1
|
de Araujo NF, Nobrega NRC, Dos Reis Costa DEF, Simplicio JA, de Assis Rabelo Ribeiro N, Tirapelli CR, Bonaventura D. Sodium nitrite induces tolerance in the mouse aorta: Involvement of the renin-angiotensin system, nitric oxide synthase, and reactive oxygen species. Eur J Pharmacol 2024; 985:177056. [PMID: 39427861 DOI: 10.1016/j.ejphar.2024.177056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Nitrites have emerged as promising therapeutic agents for cardiovascular diseases, alongside nitrates. While chronic use of organic nitrates is well recognized to lead to vascular tolerance, the tolerance associated with nitrite therapy remains incompletely understood. The aim of the present study was to investigate vascular tolerance to sodium nitrite and the underlying molecular mechanisms. Endothelium-denuded aortic rings isolated from male Balb/C mice were incubated with either the EC50 (10-4 mol/L) or EC100 (10-2 mol/L) concentration of sodium nitrite for 15 min to induce tolerance. The EC100 concentration of sodium nitrite induced vascular tolerance. Pre-incubation with captopril and losartan effectively reversed sodium nitrite-induced tolerance. Similarly, pre-incubation with L-NAME and L-arginine prevented sodium nitrite-induced tolerance. Increased levels of reactive oxidative species (ROS) and reduced bioavailability of nitric oxide (NO) were observed in tolerant aortas. Increased superoxide dismutase (SOD) activity and decreased catalase activity were also verified in tolerant aortas. Both captopril and L-NAME prevented the increased levels of ROS observed in tolerant aortas. Furthermore, pre-incubation with catalase effectively prevented sodium nitrite-induced tolerance. Our findings suggest that sodium nitrite induces vascular tolerance through a signaling pathway involving the renin-angiotensin system, nitric oxide synthase, and ROS. This study contributes to the understanding of the interaction between nitrites and vascular tolerance and highlights potential targets to overcome or prevent this phenomenon.
Collapse
Affiliation(s)
- Natalia Ferreira de Araujo
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Ribeiro Cabacinha Nobrega
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela Esteves Ferreira Dos Reis Costa
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaina Aparecida Simplicio
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naiara de Assis Rabelo Ribeiro
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniella Bonaventura
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Ghaffari N, Ball C, Kennedy JA, Stafford I, Beltrame JF. Acute Modulation of Vasoconstrictor Responses by Pravastatin in Small Vessels. Circ J 2011; 75:1506-1514. [DOI: 10.1253/circj.cj-10-0954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Nader Ghaffari
- Cardiology Unit, The Queen Elizabeth Hospital, Department of Medicine, The University of Adelaide
| | - Christine Ball
- Cardiology Unit, The Queen Elizabeth Hospital, Department of Medicine, The University of Adelaide
| | - Jennifer A Kennedy
- Cardiology Unit, The Queen Elizabeth Hospital, Department of Medicine, The University of Adelaide
| | - Irene Stafford
- Cardiology Unit, The Queen Elizabeth Hospital, Department of Medicine, The University of Adelaide
| | - John F Beltrame
- Cardiology Unit, The Queen Elizabeth Hospital, Department of Medicine, The University of Adelaide
| |
Collapse
|
3
|
Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp-Harper BK. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 2009; 124:279-300. [PMID: 19723539 DOI: 10.1016/j.pharmthera.2009.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
Left ventricular hypertrophy (LVH), an increased left ventricular (LV) mass, is common to many cardiovascular disorders, initially developing as an adaptive response to maintain myocardial function. In the longer term, this LV remodelling becomes maladaptive, with progressive decline in LV contractility and diastolic function. Indeed LVH is recognised as an important blood-pressure independent predictor of cardiovascular morbidity and mortality. The clinical efficacy of current treatments for LVH is reduced, however, by their tendency to slow disease progression rather than induce its reversal, and thus the development of new therapies for LVH is paramount. The signalling molecule cyclic guanosine-3',5'-monophosphate (cGMP), well-recognised for its role in regulating vascular tone, is now being increasingly identified as an important anti-hypertrophic mediator. This review is focused on the various means by which cGMP can be stimulated in the heart, such as via the natriuretic peptides, to exert anti-hypertrophic actions. In particular we address the limitations of traditional nitric oxide (NO*) donors in the face of the potential therapeutic advantages offered by novel alternatives; NO* siblings, ligands of the cGMP-generating enzymes, soluble (sGC) and particulate guanylyl cyclases (pGC), and phosphodiesterase inhibitors. Further impact of cGMP within the cardiovascular system is also discussed with a view to representing cGMP-based therapies as innovative pharmacotherapy, alone or concurrent with standard care, for the management of LVH.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
4
|
Coskun B, Soylemez S, Parlar AI, Tulga Ulus A, Fehmi Katircioglu S, Akar F. Effect of resveratrol on nitrate tolerance in isolated human internal mammary artery. J Cardiovasc Pharmacol 2006; 47:437-45. [PMID: 16633087 DOI: 10.1097/01.fjc.0000211798.91023.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study aims to examine whether resveratrol, a natural antioxidant present in red wine, restores the tolerance to nitroglycerin (GTN) on isolated human internal mammary artery (IMA), using an in vitro model of nitrate tolerance. IMA rings were obtained from 53 male patients undergoing coronary bypass operation. Nitrate tolerance was induced by incubating the artery ring with 100 microM GTN for 90 minutes. Concentration-response curves to GTN (10(-9) to 10(-4) M) were obtained on IMA rings precontracted with noradrenaline. A low concentration (5 microM) of lucigenin was used as a tool to measure superoxide production in IMA segments. GTN produced concentration-dependent relaxation in isolated human IMA rings. Preexposure of artery rings to GTN reduced the relaxations to GTN [E(max) values: 105 +/- 2% and 76 +/- 3%, n = 10 to 12, P < 0.05; EC(50) values (-log M): 6.72 +/- 0.05 and 4.95 +/- 0.06, P < 0.05, respectively]. Relaxation to sodium nitroprusside remained unchanged. Diminished relaxation to GTN is partially restored after removing endothelium or L(G)-nitro-L-arginine (L-NOARG, 10 M) or superoxide dismutase (20 and 200 U/mL) or catalase (200 U/mL) pretreatments. Pretreatments with resveratrol (1, 10, and 20 microM) for 20 minutes relatively improved the reduced relaxation to GTN in tolerant IMA rings. Coadministration of L-NOARG with resveratrol did not abolish the beneficial effect of resveratrol on nitrate tolerance. The inhibitory effect of resveratrol on GTN-induced tolerance was not abolished in arterial rings without endothelium. Exposure to GTN increased superoxide production in IMA segments with endothelium. Endothelium denudation, L-NOARG, or superoxide dismutase pretreatments markedly inhibited the increased superoxide production in tolerant arteries. Resveratrol (1 and 10 microM) almost completely abolished basal or NAD(P)H-stimulated superoxide production in tolerant and nontolerant arteries. Vascular tolerance to GTN, in in vitro tolerant human IMA rings, can be induced by endothelial superoxide anions. Resveratrol partially restored the reduced relaxation to GTN by inhibiting NAD(P)-derived superoxide production in endothelium.
Collapse
Affiliation(s)
- Bahar Coskun
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Etiler, Turkey
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
During the last century, nitroglycerin has been the most commonly used antiischemic and antianginal agent. Unfortunately, after continuous application, its therapeutic efficacy rapidly vanishes. Neurohormonal activation of vasoconstrictor signals and intravascular volume expansion constitute early counter-regulatory responses (pseudotolerance), whereas long-term treatment induces intrinsic vascular changes, eg, a loss of nitrovasodilator-responsiveness (vascular tolerance). This is caused by increased vascular superoxide production and a supersensitivity to vasoconstrictors secondary to a tonic activation of protein kinase C. NADPH oxidase(s) and uncoupled endothelial nitric oxide synthase have been proposed as superoxide sources. Superoxide and vascular NO rapidly form peroxynitrite, which aggravates tolerance by promoting NO synthase uncoupling and inhibition of soluble guanylyl cyclase and prostacyclin synthase. This oxidative stress concept may explain why radical scavengers and substances, which reduce oxidative stress indirectly, are able to relieve tolerance and endothelial dysfunction. Recent work has defined a new tolerance mechanism, ie, an inhibition of mitochondrial aldehyde dehydrogenase, the enzyme that accomplishes bioactivation of nitroglycerin, and has identified mitochondria as an additional source of reactive oxygen species. Nitroglycerin-induced reactive oxygen species inhibit the bioactivation of nitroglycerin by thiol oxidation of aldehyde dehydrogenase. Both mechanisms, increased oxidative stress and impaired bioactivation of nitroglycerin, can be joined to provide a new concept for nitroglycerin tolerance and cross-tolerance. The consequences of these processes for the nitroglycerin downstream targets soluble guanylyl cyclase, cGMP-dependent protein kinase, cGMP-degrading phosphodiesterases, and toxic side effects contributing to endothelial dysfunction, such as inhibition of prostacyclin synthase, are discussed in this review.
Collapse
Affiliation(s)
- Thomas Münzel
- Johannes Gutenberg Universität, II. Medizinische Klinik und Poliklinik, Kardiologie, Mainz, Germany.
| | | | | |
Collapse
|
6
|
Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U, Mülsch A, Scharffetter-Kochanek K, Münzel T. Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/-): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol 2005; 68:579-88. [PMID: 15933216 DOI: 10.1124/mol.105.011585] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitroglycerin (GTN)-induced tolerance was reported to be associated with increased levels of reactive oxygen species (ROS) in mitochondria. In the present study, we further investigated the role of ROS for the development of nitrate tolerance by using heterozygous manganese superoxide dismutase knock-out mice (Mn-SOD+/-). Mn-SOD is acknowledged as a major sink for mitochondrial superoxide. Vasodilator potency of mouse aorta in response to acetylcholine and GTN was assessed by isometric tension studies. Mitochondrial ROS formation was detected by 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt (L-012)-enhanced chemiluminescence and mitochondrial aldehyde dehydrogenase (ALDH-2) activity was determined by a high-performance liquid chromatography-based assay. Aortic rings from Mn-SOD+/- mice showed normal endothelial function and vasodilator responses to GTN. In contrast, preincubation of aorta with GTN or long-term GTN infusion caused a marked higher degree of tolerance as well as endothelial dysfunction in Mn-SOD+/- compared with wild type. Basal as well as GTN-stimulated ROS formation was significantly increased in isolated heart mitochondria from Mn-SOD+/- mice, correlating well with a marked decrease in ALDH-2 activity in response to in vitro and in vivo GTN treatment. The data presented indicate that deficiency in Mn-SOD leads to a higher degree of tolerance and endothelial dysfunction associated with increased mitochondrial ROS production in response to in vitro and in vivo GTN challenges. These data further point to a crucial role of ALDH-2 in mediating GTN bioactivation as well as development of GTN tolerance and underline the important contribution of ROS to these processes.
Collapse
Affiliation(s)
- Andreas Daiber
- Klinikum der Johannes Gutenberg-Universität Mainz, II. Medizinische Klinik, Labor für Molekulare Kadiologie, Verfügungsgebäude für Forschung und Entwicklung, Raum 00349, Obere Zahlbacher Str. 63, 55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
de la Lande IS, Stepien JM, Philpott AC, Hughes PA, Stafford I, Horowitz JD. Aldehyde dehydrogenase, nitric oxide synthase and superoxide in ex vivo nitrate tolerance in rat aorta. Eur J Pharmacol 2005; 496:141-9. [PMID: 15288585 DOI: 10.1016/j.ejphar.2004.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The role of aldehyde dehydrogenase (ALDH) in ex vivo tolerance to transdermal glyceryl trinitrate was explored in rat aorta. ALDH activity, measured by aldehyde-induced NADH formation, was strongly depressed in the tolerant arteries. ALDH inhibitors, chloral hydrate (0.3 mM) and cyanamide (0.1-1 mM) inhibited relaxation to glyceryl trinitrate in non-tolerant and tolerant arteries. The inhibition differed from tolerance in that (a) the glyceryl trinitrate concentration-response curve was sigmoidal cf. biphasic in tolerance, (b) the potentiating effect of nitric oxide synthase (eNOS) inhibition was unchanged cf. increased in tolerance and (c) superoxide inhibited the response cf. no significant effect in tolerant or non-tolerant arteries. Hence, reduced ALDH activity does not account fully for ex vivo tolerance. The discrepancies are consistent with evidence that (a) organic nitrates, unlike chloral and cyanamide, irreversibly inactivate ALDH (hence reduced enzyme saturability can explain the biphasic curve) and (b) eNOS contributes to tolerance by a mechanism independent of glyceryl trinitrate metabolism.
Collapse
Affiliation(s)
- Ivan S de la Lande
- Cardiology Unit, The Queen Elizabeth Hospital Campus, North Western Adelaide Health Service, The University of Adelaide, 28 Woodville Road, Woodville South, South Australia, 5011, Australia
| | | | | | | | | | | |
Collapse
|