1
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
2
|
Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration. Pharmacol Biochem Behav 2020; 199:173069. [PMID: 33144207 DOI: 10.1016/j.pbb.2020.173069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Measurement of attentional performance in animal behavioral research allows us to investigate neural mechanisms underlying attentional processes and translate results to better understand human attentional function, dysfunction and drug treatments to reverse dysfunction. One useful method to measure attention in experimental animal studies is to use an operant visual signal detection paradigm, consisting of two levers and the rapid flashing of a cue lamp to signal a reward. In this study, we tested the relative sensitivity of this task when using different variants of the stimulus signal, varying brightness or duration of the light cue. To investigate roles of different neural systems underlying attentional processes, we assessed the sensitivity of attentional performance with these two different cue variations with blockade of muscarinic acetylcholine and NMDA glutamate receptors with scopolamine and MK-801 (dizocilpine). Operant signal detection was tested using a signal light that varied in intensity (0.027, 0.269, 1.22 lx) of the signal light or in a paradigm which varied the duration (0.5 s, 1 s, 2 s) of the signal light. Both methods of assessing attention showed construct validity for producing gradients of accuracy for signal detection; the dimmest cue led to less accurate responding compared to the brighter cues, and the shortest duration led to less accuracy compared to the longer durations. However, the tests differed in their sensitivity to pharmacological disruption. With the duration test, the high dose of MK-801 along with co-exposure of scopolamine and MK-801 caused a significant reduction of hit and rejection accuracy. Conversely, the intensity variation test did not show significant differences as a function of drug exposures. These data suggest that changes in signal duration, rather than signal intensity, during operant signal detection may have higher sensitivity to detecting drug effects and be a more useful technique for examining pharmacological interventions on attentional behavior and performance.
Collapse
|
3
|
Kajero JA, Seedat S, Ohaeri J, Akindele A, Aina O. Investigation of the effects of cannabidiol on vacuous chewing movements, locomotion, oxidative stress and blood glucose in rats treated with oral haloperidol. World J Biol Psychiatry 2020; 21:612-626. [PMID: 32264772 DOI: 10.1080/15622975.2020.1752934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: Tardive dyskinesia (TD) unlike acute dystonia may be irreversible. This study investigated the effects of oral cannabidiol (CBD) on haloperidol-induced vacuous chewing movement (VCM) model of TD. Methods: There were six experimental groups with different combinations of oral cannabidiol with 5 mg/kg of haloperidol given orally. Behavioural assays and FBS were measured. VCMs were assessed after the last dose of medication. Blood for oxidative stress assays was collected on the 8th day after the administration of the last dose of medication. Results: This study found that CBD co-administration with haloperidol attenuated the VCMs and increased motor tone produced by haloperidol. CBD alone at 5 mg/kg appears to have anxiolytic properties but may not be as effective as haloperidol which exhibited a greater anxiolytic effect at 5 mg/kg. Treatment with CBD alone at 5 mg/kg also appeared to enhance brain DPPH scavenging activity. Conclusions: We confirmed that CBD can ameliorate motor impairments produced by haloperidol. Our data suggest that CBD can be combined with haloperidol to prevent the emergent of extrapyramidal side effects and long-term movement disorders, such as acute dystonic disorder and TD.
Collapse
Affiliation(s)
| | - Soraya Seedat
- Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - Jude Ohaeri
- Department of Psychological Medicine, University of Nigeria, Enugu State, Nigeria
| | - Abidemi Akindele
- Faculty of Basic Medical Sciences, Department of Pharmacology, Therapeutics & Toxicology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwagbemiga Aina
- Department of Biochemistry, Nigerian Institute of Medical Research Yaba Lagos, Lagos, Nigeria
| |
Collapse
|
4
|
An analysis of the rewarding and aversive associative properties of nicotine in the neonatal quinpirole model: Effects on glial cell line-derived neurotrophic factor (GDNF). Schizophr Res 2018; 194:107-114. [PMID: 28314679 PMCID: PMC5599315 DOI: 10.1016/j.schres.2017.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 11/20/2022]
Abstract
This study analyzed the associative properties of nicotine in a conditioned place preference (CPP) paradigm in adolescent rats neonatally treated with quinpirole (NQ) or saline (NS). NQ produces dopamine D2 receptor supersensitivity that persists throughout the animal's lifetime, and therefore has relevance towards schizophrenia. In two experiments, rats were ip administered quinpirole (1mg/kg) or saline from postnatal day (P)1-21. After an initial preference test at P42-43, animals were conditioned for eight consecutive days with saline or nicotine (0.6mg/kg free base) in Experiment 1 or saline or nicotine (1.8mg/kg free base) in Experiment 2. In addition, there were NQ and NS groups in each experiment given the antipsychotic haloperidol (0.05mg/kg) or clozapine (2.5mg/kg) before nicotine conditioning. A drug free post-conditioning test was administered at P52. At P53, the nucleus accumbens (NAc) was analyzed for glial cell-line derived neurotrophic factor (GDNF). Results revealed that NQ enhanced nicotine CPP, but blunted the aversive properties of nicotine. Haloperidol was more effective than clozapine at blocking nicotine CPP in Experiment 1, but neither antipsychotic affected nicotine conditioned place aversion in Experiment 2. NQ increased accumbal GDNF which was sensitized in NQ rats conditioned to nicotine in Experiment 1, but the aversive dose of nicotine reduced GDNF in NQ animals in Experiment 2. Both antipsychotics in combination with the aversive dose of nicotine decreased accumbal GDNF. In sum, increased D2 receptor sensitivity influenced the associative properties and GDNF response to nicotine which has implications towards pharmacological targets for smoking cessation in schizophrenia.
Collapse
|
5
|
Saur T, Cohen BM, Ma Q, Babb SM, Buttner EA, Yao WD. Acute and chronic effects of clozapine on cholinergic transmission in cultured mouse superior cervical ganglion neurons. J Neurogenet 2016; 30:297-305. [PMID: 27627024 PMCID: PMC6061957 DOI: 10.1080/01677063.2016.1229779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
Cholinergic dysfunction contributes to cognitive deficits in schizophrenia. The atypical antipsychotic clozapine improves cognition in patients with schizophrenia, possibly through modulation of the cholinergic system. However, little is known about specific underlying mechanisms. We investigated the acute and chronic effects of clozapine on cholinergic synaptic transmission in cultured superior cervical ganglion (SCG) neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) were detected and were reversibly inhibited by the nicotinic receptor antagonist d-tubocurarine, confirming that the synaptic responses were primarily mediated by nicotinic receptors. Bath application of clozapine at therapeutic concentrations rapidly and reversely inhibited both the amplitude and frequency of sEPSCs in a concentration-dependent manner, without changing either rise or decay time, suggesting that clozapine effects have both presynaptic and postsynaptic origins. The acute effects of clozapine on sEPSCs were recapitulated by chronic treatment of SCG cultures with similar concentrations of clozapine, as clozapine treatment for 4 d reduced the frequency and amplitude of sEPSCs without affecting their kinetics. Cell survival analysis indicated that SCG neuron cell counts after chronic clozapine treatment were comparable to the control group. These results demonstrate that therapeutic concentrations of clozapine suppress nicotinic synaptic transmission in SCG cholinergic synapses, a simple in vitro preparation of cholinergic transmission.
Collapse
Affiliation(s)
- Taixiang Saur
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Bruce M Cohen
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Qi Ma
- b New England Primate Research Center, Harvard Medical School , Southborough , MA , USA
| | - Suzann M Babb
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Edgar A Buttner
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Wei-Dong Yao
- b New England Primate Research Center, Harvard Medical School , Southborough , MA , USA
| |
Collapse
|
6
|
Besson M, Forget B. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective. Front Psychiatry 2016; 7:160. [PMID: 27708591 PMCID: PMC5030478 DOI: 10.3389/fpsyt.2016.00160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features.
Collapse
Affiliation(s)
- Morgane Besson
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| | - Benoît Forget
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| |
Collapse
|
7
|
Freitas KC, Hillhouse TM, Leitl MD, Negus SS. Effects of acute and sustained pain manipulations on performance in a visual-signal detection task of attention in rats. Drug Dev Res 2015; 76:194-203. [PMID: 26077965 DOI: 10.1002/ddr.21255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/30/2015] [Indexed: 01/28/2023]
Abstract
Preclinical Research Patients with pain often display cognitive impairment including deficits in attention. The visual-signal detection task (VSDT) is a behavioral procedure for assessment of attention in rodents. Male Sprague Dawley rats were trained in a VSDT and tested with three different noxious stimuli: (i) intraperitoneal injection of lactic acid; (ii) intraplantar injection of formalin; and (iii) intraplantar injection of complete Freund's adjuvant (CFA). The muscarinic acetylcholine receptor antagonist, scopolamine was also tested as a positive control. Scopolamine (0.01-1.0 mg/kg) dose dependently reduced accuracy and increased response latencies during completed trials with higher scopolamine doses increasing omissions. Lactic acid (0.56-5.6% ip) also increased response latencies and omissions, although it failed to alter measures of response accuracy. Formalin produced a transient decrease in accuracy while also increasing both response latency and omissions. CFA failed to alter VSDT performance. Although VSDT effects were transient for formalin and absent for CFA, both treatments produced mechanical allodynia and paw edema for up to 7 days. These results support the potential for noxious stimuli to produce a pain-related disruption of attention in rats. However, relatively strong noxious stimulation appears necessary to disrupt performance in this version of the VSDT.
Collapse
Affiliation(s)
- Kelen C Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd M Hillhouse
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Leitl
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Steve S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
8
|
Young JW, Geyer MA. Developing treatments for cognitive deficits in schizophrenia: the challenge of translation. J Psychopharmacol 2015; 29:178-96. [PMID: 25516372 PMCID: PMC4670265 DOI: 10.1177/0269881114555252] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a life-long debilitating mental disorder affecting tens of millions of people worldwide. The serendipitous discovery of antipsychotics focused pharmaceutical research on developing a better antipsychotic. Our understanding of the disorder has advanced however, with the knowledge that cognitive enhancers are required for patients in order to improve their everyday lives. While antipsychotics treat psychosis, they do not enhance cognition and hence are not antischizophrenics. Developing pro-cognitive therapeutics has been extremely difficult, however, especially when no approved treatment exists. In lieu of stumbling on an efficacious treatment, developing targeted compounds can be facilitated by understanding the neural mechanisms underlying altered cognitive functioning in patients. Equally importantly, these cognitive domains will need to be measured similarly in animals and humans so that novel targets can be tested prior to conducting expensive clinical trials. To date, the limited similarity of testing across species has resulted in a translational bottleneck. In this review, we emphasize that schizophrenia is a disorder characterized by abnormal cognitive behavior. Quantifying these abnormalities using tasks having cross-species validity would enable the quantification of comparable processes in rodents. This approach would increase the likelihood that the neural substrates underlying relevant behaviors will be conserved across species. Hence, we detail cross-species tasks which can be used to test the effects of manipulations relevant to schizophrenia and putative therapeutics. Such tasks offer the hope of providing a bridge between non-clinical and clinical testing that will eventually lead to treatments developed specifically for patients with deficient cognition.
Collapse
Affiliation(s)
- JW Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - MA Geyer
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
9
|
Abstract
The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, CB-3545, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA, 30912-2450, USA
| | | |
Collapse
|
10
|
Levin ED, Hao I, Burke DA, Cauley M, Hall BJ, Rezvani AH. Effects of tobacco smoke constituents, anabasine and anatabine, on memory and attention in female rats. J Psychopharmacol 2014; 28:915-22. [PMID: 25122040 PMCID: PMC4305443 DOI: 10.1177/0269881114543721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotine has been well characterized to improve memory and attention. Nicotine is the primary, but not only neuroactive compound in tobacco. Other tobacco constituents such as anabasine and anatabine also have agonist actions on nicotinic receptors. The current study investigated the effects of anabasine and anatabine on memory and attention. Adult female Sprague-Dawley rats were trained on a win-shift spatial working and reference memory task in the 16-arm radial maze or a visual signal detection operant task to test attention. Acute dose-effect functions of anabasine and anatabine over two orders of magnitude were evaluated for both tasks. In the radial-arm maze memory test, anabasine but not anatabine significantly reduced the memory impairment caused by the NMDA antagonist dizocilpine (MK-801). In the signal detection attentional task, anatabine but not anabasine significantly attenuated the attentional impairment caused by dizocilpine. These studies show that non-nicotine nicotinic agonists in tobacco, similar to nicotine, can significantly improve memory and attentional function. Both anabasine and anatabine produced cognitive improvement, but their effectiveness differed with regard to memory and attention. Follow-up studies with anabasine and anatabine are called for to determine their efficacy as therapeutics for memory and attentional dysfunction.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ian Hao
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Burke
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Marty Cauley
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Brandon J Hall
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014; 71:1225-44. [PMID: 24122021 PMCID: PMC3949016 DOI: 10.1007/s00018-013-1481-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
Cholinergic modulation of prefrontal cortex is essential for attention. In essence, it focuses the mind on relevant, transient stimuli in support of goal-directed behavior. The excitation of prefrontal layer VI neurons through nicotinic acetylcholine receptors optimizes local and top-down control of attention. Layer VI of prefrontal cortex is the origin of a dense feedback projection to the thalamus and is one of only a handful of brain regions that express the α5 nicotinic receptor subunit, encoded by the gene chrna5. This accessory nicotinic receptor subunit alters the properties of high-affinity nicotinic receptors in layer VI pyramidal neurons in both development and adulthood. Studies investigating the consequences of genetic deletion of α5, as well as other disruptions to nicotinic receptors, find attention deficits together with altered cholinergic excitation of layer VI neurons and aberrant neuronal morphology. Nicotinic receptors in prefrontal layer VI neurons play an essential role in focusing attention under challenging circumstances. In this regard, they do not act in isolation, but rather in concert with cholinergic receptors in other parts of prefrontal circuitry. This review urges an intensification of focus on the cellular mechanisms and plasticity of prefrontal attention circuitry. Disruptions in attention are one of the greatest contributing factors to disease burden in psychiatric and neurological disorders, and enhancing attention may require different approaches in the normal and disordered prefrontal cortex.
Collapse
|
12
|
Detrimental effects of acute nicotine on the response-withholding performance of spontaneously hypertensive and Wistar Kyoto rats. Psychopharmacology (Berl) 2014; 231:2471-82. [PMID: 24414609 PMCID: PMC4040392 DOI: 10.1007/s00213-013-3412-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
RATIONALE Attention-deficit hyperactivity disorder (ADHD) is associated with a higher prevalence of smoking, which may be related to potential therapeutic effects of nicotine on ADHD symptoms. Whereas nicotine offers robust improvements in sustained attention, the effects of nicotine on impulsivity are unclear. OBJECTIVES The present study examined the effects of nicotine on the response inhibition capacity of spontaneously hypertensive rats (SHR), an animal model of ADHD, compared to that of a normotensive control Wistar Kyoto (WKY), using the fixed minimum interval (FMI) schedule of reinforcement. METHODS Tests were conducted following acute injections of subcutaneous nicotine (0.1-0.6 mg/kg). On each FMI trial, the first lever press initiated an inter-response time (IRT); a head entry into a food receptacle terminated the IRT. IRTs longer than 6 s were intermittently reinforced with sucrose. RESULTS A model that assumes that only a proportion of IRTs are sensitive to the timing contingencies of the FMI provided a close fit to the data, regardless of strain or treatment. No baseline difference in FMI performance was observed between SHR and WKY. Nicotine reduced the duration of timed IRTs and the duration of latencies to the IRT-initiating lever press similarly for both strains. Nicotine dose-dependently increased the proportion of timed IRTs; the dose-response curve was shifted leftwards in SHR relative to WKY. CONCLUSIONS These results suggest that nicotine (a) reduces response-inhibition capacity, (b) enhances the reinforcing efficacy of sucrose, and (c) dose-dependently enhances attention-like sensitivity to contingencies of reinforcement, through mechanisms that are yet unknown.
Collapse
|
13
|
Hutchings EJ, Waller JL, Terry AV. Differential long-term effects of haloperidol and risperidone on the acquisition and performance of tasks of spatial working and short-term memory and sustained attention in rats. J Pharmacol Exp Ther 2013; 347:547-56. [PMID: 24042161 PMCID: PMC3836316 DOI: 10.1124/jpet.113.209031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15-60 and 84-320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non-match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility.
Collapse
Affiliation(s)
- Elizabeth J Hutchings
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (E.J.H., A.V.T.), Department of Biostatistics, Georgia Regents University, Augusta, Georgia (J.L.W.)
| | | | | |
Collapse
|
14
|
Hillhouse TM, Prus AJ. Effects of the neurotensin NTS₁ receptor agonist PD149163 on visual signal detection in rats. Eur J Pharmacol 2013; 721:201-7. [PMID: 24076181 DOI: 10.1016/j.ejphar.2013.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023]
Abstract
Antipsychotic drugs provide limited efficacy for cognitive impairment in schizophrenia. Recent studies have found that the neurotensin NTS1 receptor agonist and putative atypical antipsychotic drug PD149163 reverses deficits in sensory-gating and novel object recognition, suggesting that this compound may have the potential to improve cognitive functioning in schizophrenia. The present study sought to extend these investigations by evaluating the effects of PD149163 on sustained attention using a visual signal detection operant task in rats. PD149163, the atypical antipsychotic drug clozapine, and the dopamine D2/3 receptor antagonist raclopride all significantly decreased percent "hit" accuracy, while none of these compounds altered "correct rejections" (compared to vehicle control). Clozapine and raclopride significantly increased response latency, while high doses of PD149163 and raclopride significantly increased trial omissions. Nicotine, which was tested as a positive control, significantly improved overall performance in this task and did not affect response latency or trial omissions. The present findings suggest that neurotensin NTS1 receptor agonists, like antipsychotic drugs, may inhibit sustained attention in this task despite having different pharmacological mechanisms of action.
Collapse
Affiliation(s)
- Todd M Hillhouse
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
15
|
Levin ED. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem Pharmacol 2013; 86:1145-52. [PMID: 23928190 DOI: 10.1016/j.bcp.2013.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Nicotine has been shown in a variety of studies to improve cognitive function including learning, memory and attention. Nicotine both stimulates and desensitizes nicotinic receptors, thus acting both as an agonist and a net antagonist. The relative roles of these two actions for nicotine-induced cognitive improvement have not yet been fully determined. We and others have found that acute nicotinic antagonist treatment can improve learning and attention. Nicotine acts on a variety of nicotinic receptor subtypes. The relative role and interactions of neuronal nicotinic receptor subtypes for cognition also needs to be better characterized. Nicotine acts on nicotinic receptors in a wide variety of brain areas. The role of some of these areas such as the hippocampus has been relatively well studied but other areas like the thalamus, which has the densest nicotinic receptor concentration are still only partially characterized. In a series of studies we characterized nicotinic receptor actions, anatomic localization and circuit interactions, which are critical to nicotine effects on the cognitive functions of learning, memory and attention. The relative role of increases and decreases in nicotinic receptor activation by nicotine were determined in regionally specific studies of the hippocampus, the amygdala, the frontal cortex and the mediodorsal thalamic nucleus with local infusions of antagonists of nicotinic receptor subtypes (α7 and α4β2). The understanding of the functional neural bases of cognitive function is fundamental to the more effective development of nicotinic drugs for treating cognitive dysfunction.
Collapse
Affiliation(s)
- Edward D Levin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Box 104790 DUMC, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Rezvani AH, Cauley M, Xiao Y, Kellar KJ, Levin ED. Effects of chronic sazetidine-A, a selective α4β2 neuronal nicotinic acetylcholine receptors desensitizing agent on pharmacologically-induced impaired attention in rats. Psychopharmacology (Berl) 2013; 226:35-43. [PMID: 23100170 DOI: 10.1007/s00213-012-2895-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
Abstract
RATIONALE Nicotine and nicotinic agonists have been shown to improve attentional function. Nicotinic receptors are easily desensitized, and all nicotinic agonists are also desensitizing agents. Although both receptor activation and desensitization are components of the mechanism that mediates the overall effects of nicotinic agonists, it is not clear how each of the two opposed actions contributes to attentional improvements. Sazetidine-A has high binding affinity at α4β2 nicotinic receptors and causes a relatively brief activation followed by a long-lasting desensitization of the receptors. Acute administration of sazetidine-A has been shown to significantly improve attention by reversing impairments caused by the muscarinic cholinergic antagonist scopolamine and the NMDA glutamate antagonist dizocilpine. METHODS In the current study, we tested the effects of chronic subcutaneous infusion of sazetidine-A (0, 2, or 6 mg/kg/day) on attention in Sprague-Dawley rats. Furthermore, we investigated the effects of chronic sazetidine-A treatment on attentional impairment induced by an acute administration of 0.02 mg/kg scopolamine. RESULTS During the first week period, the 6-mg/kg/day sazetidine-A dose significantly reversed the attentional impairment induced by scopolamine. During weeks 3 and 4, the scopolamine-induced impairment was no longer seen, but sazetidine-A (6 mg/kg/day) significantly improved attentional performance on its own. Chronic sazetidine-A also reduced response latency and response omissions. CONCLUSIONS This study demonstrated that similar to its acute effects, chronic infusions of sazetidine-A improve attentional performance. The results indicate that the desensitization of α4β2 nicotinic receptors with some activation of these receptors may play an important role in improving effects of sazetidine-A on attention.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry, Duke University Medical Center, Box 104790, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
17
|
Levin ED, Cauley M, Rezvani AH. Improvement of attentional function with antagonism of nicotinic receptors in female rats. Eur J Pharmacol 2013; 702:269-74. [PMID: 23399762 DOI: 10.1016/j.ejphar.2013.01.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Nicotinic agonists have been shown in a variety of studies to improve cognitive function. Since nicotinic receptors are easily desensitized by agonists, it is not completely clear to what degree receptor desensitization or receptor activation are responsible for nicotinic agonist-induced cognitive improvement. In the current study, the effect of the neuronal nicotinic cholinergic α4β2 receptor antagonist dihydro-β-erythroidine (DHβE) and the α7 nicotinic receptor antagonist methyllycaconitine (MLA) on attentional function was determined. Adult female Sprague-Dawley rats were trained on the visual signal detection task. They were required to discriminate whether or not a light signal occurred on a trial and respond with a lever press on one side after a signal and the opposite side after the absence of a signal in order to receive a food pellet reinforcer. Acute administration of the α4β2 antagonist DHβE improved attentional function either alone or in reversing the attentional impairment caused by the NMDA glutamate antagonist dizocilpine (MK-801). Acute administration of MLA also significantly attenuated the dizocilpine-induced attentional impairment. In previous research we have shown that the α4β2 nicotinic desensitizing agent and partial agonist sazetidine-A also was effective in reversing dizocilpine-induced attentional impairments on the signal detection task and that low doses of the general nicotinic antagonist mecamylamine improved learning and memory. The current studies indicate that blockade of nicotinic receptors can effectively attenuate attentional impairments. Development of drugs that provide a net decrease in nicotinic receptor activity either through antagonism or desensitization could be worth exploring for beneficial effects for treating cognitive impairments.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
18
|
Effects of AZD3480, a neuronal nicotinic acetylcholine receptor agonist, and donepezil on dizocilpine-induced attentional impairment in rats. Psychopharmacology (Berl) 2012; 223:251-8. [PMID: 22526540 DOI: 10.1007/s00213-012-2712-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/29/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND RATIONALE Nicotinic acetylcholine systems play major roles in cognitive function. Nicotine and a variety of nicotinic agonists improve attention, and nicotinic antagonist exposure impairs it. This study was conducted to investigate the effect of a novel nicotinic receptor agonist at α4β2 nicotinic receptors (AZD3480) on attention and reversal of pharmacologically induced attentional impairment produced by the NMDA glutamate antagonist dizocilpine (MK-801). METHODS Adult female Sprague-Dawley rats were trained to perform an operant visual signal detection task to a stable baseline of accuracy. The rats were then injected subcutaneously following a repeated measures, counter-balanced design with saline, AZD3480 (0.01, 0.1, and 1 mg/kg), dizocilpine (0.05 mg/kg), or their combinations 30 min before the test. The effect of donepezil on the same pharmacologically induced attentional impairment was also tested. A separate group of rats was injected with donepezil (0.01, 0.1, and 1 mg/kg), dizocilpine (0.05 mg/kg), or their combinations, and their attention were assessed. Saline was the vehicle control. RESULTS Dizocilpine caused a significant (p < 0.0005) impairment in percent correct performance. This attentional impairment was significantly (p < 0.0005) reversed by 0.01 and 0.1 mg/kg of AZD3480. AZD3480 by itself did not alter the already high baseline control performance. Donepezil (0.01-1.0 mg/kg) also significantly (p < 0.005) attenuated the dizocilpine-induced attentional impairment. CONCLUSIONS AZD3480, similar to donepezil, showed significant efficacy for counteracting the attentional impairment caused by the NMDA glutamate antagonist dizocilpine. Low doses of AZD3480 may provide therapeutic benefit for reversing attentional impairment in patients suffering from cognitive impairment due to glutamatergic dysregulation and likely other attentional disorders.
Collapse
|
19
|
Vardigan JD, Converso A, Hutson PH, Uslaner JM. The Selective Phosphodiesterase 9 (PDE9) Inhibitor PF-04447943 Attenuates a Scopolamine-Induced Deficit in a Novel Rodent Attention Task. J Neurogenet 2011; 25:120-6. [DOI: 10.3109/01677063.2011.630494] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
21
|
Sazetidine-A, a selective α4β2 nicotinic acetylcholine receptor ligand: effects on dizocilpine and scopolamine-induced attentional impairments in female Sprague-Dawley rats. Psychopharmacology (Berl) 2011; 215:621-30. [PMID: 21274704 DOI: 10.1007/s00213-010-2161-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/18/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neuronal nicotinic receptor systems have been shown to play key roles in cognition. Nicotine and nicotinic analogs improve attention and nicotinic antagonists impair it. This study was conducted to investigate the role of α4β2 nicotinic receptors in sustained attention using a novel selective α4β2 nicotinic receptor ligand, sazetidine-A. METHODS Female rats were trained to perform the signal detection task to a stable baseline of accuracy. The rats were injected with saline, sazetidine-A (0.01, 0.03, and 0.1 mg/kg), dizocilpine (0.05 mg/kg), or their combination; or, in another experiment, the rats were injected with the same doses of sazetidine-A, scopolamine (0.02 mg/kg), or their combination. RESULTS Percent hit and percent correct rejection showed that dizocilpine caused significant (p < 0.025) impairments in performance, which were significantly reversed by each of the sazetidine-A doses. Response omissions were significantly (p < 0.05) increased by dizocilpine, and this was also significantly reversed by each of the sazetidine-A doses. None of the sazetidine-A doses had significant effects on hit, correct rejection, or response omissions when given alone. Scopolamine also caused significant (p < 0.0005) impairments in percent hit and percent correct rejection and increased response omissions, which were significantly attenuated by all the sazetidine-A doses for percent hit and response omissions and by the highest dose of sazetidine-A for percent correct rejection. Both scopolamine and dizocilpine significantly (p < 0.0005) increased response latency, an effect which was significantly attenuated by sazetidine-A coadministration. CONCLUSIONS These studies imply an important role for α4β2 nicotinic receptors in improving sustained attention under conditions that disrupt it. Very low doses of sazetidine-A or drugs with a similar profile may provide therapeutic benefit for reversing attentional impairment in patients suffering from mental disorders and/or cognitive impairment.
Collapse
|
22
|
Levin ED, Bushnell PJ, Rezvani AH. Attention-modulating effects of cognitive enhancers. Pharmacol Biochem Behav 2011; 99:146-54. [PMID: 21334367 DOI: 10.1016/j.pbb.2011.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/30/2011] [Accepted: 02/09/2011] [Indexed: 12/13/2022]
Abstract
Attention can be readily measured in experimental animal models. Animal models of attention have been used to better understand the neural systems involved in attention, how attention is impaired, and how therapeutic treatments can ameliorate attentional deficits. This review focuses on the ways in which animal models are used to better understand the neuronal mechanism of attention and how to develop new therapeutic treatments for attentional impairment. Several behavioral test methods have been developed for experimental animal studies of attention, including a 5-choice serial reaction time task (5-CSRTT), a signal detection task (SDT), and a novel object recognition (NOR) test. These tasks can be used together with genetic, lesion, pharmacological and behavioral models of attentional impairment to test the efficacy of novel therapeutic treatments. The most prominent genetic model is the spontaneously hypertensive rat (SHR). Well-characterized lesion models include frontal cortical or hippocampal lesions. Pharmacological models include challenge with the NMDA glutamate antagonist dizocilpine (MK-801), the nicotinic cholinergic antagonist mecamylamine and the muscarinic cholinergic antagonist scopolamine. Behavioral models include distracting stimuli and attenuated target stimuli. Important validation of these behavioral tests and models of attentional impairments for developing effective treatments for attentional dysfunction is the fact that stimulant treatments effective for attention deficit hyperactivity disorder (ADHD), such as methylphenidate (Ritalin®), are effective in the experimental animal models. Newer lines of treatment including nicotinic agonists, α4β2 nicotinic receptor desensitizers, and histamine H₃ antagonists, have also been found to be effective in improving attention in these animal models. Good carryover has also been seen for the attentional improvement caused by nicotine in experimental animal models and in human populations. Animal models of attention can be effectively used for the development of new treatments of attentional impairment in ADHD and other syndromes in which have attentional impairments occur, such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, NC 27710, USA.
| | | | | |
Collapse
|
23
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - James D Jentsch
- Departments of Psychology and Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Cannady R, Weir R, Wee B, Gotschlich E, Kolia N, Lau E, Brotherton J, Levin ED. Nicotinic antagonist effects in the mediodorsal thalamic nucleus: regional heterogeneity of nicotinic receptor involvement in cognitive function. Biochem Pharmacol 2009; 78:788-94. [PMID: 19477167 DOI: 10.1016/j.bcp.2009.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 11/19/2022]
Abstract
Nicotine has been found in many studies to improve cognitive function. However, some studies have not found this effect and others have seen nicotine-induced impairments. Systemic administration bathes the brain with drugs. However, the brain is quite intricately organized with various regions playing very different roles in the bases of cognitive function. We have examined the role of nicotinic receptors in a variety of brain areas for memory. In the hippocampus and amygdala, local infusions of both alpha7 and alpha4beta2 antagonists methyllyaconitine (MLA) and dihydro-beta-erythroidine (DHbetaE) significantly impair memory. In the current studies we locally infused acute and chronic doses of MLA and DHbetaE into the mediodorsal thalamic nucleus and tested memory function on a 16-arm radial maze. The rats also received systemic nicotine to determine the impact of more generalized nicotine effects. Since nicotinic treatments are being developed for cognitive impairment of schizophrenia, interactions were studied with the antipsychotic drug clozapine. In the acute study, the 6.75 microg/side of DHbetaE improved working memory. Co-administration of MLA reversed the DHbetaE-induced improvement. Chronic DHbetaE infusions into the mediodorsal thalamic nucleus also improved working memory. Systemic nicotine reversed this effect. Clozapine had no significant interaction. Nicotinic alpha4beta2 receptors in the mediodorsal thalamic nucleus appear to play an opposite role with regard to working memory than those in the hippocampus and amygdala. Heterogeneity in response to nicotinic drugs given systemically may be due to anatomically distinct nicotinic systems in the brain and their unique roles in the neural bases of cognitive function.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Levin ED, Perkins A, Brotherton T, Qazi M, Berez C, Montalvo-Ortiz J, Davis K, Williams P, Christopher NC. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:296-302. [PMID: 19146909 PMCID: PMC2684503 DOI: 10.1016/j.pnpbp.2008.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously the memory impairment caused by hippocampal DHbetaE infusion was attenuated by clozapine. Frontal cortical MLA infusions at a dose that previously was found to potentiate the clozapine-induced memory impairment with hippocampal infusion had no significant effect when infused into the medial frontal cortex. The location and subtype of nicotinic receptor underactivity are critical determinates for clozapine effects on memory. Patients with hippocampal beta2-containing nicotinic receptor loss may be well treated with clozapine therapy, while those with frontal cortical beta2-containing receptor loss may have a potentiated memory impairment caused by clozapine.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:269-75. [PMID: 19110025 DOI: 10.1016/j.pnpbp.2008.11.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/16/2022]
Abstract
It is well established that nicotinic systems in the brain are critically involved in attentional processes in both animals and humans. The current study assessed the effects of a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist, R3487/MEM3454 (also referred to as R3487 or MEM 3454) on sustained attention in rats performing an operant visual signal detection task. The effects of R3487/MEM3454 were compared to those of the acetylcholinesterase inhibitor/nicotinic alpha7 allosteric positive modulator galanthamine. Adult female Sprague-Dawley rats were injected subcutaneously with R3487/MEM3454 (0.03, 0.1, 0.15, 0.3 and 0.6 mg/kg), galanthamine (0.25, 0.5, 1, 2 mg/kg) or vehicle 30 min before the attentional test. In the second study, the time-dependent effects of R3487/MEM3454 were assessed by injecting the compound (0.6 mg/kg, s.c.) at different pretreatment intervals (30, 60 or 90 min) before the start of the attentional task. Our results show a significant dose-effect for R3487/MEM3454 on percent hit accuracy performance without any significant alteration on percent correct rejection performance. In the time-dependent test, R3487/MEM3454 significantly increased the percent hit accuracy performance when animals were injected 60 min before the start of the attentional task. Administration of galanthamine failed to significantly increase percent hit accuracy performance and increasing the dose of galanthamine produced a decrease in percent correct rejection performance. The present findings with R3487/MEM3454 suggest that nicotinic alpha7 receptors and/or 5-HT3 receptors may play an important role in modulating sustained attention and that R3487/MEM3454 may have therapeutic potential in improving sustained attention in humans.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009; 122:150-202. [PMID: 19269307 DOI: 10.1016/j.pharmthera.2009.02.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great 'unmet therapeutic need', the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a "preclinical MATRICS" to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
Collapse
|
28
|
Attenuation of pharmacologically-induced attentional impairment by methylphenidate in rats. Pharmacol Biochem Behav 2008; 92:141-6. [PMID: 19041337 DOI: 10.1016/j.pbb.2008.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Methylphenidate is widely used as a treatment option for attention deficit hyperactivity disorder. In animal models of attentional impairment, it is an important validation to determine whether this clinically effective treatment attenuates deficits. The purpose of the current study was to determine whether methylphenidate can diminish attentional impairment induced by three pharmacological agents with different mechanisms of action: scopolamine, mecamylamine, and dizocilpine. Female rats were trained on an operant visual signal detection task. Ten min before the test, the rats were injected subcutaneously with methylphenidate (0, 0.1, 0.3 mg/kg), scopolamine (0, 0.005, 0.01 mg/kg), mecamylamine (0, 2, 4 mg/kg), dizocilpine (0, 0.025, 0.05 mg/kg) or combinations of methylphenidate with these drugs. In each of the experiments, all rats received every treatment in a repeated measures counterbalanced order. Correction rejection accuracy was impaired by all three of the antagonists and these effects were attenuated by methylphenidate. Both scopolamine at 0.01 and dizocilpine at 0.05 mg/kg significantly impaired percent correct rejection choice accuracy, an effect that was ameliorated by methylphenidate. Mecamylamine (4 mg/kg) impaired attentional performance by reducing percent hit and percent correct rejection. Co-administration of methylphenidate failed to significantly affect the mecamylamine-induced attentional impairment. Methylphenidate alone at 0.3 mg/kg significantly improved percent hit choice accuracy only in low-performing rats in one experiment, an effect which was reversed by scopolamine. These data show that methylphenidate effectively reverses the attentional impairment caused by scopolamine and dizocilpine. These findings further validate the operant visual signal detection task for assessing attentional impairments and their reversal.
Collapse
|
29
|
Culhane MA, Schoenfeld DA, Barr RS, Cather C, Deckersbach T, Freudenreich O, Goff DC, Rigotti NA, Evins AE. Predictors of early abstinence in smokers with schizophrenia. J Clin Psychiatry 2008; 69:1743-50. [PMID: 19026259 PMCID: PMC2826693 DOI: 10.4088/jcp.v69n1109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/29/2008] [Indexed: 10/20/2022]
Abstract
BACKGROUND In patients with schizophrenia, the smoking cessation rate is low and the burden of smoking-related morbidity and mortality is high. Identification of factors associated with abstinence may allow clinicians to optimize treatment prior to a smoking cessation attempt. METHOD To identify factors associated with successful smoking cessation in patients with a DSM-IV diagnosis of schizophrenia, we analyzed baseline data from 114 stable outpatient smokers with schizophrenia who participated in 1 of 2 smoking cessation trials. The outcome of interest was 4 weeks' continuous abstinence at the end of a 12-week nicotine dependence treatment intervention. Baseline factors associated with abstinence were identified with univariate methods and entered into a manual, forward-selection multivariable regression model to identify independent predictors of abstinence. The study was conducted from March 1999 to February 2004. RESULTS Fourteen of 114 participants (12%) had biochemically verified 4 weeks' continuous abstinence at week 12. We included 10 noncorrelated variables with a univariate association with abstinence in a multivariable model, controlling for pharmacotherapy, age, and gender. Age at initiation of smoking and baseline variability in attentiveness, as measured by Continuous Performance Test-AX (CPT-AX) hit reaction time standard error, were independently associated with abstinence. For every year increase in age at initiation of smoking, the OR for abstinence was 1.36 (95% CI = 1.01 to 1.83), p = .048. For every millisecond decrease in the variability of the reaction time of CPT-AX, the OR for achieving abstinence was 1.55 (95% CI = 1.07 to 2.24), p = .021. CONCLUSION Later initiation of smoking was associated with increased and baseline attentional impairment with reduced odds of abstinence. Additional research to further our understanding of the relationship between attentional impairment and cigarette smoking in schizophrenia may lead to improved nicotine dependence treatments for this group.
Collapse
Affiliation(s)
- Melissa A. Culhane
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
| | | | - Ruth S. Barr
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Corinne Cather
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Thilo Deckersbach
- Psychiatric Neuroscience Division, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Oliver Freudenreich
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Donald C. Goff
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Nancy A. Rigotti
- Tobacco Research and Treatment Center, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - A. Eden Evins
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
30
|
Rezvani AH, Tizabi Y, Getachew B, Hauser SR, Caldwell DP, Hunter C, Levin ED. Chronic nicotine and dizocilpine effects on nicotinic and NMDA glutamatergic receptor regulation: interactions with clozapine actions and attentional performance in rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1030-40. [PMID: 18343006 DOI: 10.1016/j.pnpbp.2008.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/04/2008] [Accepted: 01/30/2008] [Indexed: 11/25/2022]
Abstract
Blockade of NMDA glutamate receptors with dizocilpine (MK-801) has been shown to cause substantial cognitive deficits and has been used to model symptoms of schizophrenia. Nicotine or nicotinic agonists, in contrast, may enhance cognitive or attentional functions and be of therapeutic potential in schizophrenia. Nicotinic-glutamatergic interactions, therefore, may have important implications in cognitive functions and antipsychotic treatments. Clozapine, a widely used antipsychotic drug, has been shown in some studies to be effective in ameliorating the cognitive deficits associated with schizophrenia. However, there is some evidence to suggest that clozapine similar to haloperidol may impair sustained attention in rats. In this study, we sought to determine whether chronic nicotine or dizocilpine may modify the effects of acute clozapine on attentional parameters and whether the behavioral effects would correlate with nicotinic or NMDA receptor densities in discrete brain regions. Adult female rats trained on an operant visual signal detection task were given 4 weeks of nicotine (5 mg/kg/day), dizocilpine (0.15 mg/kg/day), the same doses of both nicotine and dizocilpine as a mixture, or saline by osmotic minipump. While on chronic treatment, rats received acute injections of various doses of clozapine (0, 0.625, 1.25, 2.5 mg/kg, sc) 10 min prior to tests on attentional tasks. The pumps were removed on day 28 and 24 h later the animals were sacrificed for measurements of receptor densities in specific brain regions. The percent correct hit as a measure of sustained attention was significantly impaired by clozapine in a dose-related manner. Neither chronic nicotine nor dizocilpine affected this measure on their own or modified the effects of clozapine. Both nicotine and dizocilpine affected the receptor bindings in a region specific manner and their combination further modified the effects of each other in selective regions. Attentional performance was inversely correlated with alpha-bungarotoxin binding in the frontal cortex only. In conclusion, the data suggest attentional impairments with clozapine alone and no modification of this effect with nicotine or dizocilpine. Moreover, cortical low affinity nicotinic receptors may have a role in attentional functions.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Cather C, Barr R, Evins A. Smoking and Schizophrenia: Prevalence, Mechanisms and Implications for Treatment. ACTA ACUST UNITED AC 2008. [DOI: 10.3371/csrp.2.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Rezvani AH, Kholdebarin E, Dawson E, Levin ED. Nicotine and clozapine effects on attentional performance impaired by the NMDA antagonist dizocilpine in female rats. Int J Neuropsychopharmacol 2008; 11:63-70. [PMID: 17295931 DOI: 10.1017/s1461145706007528] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cognitive impairment is very prevalent in schizophrenia and is currently undertreated in most patients. Attentional deficit is one of the hallmark symptoms of schizophrenia. Antipsychotic drugs, which can be quite effective in combating hallucinations are often ineffective in reducing cognitive impairment and can potentiate cognitive impairment. Previously, we found that the antipsychotic drug clozapine impaired, while nicotine improved, the accuracy of rats performing a visual signal detection attentional task in normal rats. For the current study, in a model of cognitive impairment of schizophrenia with the NMDA antagonist dizocilpine (0.05 mg/kg), we examined the effects of clozapine and nicotine on significantly impaired attentional hit accuracy. This dizocilpine-induced impairment was significantly (p<0.05) reversed by either clozapine (1.25 mg/kg) or nicotine (0.025 mg/kg). Interestingly, when clozapine and nicotine were given together, they blocked each other's beneficial effects. When the effective doses of 1.25 mg/kg clozapine and 0.025 mg/kg nicotine were given together the combination no longer significantly reversed the dizocilpine-induced hit-accuracy impairment. Given that the great majority of people with schizophrenia smoke, the potential beneficial effects of clozapine on attentional function may be largely blocked by self-administered nicotine. In addition, there are promising results concerning the development of nicotinic treatments to reverse cognitive deficits including attentional impairment. This is supported in the current study by the reversal of the dizocilpine-induced attentional impairment by nicotine. However, in schizophrenia the efficacy of nicotinic treatments may be limited by co-treatment with antipsychotic drugs like clozapine. It will be important to determine which of the complex effects of clozapine and nicotine are key in reversing attentional impairment and how they block each other's effects for the development of therapy to combat the attentional impairment of schizophrenia.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 3412, USA.
| | | | | | | |
Collapse
|
33
|
Myers CS, Taylor RC, Moolchan ET, Heishman SJ. Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology 2008; 33:588-98. [PMID: 17443125 DOI: 10.1038/sj.npp.1301425] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the role of nicotinic receptors in attention and memory has led to the testing of nicotinic analogs as cognitive enhancing agents in patient populations. Empirical information about nicotine's ability to enhance elements of attention and memory in normal individuals might guide development of therapeutic uses of nicotine in cognitively impaired populations. The purpose of this study was to determine the effect of nicotine on continuous attention, working memory, and computational processing in tobacco-deprived and nondeprived smokers. A total of 28 smokers (14 men, 14 women) participated in a double-blind, placebo-controlled, within-subject study, in which they were overnight (12 h) tobacco deprived at one session and smoked ad libitum before the other session. At each session, participants received 0, 1, and 2 mg nicotine via nasal spray in random order at 90 min intervals. Before and after each dose, a battery of cognitive, subjective, and physiological measures was administered, and blood samples were taken for plasma nicotine concentration. Overnight tobacco deprivation resulted in impaired functioning on all cognitive tests and increased self-reports of tobacco craving and negative mood; nicotine normalized these deficits. In the nondeprived condition, nicotine enhanced performance on the continuous performance test (CPT) and an arithmetic test in a dose-related manner, but had no effect on working memory. In general, women were more sensitive than men to the subjective effects of nicotine. These results provide an unequivocal determination that nicotine enhanced attentional and computational abilities in nondeprived smokers and suggest these cognitive domains as substrates for novel therapeutic indications.
Collapse
Affiliation(s)
- Carol S Myers
- Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse, NIH Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
34
|
Amitai N, Semenova S, Markou A. Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology (Berl) 2007; 193:521-37. [PMID: 17497138 DOI: 10.1007/s00213-007-0808-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cognitive deficits in schizophrenia are severe and do not respond well to available treatments. The development and validation of animal models of cognitive deficits characterizing schizophrenia are crucial for clarifying the underlying neuropathology and discovery of improved treatments for such deficits. MATERIALS AND METHODS We investigated whether single and repeated administrations of the psychotomimetic phencyclidine (PCP) disrupt performance in the five-choice serial reaction time task (5-CSRTT), a test of attention and impulsivity. We also examined whether PCP-induced disruptions in this task are attenuated by atypical antipsychotic medications. RESULTS A single injection of PCP (1.5-3 mg/kg, s.c., 30-min pre-injection time) had nonspecific response-depressing effects. Repeated PCP administration (2 mg/kg for two consecutive days followed by five consecutive days, s.c., 30-min pre-injection time) resulted in decreased accuracy, increased premature and timeout responding, and increased response latencies. The atypical antipsychotic medications clozapine, risperidone, quetiapine, and olanzapine and the typical antipsychotic medication haloperidol did not disrupt 5-CSRTT performance under baseline conditions except at high doses. The response depression induced by a single PCP administration was exacerbated by acute clozapine or risperidone and was unaffected by chronic clozapine. Importantly, chronic clozapine partially attenuated the performance disruptions induced by repeated PCP administration, significantly reducing both the accuracy impairment and the increase in premature responding. CONCLUSIONS Disruptions in 5-CSRTT performance induced by repeated PCP administration are prevented by chronic clozapine treatment and may constitute a useful animal model of some cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nurith Amitai
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0603, La Jolla, CA 92093-0603, USA
| | | | | |
Collapse
|
35
|
Levin ED, Rezvani AH. Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochem Pharmacol 2007; 74:1182-91. [PMID: 17714691 PMCID: PMC2702723 DOI: 10.1016/j.bcp.2007.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/15/2022]
Abstract
People with schizophrenia often have substantial cognitive impairments, which may be related to nicotinic receptor deficits, (alpha7 and alpha4beta2), documented in the brains of people with schizophrenia. The large majority of people with schizophrenia smoke cigarettes. Thus, nicotinic interactions with antipsychotic drugs are widespread. Complementary co-therapies of novel nicotinic ligands are being developed to add to antipsychotic therapy to treat the cognitive impairment of schizophrenia. Thus, it is critical to understand the interaction between nicotinic treatments and antipsychotic drugs. Nicotinic interactions with antipsychotic drugs, are complex since both nicotine and antipsychotics have complex actions. Nicotine stimulates and desensitizes nicotinic receptors of various subtypes and potentiates the release of different neurotransmitters. Antipsychotics also act on a verity of receptor systems. For example, clozapine acts as an antagonist at a variety of neurotransmitter receptors such as those for dopamine, serotonin, norepinepherine and histamine. In a series of studies, we have found that in normally functioning rats, moderate doses of clozapine impair working memory and that clozapine blocks nicotine-induced memory and attentional improvement. Clozapine and nicotine can attenuate each other's beneficial effects in reversing the memory impairment caused by the psychototmimetic drug dizocilpine. A key to the clozapine-induced attenuation of nicotine-induced cognitive improvement appears to be its 5HT(2) antagonist properties. The selective 5HT(2) antagonist ketanserin has a similar action of blocking nicotine-induced memory and attentional improvements. It is important to consider the interactions between nicotinic and antipsychotic drugs to develop the most efficacious treatment for cognitive improvement in people with schizophrenia.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
36
|
Pogocki D, Ruman T, Danilczuk M, Danilczuk M, Celuch M, Wałajtys-Rode E. Application of nicotine enantiomers, derivatives and analogues in therapy of neurodegenerative disorders. Eur J Pharmacol 2007; 563:18-39. [PMID: 17376429 DOI: 10.1016/j.ejphar.2007.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/04/2007] [Accepted: 02/15/2007] [Indexed: 12/21/2022]
Abstract
This review gives a brief overview over the major aspects of application of the nicotine alkaloid and its close derivatives in the therapy of some neurodegenerative disorders and diseases (e.g. Alzheimer's disease, Parkinson's disease, Tourette's syndrome, schizophrenia etc.). The issues concerning methods of nicotine analysis and isolation, and some molecular aspects of nicotine pharmacology are included. The natural and synthetic analogues of nicotine that are considered for medical practice are also mentioned. The molecular properties of two naturally occurring nicotine enantiomers are compared--the less-common but less-toxic (R)-nicotine is suggested as a natural compound that may find its place in pharmaceutical practice.
Collapse
Affiliation(s)
- Dariusz Pogocki
- Rzeszów University of Technology, Faculty of Chemistry, Department of Biochemistry and Biotechnology, 6 Powstańców Warszawy Ave. 35-959 Rzeszów, Poland
| | | | | | | | | | | |
Collapse
|
37
|
Terry AV, Gearhart DA, Warner SE, Zhang G, Bartlett MG, Middlemore ML, Beck WD, Mahadik SP, Waller JL. Oral haloperidol or risperidone treatment in rats: temporal effects on nerve growth factor receptors, cholinergic neurons, and memory performance. Neuroscience 2007; 146:1316-32. [PMID: 17434684 PMCID: PMC1978102 DOI: 10.1016/j.neuroscience.2007.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/27/2007] [Accepted: 03/03/2007] [Indexed: 11/24/2022]
Abstract
First and second generation antipsychotics (FGAs and SGAs) ameliorate psychotic symptoms of schizophrenia, however, their chronic effects on information processing and memory function (i.e. key determinants of long term functional outcome) are largely unknown. In this rodent study the effects of different time periods (ranging from 2 weeks to 6 months) of oral treatment with the FGA, haloperidol (2.0 mg/kg/day), or the SGA, risperidone (2.5 mg/kg/day) on a water maze repeated acquisition procedure, the levels of nerve growth factor receptors, and two important cholinergic proteins, the vesicular acetylcholine transporter and the high affinity choline transporter were evaluated. The effects of the antipsychotics on a spontaneous novel object recognition procedure were also assessed during days 8-14 and 31-38 of treatment. Haloperidol (but not risperidone) was associated with impairments in water maze hidden platform trial performance at each of the time periods evaluated up to 45 days, but not when tested during days 83-90. In contrast, risperidone did not impair water maze task performance at the early time periods and it was actually associated with improved performance during the 83-90 day period. Both antipsychotics, however, were associated with significant water maze impairments during the 174-180 day period. Further, haloperidol was associated with decrements in short delay performance in the spontaneous novel object recognition task during both the 8-14 and 31-38 day periods of treatment, while risperidone was associated with short delay impairment during the 31-38 day time period. Both antipsychotics were also associated with time dependent alterations in the vesicular acetylcholine transporter, the high affinity choline transporter, as well as tyrosine kinase A, and p75 neurotrophin receptors in specific brain regions. These data from rats support the notion that while risperidone may hold some advantages over haloperidol, both antipsychotics can produce time-dependent alterations in neurotrophin receptors and cholinergic proteins as well as impairments in the performance of tasks designed to assess spatial learning and episodic memory.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, CB-3618, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA 30912-2300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pocivavsek A, Icenogle L, Levin ED. Ventral hippocampal alpha7 and alpha4beta2 nicotinic receptor blockade and clozapine effects on memory in female rats. Psychopharmacology (Berl) 2006; 188:597-604. [PMID: 16715255 PMCID: PMC1847383 DOI: 10.1007/s00213-006-0416-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 04/05/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Nicotinic systems in the hippocampus play important roles in memory function. Decreased hippocampal nicotinic receptor concentration is associated with cognitive impairment in schizophrenia and Alzheimer's disease. METHODS We modeled in rats the cognitive effects of chronic decrease in hippocampal alpha7 or alpha4beta2 receptors with 4-week continuous bilateral local infusions of the alpha7 nicotinic antagonist methyllycaconitine (MLA) or the alpha4beta2 antagonist dihydro-beta-erythroidine (DHbetaE). The working memory effects of these infusions were assessed by performance on the radial-arm maze. To test the effect of antipsychotic medication, we gave acute injections of clozapine and to determine the impact of nicotine, which is widely used by people with schizophrenia approximately half of the rats received chronic systemic infusions of nicotine. RESULTS Chronic ventral hippocampal DHbetaE infusion caused a significant (p < 0.001) working memory impairment. Acute systemic clozapine (2.5 mg/kg) caused a significant (p < 0.005) working memory impairment in rats given control aCSF hippocampal infusions. Clozapine significantly (p < 0.025) attenuated the memory deficit caused by chronic hippocampal DHbetaE infusions. Chronic ventral hippocampal infusions with MLA did not significantly affect the working memory performance in the radial-arm maze, but it did significantly (p < 0.05) potentiate the memory impairment caused by 1.25 mg/kg of clozapine. Chronic systemic nicotine did not significantly interact with these effects. CONCLUSIONS The state of nicotinic receptor activation in the ventral hippocampus significantly affected the impact of clozapine on working memory with blockade of alpha7 nicotinic receptors potentiating clozapine-induced memory impairment and blockade of alpha4beta2 receptors reversing the clozapine effect from impairing to improving memory.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Abstract
In summary, neuronal nicotinic systems are important for a variety of aspects of cognitive function impacted by antipsychotic drugs. It has been demonstrated that antipsychotic drugs have memory and attentional impairing effects when given to unimpaired subjects. Nicotine can reduce some of these impairments, but antipsychotic drug administration can also attenuate nicotine effects. We have found that nicotinic agonists selective for alpha7 and alpha4beta2 receptor subtypes significantly improve learning and memory. Serotonergic actions of antipsychotic drugs may decrease efficacy of nicotinic co-treatments. When the antipsychotic drug clozapine and nicotine are administered to subjects with cognitive impairments caused by NMDA glutamate receptor blockade or hippocampal dysfunction they can significantly attenuate the attentional and memory impairments. Nicotine has been shown in our studies to reverse the memory impairment caused by acute clozapine-induced memory improvement. Acute risperidone and haloperidol has been shown to attenuate nicotine-induced memory improvement. We have determined the role of hippocampal alpha7 and alpha4beta2 nicotinic receptors in the neural basis of nicotinic antipsychotic interactions. Local acute and chronic hippocampal infusion of either nicotinic alpha7 or alpha4beta2 antagonists cause significant spatial working memory impairment. Chronic hippocampal nicotinic antagonist infusions have served as a model of persistent decreases in nicotinic receptor level seen in schizophrenia and Alzheimer's disease. Clozapine attenuated the memory deficit caused by chronic suppression of hippocampal alpha4beta2 receptors while the amnestic effects of clozapine were potentiated by chronic suppression of hippocampal alpha7 receptors. Nicotinic co-treatment may be a useful adjunct in the treatment of schizophrenia, to attenuate cognitive impairment of schizophrenia. Nicotine as well as selective nicotinic alpha7 and alpha4beta2 receptor agonists significantly improve working memory and attentional function. Nicotine treatment was found to be effective in attenuating the attentional and memory impairments caused by the psychototmimetic NMDA antagonist dizocilpine (MK-801), a model of the cognitive impairment of schizophrenia. Studies of the interactions of antipsychotic drugs with nicotinic agents provided quite useful information concerning possible co-treatment of people with schizophrenia with nicotinic therapy. Nicotine was found to significantly attenuate the memory impairments caused by the antipsychotic drugs clozapine and olanzapine. Interestingly, nicotine-induced cognitive improvement was significantly attenuated by the antipsychotic drug clozapine. One of the principal effects of clozapine is to block 5HT2 receptors. Ketanserin a 5HT2 antagonist significantly attenuated nicotine-induced improvements in attention and memory. Thus it appears that antipsychotic drugs with actions blocking 5HT2 receptors may limit the efficacy of nicotinic co-treatments for cognitive enhancement.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
40
|
Hohnadel E, Bouchard K, Terry AV. Galantamine and donepezil attenuate pharmacologically induced deficits in prepulse inhibition in rats. Neuropharmacology 2006; 52:542-51. [PMID: 17046031 PMCID: PMC1913846 DOI: 10.1016/j.neuropharm.2006.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are currently being evaluated as adjunctive therapy for the cognitive dysfunction of schizophrenia. This core symptom of schizophrenia has often been attributed to impaired attention and abnormal sensory motor gating, features that are also found in Huntington's Disease, autism, and several other psychiatric and neurological disorders. The ability to improve prepulse inhibition (PPI) of the acoustic startle response may predict the efficacy of compounds as cognitive enhancers. In this study, PPI was disrupted in Wistar rats in three pharmacologic models: dopamine receptor agonism by apomorphine, NMDA receptor antagonism by MK801, or muscarinic acetylcholine receptor antagonism by scopolamine. We then evaluated the commonly used AChEIs, donepezil (0.5, 1.0, or 2.0mg/kg) and galantamine (0.3, 1.0, or 3.0mg/kg) for the capacity to improve PPI in each model. Under vehicle conditions, the prepulse stimuli (75, 80 and 85dB) inhibited the startle response to a 120dB auditory stimulus in a graded fashion. Galantamine (depending on dose) improved PPI deficits in all three PPI disruption models, whereas donepezil ameliorated PPI deficits induced by scopolamine and apomorphine, but was not effective in the MK801 model. These results indicate that some AChEIs may have the potential to improve cognition in schizophrenia by improving auditory sensory gating.
Collapse
Affiliation(s)
- Elizabeth Hohnadel
- College of Pharmacy, University of Georgia, Augusta, GA 30912
- Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912
| | - Kristy Bouchard
- Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912
| | - Alvin V. Terry
- College of Pharmacy, University of Georgia, Augusta, GA 30912
- Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
41
|
Rasmussen BA, Perry DC. An autoradiographic analysis of [125I]alpha-bungarotoxin binding in rat brain after chronic nicotine exposure. Neurosci Lett 2006; 404:9-14. [PMID: 16750882 DOI: 10.1016/j.neulet.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/01/2006] [Accepted: 05/05/2006] [Indexed: 11/25/2022]
Abstract
Chronic exposure to nicotine has been shown to increase binding to high affinity nicotinic cholinergic receptors in rat brain, but the effect of this treatment on the low affinity alpha7 nicotinic receptors has been less well characterized. Male Sprague-Dawley rats were treated with saline or nicotine (6 mg/kg/day, by osmotic minipump) for 14 days. Frozen brain sections were then prepared and processed for quantitative autoradiography using [(125)I]alpha-bungarotoxin to measure the effect of this treatment on low affinity nicotinic receptors. Nicotine exposure increased [(125)I]alpha-bungarotoxin binding in 26 of 52 brain regions analyzed; increases ranged from 10 to 70% over saline controls. Increases were seen in all areas of the brain, but were more prominent in forebrain areas, and especially in cerebral cortex. These data demonstrate that low affinity alpha7 nicotinic receptors are also up-regulated by chronic nicotine. This phenomenon may be relevant to the heavy use of tobacco products in diseases like schizophrenia, and needs to be considered in the design of pharmaceuticals directed at this receptor system.
Collapse
Affiliation(s)
- Bruce A Rasmussen
- Department of Pharmacology & Physiology, George Washington University Medical School, Washington, DC 20037, USA
| | | |
Collapse
|
42
|
Levin ED, Christopher NC. Effects of clozapine on memory function in the rat neonatal hippocampal lesion model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:223-9. [PMID: 16356617 DOI: 10.1016/j.pnpbp.2005.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2005] [Indexed: 11/23/2022]
Abstract
Clozapine is an effective atypical antipsychotic drug used to treat schizophrenia. It has the advantage of producing fewer extrapyramidal motor side effects than typical antipsychotic drugs such as haloperidol. Schizophrenia involves more than the hallmark symptom of psychosis. Substantial cognitive impairment is also seen. Effective drug treatments against the cognitive impairment of schizophrenia need to be developed. The current study was conducted to determine the effects of clozapine on working memory in the rat neonatal hippocampal lesion model of schizophrenia, which includes symptoms of cognitive impairment. Infant Sprague-Dawley rats were given ibotenic acid lesions of the hippocampus on day 7 of age (using the day of birth as day 0). Controls were given vehicle infusions. In adulthood, the rats were trained on the 8-arm radial maze using the win-shift procedure. After 6 sessions of training, the lesioned rats and their controls were administered repeated injections of saline or clozapine (2.5 mg/kg) for the next 12 sessions of training. The females had significant radial-arm maze choice accuracy impairments caused by either clozapine or the hippocampal lesion, but the combination of the two treatments had no additive effect. The males showed a different pattern of effects. Intact males did not show a significant clozapine-induced impairment, whereas males with hippocampal lesions did show significant clozapine-induced impairment although hippocampal lesions by themselves did not significantly impair male choice accuracy. These data show that clozapine can cause memory impairment and it potentiates rather than reverses hippocampal lesion-induced deficits. There are critical sex-related differences in these effects.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Neurobehavioral Research Laboratory, Box #3412, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
43
|
Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 2006; 184:523-39. [PMID: 16220335 DOI: 10.1007/s00213-005-0164-7] [Citation(s) in RCA: 594] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 08/06/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine has been shown in a variety of studies in humans and experimental animals to improve cognitive function. Nicotinic treatments are being developed as therapeutic treatments for cognitive dysfunction. OBJECTIVES Critical for the development of nicotinic therapeutics is an understanding of the neurobehavioral bases for nicotinic involvement in cognitive function. METHODS Specific and diverse cognitive functions affected by nicotinic treatments are reviewed, including attention, learning, and memory. The neural substrates for these behavioral actions involve the identification of the critical pharmacologic receptor targets, in particular brain locations, and how those incipient targets integrate with broader neural systems involved with cognitive function. RESULTS Nicotine and nicotinic agonists can improve working memory function, learning, and attention. Both alpha4beta2 and alpha7 nicotinic receptors appear to be critical for memory function. The hippocampus and the amygdala in particular have been found to be important for memory, with decreased nicotinic activity in these areas impairing memory. Nicotine and nicotinic analogs have shown promise for inducing cognitive improvement. Positive therapeutic effects have been seen in initial studies with a variety of cognitive dysfunctions, including Alzheimer's disease, age-associated memory impairment, schizophrenia, and attention deficit hyperactivity disorder. CONCLUSIONS Discovery of the behavioral, pharmacological, and anatomic specificity of nicotinic effects on learning, memory, and attention not only aids the understanding of nicotinic involvement in the basis of cognitive function, but also helps in the development of novel nicotinic treatments for cognitive dysfunction. Nicotinic treatments directed at specific receptor subtypes and nicotinic cotreatments with drugs affecting interacting transmitter systems may provide cognitive benefits most relevant to different syndromes of cognitive impairment such as Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder. Further research is necessary in order to determine the efficacy and safety of nicotinic treatments of these cognitive disorders.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box #3412, Durham, NC 27710, USA.
| | | | | |
Collapse
|
44
|
Rezvani AH, Caldwell DP, Levin ED. Chronic nicotine interactions with clozapine and risperidone and attentional function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:190-7. [PMID: 16310917 DOI: 10.1016/j.pnpbp.2005.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Although antipsychotic drugs are therapeutically effective in attenuating the hallmark symptoms of schizophrenia, these improvements do not return most patients to normative standards of cognitive function. Thus, complementary drug treatment may be needed to treat the attentional deficits of schizophrenia as well as to counteract the potential attentional impairments caused by some antipsychotic drugs. Nicotine, a drug commonly self-administered by a great majority of individuals with schizophrenia, has been shown to significantly improve cognitive function in some studies. The current study was conducted to determine the interactive effects of the atypical antipsychotic drugs clozapine and risperidone with chronic nicotine administration on attentional performance. Adult female Sprague-Dawley rats (N=35) were trained to perform an attentional task using an operant visual signal detection task. After training, rats were infused with a dose of 5 mg/kg/day (s.c.) nicotine base (n=18) or saline (n=17) for 28 consecutive days via osmotic pump. In Exp. 1, while being administered chronic nicotine or saline, rats were given acute doses of clozapine (0, 0.625, 1.25 and 2.5 mg/kg, s.c.) and were tested for attentional function. In Exp. 2, while on chronic nicotine or saline, other rats were challenged with acute doses of risperidone (0, 0.025, 0.05 and 0.1 mg/kg, s.c.) and were tested for attentional function. Results showed that acute administration of clozapine caused a significant dose-dependent impairment in choice accuracy (percent hit) in animals treated with chronic saline. Chronic nicotine treatment itself lowered accuracy, but attenuated further declines with acute clozapine treatment. Acute administration of risperidone at high dose significantly reduced performance (percent correct rejection) in chronically saline-treated rats, but in a similar fashion as in Exp. 1, chronic nicotine lowered accuracy but attenuated further impairment with acute risperidone. In summary, atypical antipsychotic drugs clozapine and risperidone significantly impaired choice accuracy in the visual signal detection task. Clozapine was more detrimental than risperidone but the adverse effects of both clozapine and risperidone on attentional performance were masked in rats chronically treated with nicotine.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, 341 Bell Building, Box 3412 Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
45
|
Kumari V, Postma P. Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 2005; 29:1021-34. [PMID: 15964073 DOI: 10.1016/j.neubiorev.2005.02.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 02/23/2005] [Indexed: 01/11/2023]
Abstract
The behavioural and cognitive effects of nicotine in schizophrenia have received much interest in recent years. The rate of smoking in patients with schizophrenia is estimated to be two- to four-fold the rate seen in the general population. Furthermore such patients favour stronger cigarettes and may also extract more nicotine from their cigarettes than other smokers. The question has been raised whether the widespread smoking behaviour seen in this patient group is in fact a manifestation of a common underlying physiology, and that these patients smoke in an attempt to self-medicate. We present an overview of the explanations for elevated rates of smoking in schizophrenia, with particular emphasis on the theories relating this behaviour to sensory gating and cognitive deficits in this disorder that have been viewed as major support for the self-medication hypotheses.
Collapse
Affiliation(s)
- Veena Kumari
- Department of Psychology, Institute of Psychiatry, London SE5 8AF, UK.
| | | |
Collapse
|
46
|
Addy NA, Pocivavsek A, Levin ED. Reversal of clozapine effects on working memory in rats with fimbria-fornix lesions. Neuropsychopharmacology 2005; 30:1121-7. [PMID: 15688087 DOI: 10.1038/sj.npp.1300669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clozapine is an effective antipsychotic drug, but its effects on cognitive function are unclear. Previously, we found that clozapine caused a working memory deficit, which was reversed by nicotine. Hippocampal systems are important in determining clozapine effect on memory. In the current study, the memory effects of clozapine and nicotine administration were determined in rats with lesions of the fimbria-fornix, a fiber bundle which carries cholinergic and other projections between the septum and the hippocampus. Female Sprague-Dawley rats were trained on a win-shift procedure in the radial-arm maze, in which each arm entry was rewarded once per session. Then, 13 rats received bilateral knife-cut lesions of the fimbria-fornix, while 14 rats underwent sham surgery. The rats were tested after subcutaneous injections with combinations of clozapine (0 and 1.25 mg/kg) and nicotine (0, 0.2, and 0.4 mg/kg). In sham-operated rats, clozapine caused a significant (P<0.005) working memory impairment. Fimbria-fornix lesions also caused a significant (P<0.05) memory impairment. Interestingly, clozapine had the opposite effect on working memory in the lesioned vs sham-operated rats. In contrast to its effects in controls, clozapine (1.25 mg/kg) significantly (P<0.05) attenuated the working memory deficit caused by fimbria-fornix lesions. Nicotine (0.2 mg/kg) did not quite significantly improve memory in lesioned rats. The effects of clozapine and nicotine were not additive in the lesioned rats. This study demonstrates the efficacy of clozapine in improving working memory in fimbria-fornix-lesioned rats, whereas it causes impairments in intact rats. Therapeutic treatment with clozapine in people with malfunctions of the hippocampus such as seen in schizophrenia may improve cognitive performance, whereas the same doses of clozapine may impair memory in individuals without hippocampal malfunction.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
47
|
Rezvani AH, Caldwell DP, Levin ED. Nicotinic-serotonergic drug interactions and attentional performance in rats. Psychopharmacology (Berl) 2005; 179:521-8. [PMID: 15682310 DOI: 10.1007/s00213-004-2060-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 10/01/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE Both central serotonergic and nicotinic systems play important roles in a variety of neurobehavioral functions; however, the interactions of these two systems have not been fully characterized. The current study served to determine the impact of a relatively selective 5-HT2A receptor antagonist, ketanserin, on attentional function in rats and the interactions of ketanserin with nicotine administration. METHODS A standard operant visual signal detection task was used to assess sustained attention. In expt 1, adult female Sprague-Dawley rats (n = 39) were injected subcutaneously (SC) with a dose range of ketanserin (0, 0.25, 0.5 and 1 mg/kg). In expt 2, the interactions of acute ketanserin (0, 1 and 2 mg/kg, SC) and acute nicotine (0, 25 and 50 microg/kg, SC) were assessed. In expt 3, the interaction of acute ketanserin (0, 1 and 2 mg/kg, SC) and chronic nicotine (5 mg/kg per day, SC for 4 weeks via osmotic pump) was characterized. Using an operant visual signal detection task, three possible outcomes (dependent variables) were measured in each trial: percent hit, percent correct rejection, and response omissions. RESULTS Ketanserin, when given alone, did not have a significant effect on either percent hit or percent correct rejection. Acute administration of 25 microg/kg nicotine significantly improved percent hit (i.e. improvement in choice accuracy), an effect that was reversed by acute administration of 1 mg/kg ketanserin. Chronic nicotine infusion for 28 consecutive days significantly increased percent correct rejection (i.e. improvement in choice accuracy) without development of tolerance, an effect which was reversed by an acute dose of 2 mg/kg ketanserin. CONCLUSIONS These data suggest a functional interaction between nicotine and 5-HT2A receptor antagonist ketanserin.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
48
|
Beer A, Slotkin TA, Seidler FJ, Aldridge JE, Yanai J. Nicotine therapy in adulthood reverses the synaptic and behavioral deficits elicited by prenatal exposure to phenobarbital. Neuropsychopharmacology 2005; 30:156-65. [PMID: 15496940 DOI: 10.1038/sj.npp.1300582] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major objective in identifying the mechanisms underlying neurobehavioral teratogenicity is the possibility of designing therapies that reverse or offset drug- or toxicant-induced neural damage. In our previous studies, we identified deficits in hippocampal muscarinic cholinergic receptor-induced membrane translocation of protein kinase C (PKC)gamma as the likely mechanism responsible for adverse behavioral effects of prenatal phenobarbital exposure. We therefore explored whether behavioral and synaptic defects could be reversed in adulthood by nicotine administration. Pregnant mice were given milled food containing phenobarbital to achieve a daily dose of 0.5-0.6 g/kg from gestational days 9-18. In adulthood, offspring showed deficits in the Morris maze, a behavior dependent on the integrity of septohippocampal cholinergic synaptic function, along with the loss of the PKCgamma response. Phenobarbital-exposed and control mice then received nicotine (10 mg/kg/day) for 14 days via osmotic minipumps. Nicotine reversed the behavioral deficits and restored the normal response of hippocampal PKCgamma to cholinergic receptor stimulation. The effects were regionally specific, as PKCgamma in the cerebellum was unaffected by either phenobarbital or nicotine; furthermore, in the hippocampus, PKC isoforms unrelated to the behavioral deficits showed no changes. Nicotine administration thus offers a potential therapy for reversing neurobehavioral deficits originating in septohippocampal cholinergic defects elicited by prenatal drug or toxicant exposures.
Collapse
Affiliation(s)
- Avital Beer
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|