1
|
The role of adenosine A 1 receptor on immune cells. Inflamm Res 2022; 71:1203-1212. [PMID: 36064866 DOI: 10.1007/s00011-022-01607-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Adenosine, acting as a regulator by mediating the activation of G protein-coupled adenosine receptor families (A1, A2A, A2B, and A3), plays an important role under physiological and pathological conditions. As the receptor with the highest affinity for adenosine, the role of adenosine A1 receptor (A1R)-mediated adenosine signaling pathway in the central nervous system has been well addressed. However, functions of A1R on immune cells are less summarized. Considering that some immune cells express multiple types of adenosine receptors with distinct effects and varied density, exogenous adenosine of different concentrations may induce divergent immune cell functions. MATERIALS AND METHODS The literatures about the expression of A1R and its regulation on immune cells and how it regulates the function of immune cells were searched on PubMed and Google Scholar. CONCLUSION In this review, we discussed the effects of A1R on immune cells, including monocytes, macrophages, neutrophils, dendritic cells, and microglia, and focused on the role of A1R in regulating immune cells in diseases, which may facilitate our understanding of the mechanisms by which adenosine affects immune cells through A1R.
Collapse
|
2
|
Feig JL, Mediero A, Corciulo C, Liu H, Zhang J, Perez-Aso M, Picard L, Wilder T, Cronstein B. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin. PLoS One 2017; 12:e0188135. [PMID: 29145453 PMCID: PMC5690602 DOI: 10.1371/journal.pone.0188135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis. Methods Thioacetamide (100mg/kg IP)-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ) (n = 5–10). Bleomycin (0.25U, SubQ)-treated mice were treated with vehicle or tenofovir (75mg/kg, IP) (n = 5–10). Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA. Results Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1. Conclusions These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.
Collapse
Affiliation(s)
- Jessica L. Feig
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Aranzazu Mediero
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Carmen Corciulo
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Hailing Liu
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Jin Zhang
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Department of Immunology and Rheumatology, LiHuili Hospital, Medical School of Ningbo University, Ningbo, China
| | - Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Laura Picard
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Bruce Cronstein
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
4
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
5
|
Nakav S, Naamani O, Chaimovitz C, Shaked G, Czeiger D, Zlotnik M, Douvdevani A. Regulation of adenosine system at the onset of peritonitis. Nephrol Dial Transplant 2009; 25:931-9. [PMID: 19861313 DOI: 10.1093/ndt/gfp542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Adenosine, a potent regulator of inflammation, is produced under stressful conditions due to degradation of ATP/ADP by the ectoenzymes CD39 and CD73. Adenosine is rapidly degraded by adenosine deaminase (ADA) or phosphorylated in the cell by adenosine kinase (AK). From four known receptors to adenosine, A(1) (A(1)R) promotes inflammation by a G(i)-coupled receptor. We have previously shown that A(1)R is up-regulated in the first hours following bacterial inoculation. The aim of the current study is to characterize the inflammatory mediators that regulate adenosine-metabolizing enzymes and A(1)R at the onset of peritonitis. METHODS Peritonitis was induced in CD1 mice by intraperitoneal injection of Escherichia coli. TNFalpha and IL-6 levels were determined in peritoneal fluid by enzyme-linked immunosorbent assay. Adenosine-metabolizing enzymes and the A(1)R mRNA or protein levels were analyzed by quantitative PCR or by Western blot analysis, respectively. RESULTS We found that CD39 and CD73 were up-regulated in response to bacterial stimuli (6-fold the basal levels), while AK and ADA mRNA levels were down-regulated. Cytokine production and leukocyte recruitment were enhanced (2.5-fold) by treatment with an A(1)R agonist (2-chloro-N(6)-cyclopentyladenosine, 0.1 mg/kg) and reduced (2.5-3-fold) by the A(1)R antagonist (8-cyclopentyl-1, 3-dipropylxanthine, 1 mg/kg). In contrast to lipopolysaccharide, IL-1, TNF and IFNgamma, only low IL-6 levels (0.01 ng/ml), in the presence of its soluble IL-6R (sIL-6R), were found to promote A(1)R expression on mesothelial cells. In mice, administration of neutralizing antibody to IL-6R or soluble gp130-Fc (sgp130-Fc) blocked peritoneal A(1)R up-regulation following inoculation. CONCLUSION Bacterial products induce the production of adenosine by up-regulation of CD39 and CD73. Low IL-6-sIL-6R up-regulates the A(1)R to promote efficient inflammatory response against invading microorganisms.
Collapse
Affiliation(s)
- Sigal Nakav
- Department of Clinical Biochemistry, Soroka Medical University Center and Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Nucleoside analogues revolutionized the treatment of chronic HBV infection and have become the most important therapeutic option within the last decade. Currently, the nucleoside analogues lamivudine, telbivudine and entecavir, and the nucleotide analogue adefovir dipivoxil, are licensed. Tenofovir disoproxil fumarate (TDF) is another acyclic nucleotide analogue that has been successfully used in the treatment of HIV-infected patients, but has demonstrated significant antiviral activity in wild-type and lamivudine-resistant HBV infections. The use of TDF 300 mg/day leads to marked suppression of HBV replication below the detection limit in different patients groups with HBV mono- or HIV/HBV co-infection in most instances, and a remarkably high rate of hepatitis B e antigen loss and even hepatitis B surface antigen loss was found in small, uncontrolled studies. Belonging to the substance class of acyclic nucleotide analogues, TDF is not cross-resistant to nucleoside analogue resistance-associated mutations. In equal dosages, TDF has comparable antiviral potency as compared with its congender adefovir dipivoxil, but in clinical studies exhibits higher antiviral efficacy and generates a higher genetic barrier against the development of genotypic HBV resistance due to its approximately 24-fold higher dosage. Owing to the numerous newly developed compounds and as a consequence of the emerging problem of drug resistance, treatment concepts for chronic hepatitis B will certainly be modified in the future. Because of its quite favorable antiviral and safety properties, TDF will likely be highly regarded in the management of HBV infections in the future.
Collapse
Affiliation(s)
- Florian van Bömmel
- Medizinische Klinik m. S. Hepatologie und Gastroenterologie Charité, Campus Virchow-Klinikum Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Thomas Berg
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Campus Virchow-Klinikum, Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
7
|
Zídek Z, Kmonícková E, Holý A. Secretion of antiretroviral chemokines by human cells cultured with acyclic nucleoside phosphonates. Eur J Pharmacol 2007; 574:77-84. [PMID: 17716649 DOI: 10.1016/j.ejphar.2007.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 07/13/2007] [Accepted: 07/16/2007] [Indexed: 02/07/2023]
Abstract
Acyclic nucleoside phosphonates are novel class of clinically broadly used antivirotics effective against replication of both DNA viruses and retroviruses including human immunodeficiency virus (HIV). We have investigated their in vitro effects on immune defence mechanisms in human peripheral blood mononuclear cells, with the main emphasis on expression of cytokines which are able to suppress the entry of HIV in cells. Included in the study were prototype acyclic nucleoside phosphonates, i.e. 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA; adefovir), 9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (PMEDAP), (R)-and (S)-enantiomers of 9-[2-(phosphonomethoxy)propyl]adenine [(R)-PMPA; tenofovir] and [(S)-PMPA], and of 9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine [(R)-PMPDAP] and [(S)-PMPDAP], and their N(6)-substituted derivatives. Some of the compounds were found to substantially enhance secretion of chemokines such as macrophage inflammatory protein-1alpha (MIP-alpha/CCL3), and "regulated on activation of normal T cell expressed and secreted" (RANTES/CCL5). Secretion of MIP-1beta/CCL4 was only marginally increased, whereas production of interleukin-16 (IL-16) and interferon-gamma (IFN-gamma) remained uninfluenced. The most effective proved to be the N(6)-cyclooctyl-PMEDAP, N(6)-isobutyl-PMEDAP, N(6)-pyrrolidino-PMEDAP, N(6)-cyclopropyl-(R)-PMPDAP, and N(6)-cyclopentyl-(R)-PMPDAP derivatives. Remarkably enhanced secretion of chemokines was reached within 2-4 h of the cell culture, and was observed at concentration of 2-5 microM. It may be suggested that acyclic nucleoside phosphonates represent a new generation of antivirotics with combined antimetabolic and therapeutically prospective immunostimulatory properties.
Collapse
Affiliation(s)
- Zdenĕk Zídek
- Institute of Experimental Medicine, Department of Pharmacology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic.
| | | | | |
Collapse
|
8
|
Muñoz G, San Martín R, Farías M, Cea L, Vecchiola A, Casanello P, Sobrevia L. Insulin restores glucose inhibition of adenosine transport by increasing the expression and activity of the equilibrative nucleoside transporter 2 in human umbilical vein endothelium. J Cell Physiol 2007; 209:826-35. [PMID: 16924660 DOI: 10.1002/jcp.20769] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
L-Arginine transport and nitric oxide (NO) synthesis (L-arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D-glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D-glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D-glucose. Insulin increased hENT2 protein abundance in normal or high D-glucose, but reduced hENT1 protein abundance in normal D-glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D-glucose. Insulin effect on hENT1 mRNA expression in normal D-glucose was blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development.
Collapse
Affiliation(s)
- Gonzalo Muñoz
- Cellular and Molecular Physiology Laboratory (CMPL), Medical Research Centre (CIM), Department of Obstetrics and Gynaecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
9
|
Holý A. Antiviral acyclic nucleoside phosphonates structure activity studies. Antiviral Res 2006; 71:248-53. [PMID: 16857275 DOI: 10.1016/j.antiviral.2006.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/25/2022]
Abstract
This review concerns acyclic nucleoside phosphonates (ANP) and describes the concept of the design of isopolar and isosteric nucleotide analogues resistant towards degradation by enzymes in vivo. It describes the development of research which led to the discovery of several structurally related potent antivirals and ultimately resulted in the development of drugs directed against HIV, HBV and DNA-virus infections in general, namely adefovir, cidofovir and tenofovir. In addition to these "classical compounds" the review describes the present development in the field of ANP, the "open-ring ANP" and discusses the present achievements, concept of prodrug design and application.
Collapse
Affiliation(s)
- Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Centre for Novel Antivirals and Antineoplastics, 166 10 Praha 6, Czech Republic.
| |
Collapse
|
10
|
van Bömmel F, Zöllner B, Sarrazin C, Spengler U, Hüppe D, Möller B, Feucht HH, Wiedenmann B, Berg T. Tenofovir for patients with lamivudine-resistant hepatitis B virus (HBV) infection and high HBV DNA level during adefovir therapy. Hepatology 2006; 44:318-25. [PMID: 16871563 DOI: 10.1002/hep.21253] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Incomplete virological response to adefovir dipivoxil (ADV) has been observed in patients with lamivudine-resistant hepatitis B virus (HBV) infection and may be associated with developing resistance and disease progression. We therefore investigated whether the efficacy of viral suppression could be improved by replacing ADV with tenofovir disoproxil fumarate (TDF). Twenty patients with chronic HBV infection (18 HBeAg+), viral breakthrough during lamivudine therapy, and persistent viral replication (>10(4) copies/mL) after 15 months of ADV monotherapy (range 4-28 months) were treated with TDF 300 mg daily and were retrospectively analyzed. A screening for nucleoside/nucleotide analogue resistance mutations within the HBV polymerase gene was performed in all patients by direct sequencing. Within a median of 3.5 months, application of TDF led to undetectable HBV DNA in 19 of 20 patients, as demonstrated by suppression of HBV DNA below the detection limit of 400 copies/mL. Initially elevated ALT levels had normalized in 10 of 14 patients by the end of follow-up (median 12 months, range 3-24 months). Four patients lost HBeAg, after 3, 4, 5, and 16 months, and one patient seroconverted to anti-HBs after 16 months of TDF therapy. Lamivudine-associated mutations (rtV173L, rtL180M, rtM204V/I) could be detected in 6 patients at baseline of TDF, but this obviously did not influence the response. ADV-resistant mutations were not detected. No side effects were reported. In conclusion, these preliminary observations strongly suggest that TDF might be a highly effective rescue drug for HBV-infected patients with altered responsiveness to treatment with lamivudine and ADV.
Collapse
Affiliation(s)
- Florian van Bömmel
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité-Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Potmesil P, Krecmerová M, Kmonícková E, Holý A, Zídek Z. Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N6-substituted derivatives. Eur J Pharmacol 2006; 540:191-9. [PMID: 16733050 DOI: 10.1016/j.ejphar.2006.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 04/12/2006] [Accepted: 04/21/2006] [Indexed: 12/11/2022]
Abstract
Newly developed acyclic nucleoside phosphonates, derivatives of adenine and 2,6-diaminopurine bearing the 2-hydroxy-3-(phosphonomethoxy)propyl (HPMP) moiety at the N9-side chain (i.e., HPMPA and HPMPDAP, respectively) were screened for in vitro immunobiological activity, using mouse resident peritoneal macrophages and splenocytes. Both HPMPA and HPMPDAP augmented the interferon-gamma-triggered production of NO as well as expression of inducible nitric oxide synthase (iNOS) mRNA in macrophages. HPMPDAP activated secretion of tumor necrosis factor-alpha (TNF-alpha), chemokines "regulated-upon-activation, normal T cell expressed and secreted" (RANTES) and macrophage inflammatory protein-1alpha (MIP-1alpha), and marginally also secretion of interleukin-10 (IL-10) in both macrophages and splenocytes. The HPMPA, less prominently than HPMPDAP, elevated only secretion of RANTES and TNF-alpha. The compounds also activated secretion of TNF-alpha (HPMPDAP > HPMPA) in human peripheral blood mononuclear cells (PBMC). Distinct N6-substituted derivatives, i.e., N6-dimethyl-, N6-cyclopropyl-, N6-piperidin-1-yl-, N6-(2-methoxyethyl)-, N6-(2-hydroxyethyl)-, N6-allyl- and N6-2-(dimethylamino)ethyl-HPMPA/HPMPDAP as well as 6-thio and 6-hydroxy derivatives usually showed loss of the activity compared to the parent compounds. The immunomodulatory effects were found to be at least in part dependent on P1 purinoreceptors, and mediated by transcriptional factor nuclear factor-kappaB.
Collapse
Affiliation(s)
- Petr Potmesil
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Centre for New Antivirals and Antineoplastics, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Kmonícková E, Potmesil P, Holý A, Zídek Z. Purine P1 receptor-dependent immunostimulatory effects of antiviral acyclic analogues of adenine and 2,6-diaminopurine. Eur J Pharmacol 2005; 530:179-87. [PMID: 16371225 DOI: 10.1016/j.ejphar.2005.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
Acyclic nucleoside phosphonates are widely recognised antivirals. The oral prodrugs of prototype compounds, e.g., 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA; adefovir), and 9-(R)-[2-(phosphonomethoxy)propyl]adenine [(R)-PMPA; tenofovir] were approved by FDA for treatment of hepatitis B (Hepsera), and acquired immunodeficiency syndrome (AIDS) (Viread), respectively. A number of acyclic nucleoside phosphonates possess immunostimulatory activity. The present experiments demonstrate that activation of cytokine and chemokine secretion is mediated by adenosine receptors. Included in the study were 9-(R)-[2-(phosphonomethoxy)propyl]adenine [tenofovir], N(6)-cyclopentyl-(R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine, N(6)-cyclopropyl-(R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine, and N(6)-isobutyl-9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine. All of them activate secretion of tumor necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10), "regulated on activation of normal T cell expressed and secreted" (RANTES/CCL5), and macrophage inflammatory protein-1alpha (MIP-1alpha/CCL3) in murine macrophages. With exception of MIP-1alpha, the effects were inhibited by antagonists of adenosine A(1), A(2B), and A(3) receptors (not by adenosine A(2A) receptor antagonist). The adenosine A(1) receptor antagonist inhibited TNF-alpha, IL-10, and RANTES, adenosine A(2B) receptor antagonist inhibited TNF-alpha and RANTES, and adenosine A(3) receptor antagonist inhibited IL-10 and RANTES. The suppression is due to decreased transcription of cytokine mRNA. It may be suggested that acyclic nucleoside phosphonates are nonspecific ligands for purine P(1) receptors.
Collapse
Affiliation(s)
- Eva Kmonícková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | |
Collapse
|
14
|
|