1
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
2
|
Effects of isoflurane-induced anaesthesia on cognitive performance in a mouse model of Alzheimer's disease: A randomised trial in transgenic APP23 mice. Eur J Anaesthesiol 2015; 30:605-11. [PMID: 23274617 DOI: 10.1097/eja.0b013e32835b824b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Results from in-vitro experiments suggest that inhalational anaesthetics may have a detrimental effect on the course and incidence of Alzheimer's disease. However, case-control studies in humans show no negative impact of anaesthetics on the course of Alzheimer's disease. OBJECTIVE To test the hypothesis that 2 h of general anaesthesia with 1 MAC isoflurane changes learning abilities of young and old transgenic Alzheimer's mice (APP23 mice). DESIGN Randomised controlled double-blinded study in mice. SETTING Animal laboratory and operating theatre in the Klinik für Anästhesiologie, Technische Universität München, Germany ANIMALS Ninety-six male mice divided in four groups: young (4 months) APP23 mice and corresponding wild-type mice; old (14 to 16 months) APP23 and corresponding wild-type mice. INTERVENTION Mice were either anaesthetised for 2 h with 1 MAC isoflurane or sham-anaesthetised ('isoflurane' or 'control'). MAIN OUTCOME MEASURES Learning and locomotor activity during the following 8 days using the modified Hole Board Test for mice. Results are median (interquartile range) and median difference (95% confidence interval). RESULTS Young mice, [1.0 (1.3)] as assessed by the number of omission errors, learned better than old [1.8 (1.8); age: P = 0.004, median difference 0.5 (0.2 to 1.0)]. Anaesthetised animals [0.8 (1.5)] learned better than controls [1.6 (1.7); anaesthesia: P = 0.010, median difference 0.5 (0.1 to 0.9)]. This was accompanied by higher locomotor activity in young compared to old mice as assessed by number of line crossings per minute [10 (5) min(-1) vs. 7 (3) min(-1), P < 0.001, median difference 3 (2 to 4) min(-1)]. Anaesthesia and genotype Alzheimer's disease had no impact on locomotor activity. CONCLUSION Isoflurane may have protective, rather than detrimental, effects on cognition in Alzheimer's disease.
Collapse
|
3
|
Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci 2014; 8:252. [PMID: 25100962 PMCID: PMC4106406 DOI: 10.3389/fnbeh.2014.00252] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 12/01/2022] Open
Abstract
A large variety of rodent behavioral tests are currently being used to evaluate traits such as sensory-motor function, social interactions, anxiety-like and depressive-like behavior, substance dependence and various forms of cognitive function. Most behavioral tests have an inherent complexity, and their use requires consideration of several aspects such as the source of motivation in the test, the interaction between experimenter and animal, sources of variability, the sensory modality required by the animal to solve the task as well as costs and required work effort. Of particular importance is a test’s validity because of its influence on the chance of successful translation of preclinical results to clinical settings. High validity may, however, have to be balanced against practical constraints and there are no behavioral tests with optimal characteristics. The design and development of new behavioral tests is therefore an ongoing effort and there are now well over one hundred tests described in the contemporary literature. Some of them are well established following extensive use, while others are novel and still unproven. The task of choosing a behavioral test for a particular project may therefore be daunting and the aim of the present review is to provide a structured way to evaluate rodent behavioral tests aimed at drug discovery research.
Collapse
Affiliation(s)
- Anders Hånell
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden ; Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Niklas Marklund
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden
| |
Collapse
|
4
|
Haseneder R, Starker L, Berkmann J, Kellermann K, Jungwirth B, Blobner M, Eder M, Kochs E, Rammes G. Sevoflurane anesthesia improves cognitive performance in mice, but does not influence in vitro long-term potentation in hippocampus CA1 stratum radiatum. PLoS One 2013; 8:e64732. [PMID: 23724087 PMCID: PMC3665835 DOI: 10.1371/journal.pone.0064732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Whether the occurrence of postoperative cognitive dysfunction is a result of the effects of surgery or anesthesia is under debate. In this study, we investigated the impact of sevoflurane anesthesia on cognitive performance and cellular mechanisms involved in learning and memory. METHODS Male C57Bl6/J mice (4-5 months) were exposed to one minimum alveolar concentration sevoflurane for two hours. After 24 h, cognitive performance of mice was assessed using the modified hole board test. Additionally, we evaluated hippocampal long-term potentiation and expression levels of different receptor subunits by recording excitatory postsynaptic field potentials and using the western blot technique, respectively. Non-anesthetized mice served as controls. RESULTS In anesthetized mice, neither cognitive performance nor long-term potentiation was impaired 24 h after anesthesia. Interestingly, sevoflurane anesthesia induced even an improvement of cognitive performance and an elevation of the expression levels of N-methyl-D-aspartate (NMDA) receptor type 1 and 2B subunits in the hippocampus. CONCLUSIONS Since NMDA receptor type 1 and 2B subunits play a crucial role in processes related to learning and memory, we hypothesize that sevoflurane-induced changes in NMDA receptor subunit composition might cause hippocampus-dependent cognitive improvement. The data of the present study are in favor of a minor role of anesthesia in mediating postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
WADA Y, FURUSE T, YAMADA I, MASUYA H, KUSHIDA T, SHIBUKAWA Y, NAKAI Y, KOBAYASHI K, KANEDA H, GONDO Y, NODA T, SHIROISHI T, WAKANA S. ENU Mutagenesis Screening for Dominant Behavioral Mutations Based on Normal Control Data Obtained in Home-Cage Activity, Open-Field, and Passive Avoidance Tests. Exp Anim 2010; 59:495-510. [DOI: 10.1538/expanim.59.495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yumiko WADA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
- Department of Humanities, Kyusyu Lutheran College
| | - Tamio FURUSE
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Ikuko YAMADA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Hiroshi MASUYA
- Technology and Development Unit for Knowledge Base of Mouse Phenotype, RIKEN BioResource Center
| | - Tomoko KUSHIDA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Yoko SHIBUKAWA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Yuji NAKAI
- Mutagenesis and Genomics Team, RIKEN BioResource Center
| | - Kimio KOBAYASHI
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Hideki KANEDA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| | - Yoichi GONDO
- Mutagenesis and Genomics Team, RIKEN BioResource Center
| | - Tetsuo NODA
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center
| | - Toshihiko SHIROISHI
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics
| | - Shigeharu WAKANA
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center
| |
Collapse
|
7
|
Freedom of movement and the stability of its unfolding in free exploration of mice. Proc Natl Acad Sci U S A 2009; 106:21335-40. [PMID: 19934049 DOI: 10.1073/pnas.0812513106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exploration is a central component of human and animal behavior that has been studied in rodents for almost a century. The measures used by neuroscientists to characterize full-blown exploration are limited in exposing the dynamics of the exploratory process, leaving the morphogenesis of its structure and meaning hidden. By unfettering exploration from constraints imposed by hunger, thirst, coercion, and the confines of small cage and short session, using advanced computational tools, we reveal its meaning in the operational world of the mouse. Exploration consists of reiterated roundtrips of increasing amplitude and freedom, involving an increase in the number of independent dimensions along which the mouse moves (macro degrees of freedom). This measurable gradient can serve as a standard reference scale for the developmental dynamics of some aspects of the mouse's emotional-cognitive state and for the study of the interface between behavior and the neurophysiologic and genetic processes mediating it.
Collapse
|
8
|
Abstract
Anxiety disorders are a growing health problem world-wide. However, the causative factors, etiology, and underlying mechanisms of anxiety disorders, as for most psychiatric disorders, remain relatively poorly understood. The current status of clinical research indicates that anxiety traits and anxiety disorder in man have a genetic component, and therefore genetic modeling in animals is a logical approach to gain a greater insight into their neurobiology. However, it is also clear that the nature of these genetic contributions is highly complex. Moreover, the success of this approach is largely contingent upon the utility of available behavioral paradigms for modeling anxiety-related behaviors in mice. Animal genetic models provide a unique and comprehensive methodological tool to aid discovery into the etiology, neurobiology, and ultimately, the therapy of human anxiety disorders. The approach, however, is challenged with a number of complexities. In particular, the heterogeneous nature of anxiety disorders in man coupled with the associated multifaceted and descriptive diagnostic criteria, create challenges in both animal modeling and in clinical research. In this article, we describe some of the powerful modem genetic techniques that are uniquely amenable to the laboratory mouse and thus provide a strategy for approaching some of these challenges. Moreover, we focus on recent advances which have highlighted the relative contribution of genetic modeling in animals to the understanding of underlying neurobiology and genetic basis of anxiety disorders.
Collapse
|
9
|
Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 2008; 19:385-402. [PMID: 18690100 DOI: 10.1097/fbp.0b013e32830c3658] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last 15 years, genetically modified mice have added important data to our knowledge on psychiatric diseases including anxiety. This has produced many behavioural publications, partially by non-behaviourists, in which differences between mutants and normal wild-type animals were described. The popularity of these novel tools allowing the study of new mechanisms also, however, led to observations that could not be confirmed. This review attempts to summarize various factors that can lead to difficult and partially incorrect interpretation of data collected in anxiety-related paradigms. These pitfalls are explained by using virtual data. Our analysis illustrates that determining anxiety in rodents is more complicated than measuring a single parameter in a particular paradigm. It is important to use proper controls such as additional measures in the same or other procedures, as well as a conservative estimation of the chance of finding an actual effect. In this way, it is possible to enhance confidence in the findings. Alternative explanations for findings, like side effects or main effects in a different domain, such as cognition, should always be taken into account. Finally, several examples from the literature are presented as illustrations of the theoretical issues discussed. We believe that considering the pitfalls presented here will help researchers to design optimized experiments that can be more readily interpreted and replicated across laboratories.
Collapse
|
10
|
Rammes G, Starker LK, Haseneder R, Berkmann J, Plack A, Zieglgänsberger W, Ohl F, Kochs EF, Blobner M. Isoflurane anaesthesia reversibly improves cognitive function and long-term potentiation (LTP) via an up-regulation in NMDA receptor 2B subunit expression. Neuropharmacology 2008; 56:626-36. [PMID: 19059421 DOI: 10.1016/j.neuropharm.2008.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/03/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in cognitive performance after a surgery performed under anaesthesia. The exact roles of surgery and/or anaesthesia for facilitating POCD are unclear. This study investigates the effects of isoflurane anaesthesia on cognitive performance and cellular mechanisms involved in learning and memory function. Male C57BL6/J mice (age: 4-5 months) were anaesthetized with isoflurane in oxygen/air (FiO(2)=0.5) for 2h, non-anaesthetized mice served as controls. After 24h, neurocognitive function, in vitro long-term potentiation (LTP), or protein expression were evaluated. In a visuospatial test, anaesthetized mice showed better cognitive performance as they learned faster compared to controls. In hippocampal slices of anaesthetized mice, in vitro LTP was enhanced as reflected in an increased extracellular field potential (fEPSP) slope after 1h to 210.2+/-17% (control: 156.8+/-7.2%; n=14; p<0.05). NR2B subunits of the NMDA receptors were selectively up-regulated in hippocampal neurones after anaesthesia. Blocking these receptors either with the NR2B selective antagonists ifenprodil or RO25-6981 (R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol), prevents the anaesthesia-induced improvement in cognitive function as well as enhancement of in vitro LTP. The anaesthesia-mediated effects on NR2B subunits were fully reversed to control levels seven days after anaesthesia. The present data suggests that isoflurane anaesthesia induces a hippocampus-specific elevation of NR2B subunit composition, enhances LTP in CA1 neurones, and produces hippocampal-dependent cognitive improvement.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 2007; 18:559-72. [PMID: 17629744 DOI: 10.1007/s00335-007-9035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, and VA Tennessee Valley Healthcare System, Nashville 37212, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cooper JD, Russell C, Mitchison HM. Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:873-89. [PMID: 17023146 DOI: 10.1016/j.bbadis.2006.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/28/2006] [Accepted: 08/02/2006] [Indexed: 02/03/2023]
Abstract
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, and Centre for the Cellular Basis of Behaviour, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London, UK
| | | | | |
Collapse
|
13
|
Jacobson LH, Cryan JF. Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 2006; 37:171-213. [PMID: 17029009 DOI: 10.1007/s10519-006-9106-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/11/2006] [Indexed: 02/03/2023]
Abstract
Depression is a growing pandemic in developed societies. The use of inbred mouse strains in pre-clinical psychiatric research has proven to be a valuable resource. Firstly, they provide the background for genetic manipulations that aid in the discovery of molecular pathways that may be involved in major depression. Further, inbred mouse strains are also being used in the determination of genetic and environmental influences that may pre-dispose or trigger depression-related behavior. This review aims to highlight the utility of inbred mouse strains in depression research, while providing an overview of the current state of research into behavioral differences between strains in paradigms commonly used in the field. Neurochemical differences that may underlie strain differences are examined, and some caveats and cautions associated with the use of inbred strains are highlighted.
Collapse
Affiliation(s)
- L H Jacobson
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | | |
Collapse
|
14
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
15
|
Bouslama M, Durand E, Chauvière L, Van den Bergh O, Gallego J. Olfactory classical conditioning in newborn mice. Behav Brain Res 2005; 161:102-6. [PMID: 15904716 DOI: 10.1016/j.bbr.2005.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/13/2005] [Accepted: 01/21/2005] [Indexed: 11/15/2022]
Abstract
Determining the behavioural phenotype of genetically altered mice is a valuable approach for elucidating the function of genes and their role in cognitive disorders. Methods for phenotyping newborn mice are scarce and generally confined to sensorimotor reflexes. Here, we describe a simple method for assessing associative abilities in newborn mice. We used a two-odour-choice classical conditioning paradigm in mice from the day of birth (post-natal age 0, P0) to P6. Acquisition required 20 trials: 10 trials during which the pups were placed over the conditioned stimulus (CS+) odour (lemon or peppermint) for 30s and simultaneously stroked gently with a paintbrush and 10 trials during which the pups were placed over the other odour (CS-) for 30s, without stroking. Then, the pups were subjected to five odour-preference trials to test for conditioning. This sequence of five trials was repeated after 5 and 24h to assess retention of the conditioned odour preference. During the immediate post-acquisition sequence, the pups spent significantly more time over the CS+ than over the CS- (p<0.0001). No extinction of the conditioned preference was observed during this test. No preference was observed after 5 or 24h, indicating that the conditioned response was promptly lost. Conditioning was effective as soon as P0-P1. Thus, conditioning may emerge in newborn mice sooner than previously reported. This paradigm is well suited to phenotyping of large samples of genetically altered mice and may shed light on the role for genes in paediatric cognitive impairments.
Collapse
Affiliation(s)
- Myriam Bouslama
- INSERM U676, Robert-Debré Teaching Hospital, 48 Boulevard Sérurier, 75019 Paris, France.
| | | | | | | | | |
Collapse
|
16
|
Keck ME, Ohl F, Holsboer F, Müller MB. Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 2005; 29:867-89. [PMID: 15899517 DOI: 10.1016/j.neubiorev.2005.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically engineered mice were originally generated to delineate the role of a specific gene product in behavioral or neuroendocrine phenotypes, rather than to produce classic animal models of depression. To learn more about the neurobiological mechanisms underlying a clinical condition such as depression, it has proven worthwhile to investigate changes in behaviors characteristic of depressed humans, such as anxiety, regardless of whether or not these alterations may also occur in other disorders besides depression. The majority of patients with mood and anxiety disorders have measurable shifts in their stress hormone regulation as reflected by elevated secretion of central and peripheral stress hormones or by altered hormonal responses to neuroendocrine challenge tests. In recent years, these alterations have been increasingly translated into testable hypotheses addressing the pathogenesis of illness. Refined molecular technologies and the creation of genetically engineered mice have allowed to specifically target individual genes involved in regulation of corticotropin releasing factor (CRF) system elements (e.g. CRF and CRF-related peptides, their receptors, binding protein). Studies performed in such mice have complemented and extended our knowledge. The cumulative evidence makes a strong case implicating dysfunction of these systems in the pathogenesis of depression and leads us beyond the monoaminergic synapse in search of eagerly anticipated strategies to discover and develop better therapies for depression.
Collapse
Affiliation(s)
- Martin E Keck
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | |
Collapse
|