mg/kg and ketamine 25 mg/kg, the ABRs were recorded before and after intraperitoneal propofol injection (10 mg/kg) and the effects of propofol on the latencies of the I, III, and V waves and the I-III and III-V interwave intervals were evaluated. Rats that were aged under P11 were used in the voltage clamp experiments. After making brainstem slices, the postsynaptic currents (PSCs) elicited by MNTB stimulation were recorded at the LSO, and the changes of the PSCs by the bath application of propofol (100 microM) were monitored. RESULTS We found small, but statistically significant increases in the latencies of ABR waves III and V and the interwave intervals of I-III and III-V by propofol. However, no significant changes were observed in the glycinergic or glutamatergic PSCs of the MNTB-LSO synpases by the application of propofol (100 microM). CONCLUSIONS Glycinergic or glutamatergic transmission of the MNTB-LSO synapses might not contribute to the propofol-induced changes of the ABR.
Collapse
Affiliation(s)
- Bong Jin Kang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Seok Kon Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Gwan Woo Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Min A Kwon
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Jae Gyok Song
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| | - Seung Chul Ahn
- Department of Anesthesiology and Pain Medicine, College of Medicine, Dankook University, Cheoan, Korea.
| |
Collapse
|
10
|
Grasshoff C, Netzhammer N, Schweizer J, Antkowiak B, Hentschke H. Depression of spinal network activity by thiopental: Shift from phasic to tonic GABAA receptor-mediated inhibition. Neuropharmacology 2008; 55:793-802. [DOI: 10.1016/j.neuropharm.2008.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/02/2008] [Accepted: 06/16/2008] [Indexed: 12/31/2022]
|
11
|
Yang CX, Xu TL. Thiopental inhibits glycine receptor function in acutely dissociated rat spinal dorsal horn neurons. Neurosci Lett 2006; 397:196-200. [PMID: 16406669 DOI: 10.1016/j.neulet.2005.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Revised: 11/18/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Whole-cell patch-clamp was used to assess the modulatory effect of thiopental (Thio) on glycine (Gly) receptor in mechanically dissociated rat spinal dorsal horn neurons. It was found that Thio inhibited the amplitude, accelerated the desensitization and prolonged the deactivation of Gly-induced currents (IGly) in a concentration-dependent manner. In addition, a rebound current occurred after washout of the co-application of Gly and Thio in most neurons tested. Moreover, the inhibitory effect of Thio was not the result of cross-inhibition between Gly and GABAA receptors. Furthermore, taurine-induced currents, a low-affinity agonist for Gly receptors, were also markedly inhibited by Thio in a similar way to IGly. These results indicate that Thio suppresses Gly receptor function and suggest that Thio anesthetic actions might not be mediated by Gly receptors. We speculate that the weak muscle relaxation and the limited analgesic effects observed during Thio anesthesia may attribute to its inhibitory effects on Gly receptors.
Collapse
Affiliation(s)
- Chuan-Xiu Yang
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | |
Collapse
|
12
|
O'Shea SM, Becker L, Weiher H, Betz H, Laube B. Propofol restores the function of "hyperekplexic" mutant glycine receptors in Xenopus oocytes and mice. J Neurosci 2004; 24:2322-7. [PMID: 14999083 PMCID: PMC6730415 DOI: 10.1523/jneurosci.4675-03.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human hereditary hyperekplexia ("startle disease") is a neurological disorder characterized by exaggerated, convulsive movements in response to unexpected stimuli. Molecular genetic studies have shown that this disease is often caused by amino acid substitutions at arginine 271 to glutamine or leucine of the alpha1 subunit of the inhibitory glycine receptor (GlyR). When exogenously expressed in Xenopus oocytes, agonist responses of mutant alpha1(R271Q) and alpha1(R271L) GlyRs show higher EC50 values and lower maximal inducible responses (relative efficacies) compared with oocytes expressing wild-type alpha1 GlyR subunits. Here, we report that the maximal glycine-induced currents (I(max)) of mutant alpha1(R271Q) and alpha1(R271L) GlyRs were dramatically potentiated in the presence of the anesthetic propofol (PRO), whereas the I(max) of wild-type alpha(1) receptors was not affected. Quantitative analysis of the agonist responses of the isofunctionally substituted alpha1(R271K) mutant GlyR revealed that saturating concentrations of PRO decreased the EC50 values of both glycine and the partial agonist beta-alanine by >10-fold, with relative efficacies increasing by 4- and 16-fold, respectively. Transgenic (tg) mice carrying the alpha1(R271Q) mutation (tg271Q-300) have both spontaneous and induced tremor episodes that closely resemble the movements of startled hyperekplexic patients. After treatment with subanesthetic doses of PRO, the tg271Q-300 mutant mice showed temporary reflexive and locomotor improvements that made them indistinguishable from wild-type mice. Together, these results demonstrate that the functional and behavioral effects of hyperekplexia mutations can be effectively reversed by drugs that potentiate GlyR responses.
Collapse
MESH Headings
- Anesthetics, Intravenous/pharmacology
- Animals
- Ataxia/drug therapy
- Ataxia/genetics
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Transfer Techniques
- Glycine/pharmacology
- Glycine Agents/pharmacology
- Humans
- Mice
- Mice, Transgenic
- Motor Activity/drug effects
- Motor Activity/genetics
- Oocytes/drug effects
- Oocytes/metabolism
- Patch-Clamp Techniques
- Propofol/pharmacology
- Reaction Time/drug effects
- Reaction Time/genetics
- Receptors, Glycine/drug effects
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Recombinant Proteins/drug effects
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/genetics
- Tremor/drug therapy
- Tremor/genetics
- Xenopus
Collapse
Affiliation(s)
- Sean Michael O'Shea
- Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, 60528 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|