1
|
Lin YT, Li Y, Hsu HC, Tsai JY, Lee JH, Tai CJ, Wu MJ, Wu CC. Discovery of 7, 4'-dimethoxy-3-hydroxyflavone as a protease-activated receptor 4 antagonist with antithrombotic activity and less bleeding tendency in mice. Biochem Pharmacol 2022; 202:115152. [PMID: 35752281 DOI: 10.1016/j.bcp.2022.115152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
There is growing evidence of the importance of protease-activated receptor 4 (PAR4), one of thrombin receptors, as a therapeutic target in thrombotic cardiovascular diseases. In the present study, we utilized ligand-based virtual screening, bioassay, and structure-activity relationship study to discover PAR4 antagonists with new chemical scaffolds from natural origin, and examined their application as antiplatelet agents. By using these approaches, we have identified a flavonoid, 7, 4'-dimethoxy-3-hydroxyflavone, that exhibits anti-PAR4 activity. 7, 4'-Dimethoxy-3-hydroxyflavone inhibited PAR4-mediated human platelet aggregation, GPIIb/IIIa activation, and P-selectin secretion. Also, it inhibited PAR4 downstream signaling pathways, including Ca2+/protein kinase C, Akt, and MAP kinases ERK and p38, in human platelets, and suppressed PAR4-mediated β-arrestin recruitment in CHO-K1 cells exogenously expressed human PAR4. In a microfluidic system, 7, 4'-dimethoxy-3-hydroxyflavone reduced thrombus formation on collagen-coated chambers at an arterial shear rate in recalcified whole blood. Furthermore, mice treated with 7, 4'-dimethoxy-3-hydroxyflavone were significantly protected from FeCl3-induced carotid arterial occlusions, without significantly affecting tail bleeding time. In conclusion, 7, 4'-dimethoxy-3-hydroxyflavone represents a new class of nature-based PAR4 antagonist, it shows effective in vivo antithrombotic properties with less bleeding tendency, and could be a potential candidate for developing new antiplatelet agents.
Collapse
Affiliation(s)
- Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu Li
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Hsu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ju-Ying Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jia-Hau Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Jung Tai
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Jung Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Lin YC, Ko YC, Hung SC, Lin YT, Lee JH, Tsai JY, Kung PH, Tsai MC, Chen YF, Wu CC. Selective Inhibition of PAR4 (Protease-Activated Receptor 4)-Mediated Platelet Activation by a Synthetic Nonanticoagulant Heparin Analog. Arterioscler Thromb Vasc Biol 2020; 39:694-703. [PMID: 30727756 DOI: 10.1161/atvbaha.118.311758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PAR4 (protease-activated receptor 4), one of the thrombin receptors in human platelets, has emerged as a promising target for the treatment of arterial thrombotic disease. Previous studies implied that thrombin exosite II, known as a binding site for heparin, may be involved in thrombin-induced PAR4 activation. In the present study, a heparin octasaccharide analog containing the thrombin exosite II-binding domain of heparin was chemically synthesized and investigated for anti-PAR4 effect. Approach and Results- PAR4-mediated platelet aggregation was examined using either thrombin in the presence of a PAR1 antagonist or γ-thrombin, which selectively activates PAR4. SCH-28 specifically inhibits PAR4-mediated platelet aggregation, as well as the signaling events downstream of PAR4 in response to thrombin. Moreover, SCH-28 prevents thrombin-induced β-arrestin recruitment to PAR4 but not PAR1 in Chinese Hamster Ovary-K1 cells using a commercial enzymatic complementation assay. Compared with heparin, SCH-28 is more potent in inhibiting PAR4-mediated platelet aggregation but has no significant anticoagulant activity. In an in vitro thrombosis model, SCH-28 reduces thrombus formation under whole blood arterial flow conditions. Conclusions- SCH-28, a synthetic small-molecular and nonanticoagulant heparin analog, inhibits thrombin-induced PAR4 activation by interfering with thrombin exosite II, a mechanism of action distinct from other PAR4 inhibitors that target the receptor. The characteristics of SCH-28 provide a new strategy for targeting PAR4 with the potential for the treatment of arterial thrombosis.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Yen-Chun Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (Y.-C.K., S.-C.H.)
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (Y.-C.K., S.-C.H.)
| | - Ying-Ting Lin
- Department of Biotechnology, College of Life Science (Y.-T.L., J.-H.L.), Kaohsiung Medical University, Taiwan
| | - Jia-Hau Lee
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan.,Department of Biotechnology, College of Life Science (Y.-T.L., J.-H.L.), Kaohsiung Medical University, Taiwan
| | - Ju-Ying Tsai
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Po-Hsiung Kung
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Meng-Chun Tsai
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Yih-Fung Chen
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Chin-Chung Wu
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan (C.-C.W.).,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan (C.-C.W.)
| |
Collapse
|
3
|
Miller MM, Banville J, Friends TJ, Gagnon M, Hangeland JJ, Lavallée JF, Martel A, O’Grady H, Rémillard R, Ruediger E, Tremblay F, Posy SL, Allegretto NJ, Guarino VR, Harden DG, Harper TW, Hartl K, Josephs J, Malmstrom S, Watson C, Yang Y, Zhang G, Wong P, Yang J, Bouvier M, Seiffert DA, Wexler RR, Lawrence RM, Priestley ES, Marinier A. Discovery of Potent Protease-Activated Receptor 4 Antagonists with in Vivo Antithrombotic Efficacy. J Med Chem 2019; 62:7400-7416. [DOI: 10.1021/acs.jmedchem.9b00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Miller
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Jacques Banville
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Todd J. Friends
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Mark Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Jon J. Hangeland
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Jean-François Lavallée
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Alain Martel
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Harold O’Grady
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Roger Rémillard
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Edward Ruediger
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Tremblay
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Shana L. Posy
- Bristol-Myers Squibb Research & Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Nick J. Allegretto
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Victor R. Guarino
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - David G. Harden
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Timothy W. Harper
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Karen Hartl
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Jonathan Josephs
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Sarah Malmstrom
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Carol Watson
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Yanou Yang
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Ge Zhang
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Pancras Wong
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Jing Yang
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Dietmar A. Seiffert
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Ruth R. Wexler
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - R. Michael Lawrence
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - E. Scott Priestley
- Bristol-Myers Squibb Research & Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, United States
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Cano A, Mattana A, Henriquez FL, Alexander J, Roberts CW. Acanthamoebaproteases contribute to macrophage activation through PAR1, but not PAR2. Parasite Immunol 2019; 41:e12612. [DOI: 10.1111/pim.12612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Antonella Cano
- Strathclyde Institute of Pharmacy & Biomedical SciencesUniversity of Strathclyde Glasgow UK
| | - Antonella Mattana
- Department of Biomedical SciencesDivision of Experimental and Clinical MicrobiologyUniversity of Sassari Sassari Italy
| | - Fiona L. Henriquez
- Infection and MicrobiologyInstitute of Biomedical and Environmental HealthSchool of Science & SportUniversity of the West of Scotland Paisley UK
| | - James Alexander
- Strathclyde Institute of Pharmacy & Biomedical SciencesUniversity of Strathclyde Glasgow UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy & Biomedical SciencesUniversity of Strathclyde Glasgow UK
| |
Collapse
|
5
|
Cao D, Qu Y, Zhang X, Xu F, Zhou S, Zhang G, Dai B, Zhu Y, Shi G, Shen Y, Zhu Y, Zhang H, Ye D, Zhao J. High expression of F2RL3 correlates with aggressive features and poor survival in clear cell renal cell carcinoma. J Cancer 2018; 9:3400-3406. [PMID: 30271502 PMCID: PMC6160688 DOI: 10.7150/jca.23923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/25/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Specific lifestyle factors including tobacco-exposure are vital etiologic factors for renal cell carcinoma (RCC), F2R Like Thrombin/Trypsin Receptor 3 (F2RL3) is associated with smoking but it is unknown whether its expression translate into poor survival of clear cell RCC (ccRCC). In the current study, the expression profiling and prognostic value of F2RL3 in Chinese patients with ccRCC were investigated. Methods: Using Quantitative PCR analysis and immunohistochemistry, the relative expression levels of F2RL3 in 367 paired ccRCC and adjacent normal tissues were calculated. Cox regression analysis was used to identify independent prognostic factors and Kaplan-Meier analysis and a log-rank test were employed to evaluate the prognostic value of F2RL3. Results: We observed that high expression of F2RL3 mRNA and protein were strongly correlated with shorten progression-free survival (PFS) of ccRCC with hazard ratios (HR; 95% confidence interval (CI)) of 2.060 (1.410-3.009) and 1.657 (1.193-2.300), respectively, as well as with poor overall survival (OS) with HRs (95%CI) of 2.826 (1.713-4.662) and 1.712 (1.140-2.569), respectively. After adjustment for confounding factors including smoking status, elevated HRs (95%CI) of 2.113 (1.445-3.089) and 1.692 (1.218-2.352) were presented for PFS, respectively, and 2.936 (1.777-4.851) and 1.811 (1.203-2.725) were present for OS, respectively. Meanwhile, increased F2RL3 mRNA and protein level were reported to significantly associate with smoking-exposure and well-known prognostic factors (higher TNM stage and ISUP grade). Conclusion: These findings suggested that F2RL3 mRNA and protein level in ccRCC is a robust predictor of poorly prognostic phenotype. Exploring the causal relevance of F2RL3 in ccRCC development further warrants in the future study.
Collapse
Affiliation(s)
- Dalong Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuan Zhang
- The State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics & Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fujiang Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shuxian Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guiming Zhang
- Department of Urology, The affiliated hospital of Qingdao University, Shandong, 266071, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianyuan Zhao
- The State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics & Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Rwibasira Rudinga G, Khan GJ, Kong Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int J Mol Sci 2018; 19:E573. [PMID: 29443899 PMCID: PMC5855795 DOI: 10.3390/ijms19020573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.
Collapse
Affiliation(s)
- Gamariel Rwibasira Rudinga
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| | - Ghulam Jilany Khan
- Jiangsu Center for Pharmacodynamics Research, Evaluation and Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| |
Collapse
|
7
|
Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, Gordon DA, Schumacher WA, Yang J. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2018; 9:9/371/eaaf5294. [PMID: 28053157 DOI: 10.1126/scitranslmed.aaf5294] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.
Collapse
Affiliation(s)
- Pancras C Wong
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Dietmar Seiffert
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - J Eileen Bird
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Carol A Watson
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jeffrey S Bostwick
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Mary Giancarli
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Nick Allegretto
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - David Harden
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jocelyne Guay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Mario Callejo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Michael M Miller
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | | | - Jacques Banville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julia Guy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Brad D Maxwell
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - E Scott Priestley
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Ruth R Wexler
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - David A Gordon
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - William A Schumacher
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jing Yang
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
8
|
Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, Gray TJ, Connell S, Garonzik S, Ma X, Yang J, Newby DE. PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation. Arterioscler Thromb Vasc Biol 2017; 38:448-456. [PMID: 29269513 PMCID: PMC5779320 DOI: 10.1161/atvbaha.117.310104] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— BMS-986120 is a novel first-in-class oral PAR4 (protease-activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation. Approach and Results— Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 μM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (μm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%–38.7%; P<0.001) at 2 hours and by 21.4% (9.3%–32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%–47.3%; P<0.001) at 2 hours and 23.3% (5.1%–38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events. Conclusions— BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190.
Collapse
Affiliation(s)
- Simon J Wilson
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.).
| | - Fraz A Ismat
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Zhaoqing Wang
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Michael Cerra
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Hafid Narayan
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Jennifer Raftis
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Timothy J Gray
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Shea Connell
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Samira Garonzik
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Xuewen Ma
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - Jing Yang
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| | - David E Newby
- From the British Heart Foundation Centre for Cardiovascular Science (S.J.W., D.E.N.), Medical Research Council Centre for Inflammation Research (J.R., S.C.), and Edinburgh College of Medicine (T.J.G.), University of Edinburgh, United Kingdom; Bristol Myers Squibb, Princeton, NJ (F.A.I., Z.W., M.C., S.G., X.M., J.Y.); and Royal Infirmary of Edinburgh, United Kingdom (H.N.)
| |
Collapse
|
9
|
Yang JN, Chen J, Xiao M. A protease-activated receptor 1 antagonist protects against global cerebral ischemia/reperfusion injury after asphyxial cardiac arrest in rabbits. Neural Regen Res 2017; 12:242-249. [PMID: 28400806 PMCID: PMC5361508 DOI: 10.4103/1673-5374.199011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia/reperfusion injury is partially mediated by thrombin, which causes brain damage through protease-activated receptor 1 (PAR1). However, the role and mechanisms underlying the effects of PAR1 activation require further elucidation. Therefore, the present study investigated the effects of the PAR1 antagonist SCH79797 in a rabbit model of global cerebral ischemia induced by cardiac arrest. SCH79797 was intravenously administered 10 minutes after the model was established. Forty-eight hours later, compared with those administered saline, rabbits receiving SCH79797 showed markedly decreased neuronal damage as assessed by serum neuron specific enolase levels and less neurological dysfunction as determined using cerebral performance category scores. Additionally, in the hippocampus, cell apoptosis, polymorphonuclear cell infiltration, and c-Jun levels were decreased, whereas extracellular signal-regulated kinase phosphorylation levels were increased. All of these changes were inhibited by the intravenous administration of the phosphoinositide 3-kinase/Akt pathway inhibitor LY29004 (3 mg/kg) 10 minutes before the SCH79797 intervention. These findings suggest that SCH79797 mitigates brain injury via anti-inflammatory and anti-apoptotic effects, possibly by modulating the extracellular signal-regulated kinase, c-Jun N-terminal kinase/c-Jun and phosphoinositide 3-kinase/Akt pathways.
Collapse
Affiliation(s)
- Jing-Ning Yang
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China; Department of Immunology, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jun Chen
- Department of Immunology, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Min Xiao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
10
|
Norman JE, Cunningham MR, Jones ML, Walker ME, Westbury SK, Sessions RB, Mundell SJ, Mumford AD. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking. Arterioscler Thromb Vasc Biol 2016; 36:952-60. [DOI: 10.1161/atvbaha.115.307102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
Abstract
Objective—
Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by
F2RL3
, which has abundant rare missense variants. We aimed to provide proof of principle that rare
F2LR3
variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms.
Approach and Results—
We identified 6 rare
F2RL3
missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective
N
-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells.
Conclusions—
Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare
F2RL3
variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists.
Collapse
Affiliation(s)
- Jane E. Norman
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Margaret R. Cunningham
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Matthew L. Jones
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Mary E. Walker
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Sarah K. Westbury
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Richard B. Sessions
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Stuart J. Mundell
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| | - Andrew D. Mumford
- From the School of Clinical Sciences (J.E.N., M.E.W., S.K.W., A.D.M.), School of Cellular and Molecular Medicine (M.L.J., A.D.M.), School of Biochemistry (R.B.S.), and School of Physiology and Pharmacology (S.J.M.), University of Bristol, Bristol, United Kingdom; and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (M.R.C.)
| |
Collapse
|
11
|
Wei CK, Chang FR, Hsieh PW, Wu CC. Inhibition of the interactions between metastatic human breast cancer cells and platelets by β-nitrostyrene derivatives. Life Sci 2015; 143:147-55. [DOI: 10.1016/j.lfs.2015.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
|
12
|
Holinstat M, Bray PF. Protease receptor antagonism to target blood platelet therapies. Clin Pharmacol Ther 2015; 99:72-81. [PMID: 26501993 DOI: 10.1002/cpt.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/24/2023]
Abstract
Platelet activation and thrombus formation play a central role in ischemic vascular disease. Thrombin, an especially potent physiologic agonist mediating in vivo activation of platelets, acts via a unique family of G-protein-coupled receptors called protease-activated receptors (PARs) with a broad tissue expression. This review focuses on current antiplatelet therapies as well as innovative approaches to targeting PARs in patients with atherothrombotic vascular disease.
Collapse
Affiliation(s)
- M Holinstat
- University of Michigan Medical School, Departments of Pharmacology and Internal Medicine, Ann Arbor, Michigan, USA
| | - P F Bray
- Thomas Jefferson University, The Cardeza Foundation for Hematologic Research and the Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Vélez P, Izquierdo I, Rosa I, García Á. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations. Sci Rep 2015; 5:8198. [PMID: 25645904 PMCID: PMC4316189 DOI: 10.1038/srep08198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/12/2015] [Indexed: 11/09/2022] Open
Abstract
Upon stimulation, platelets release a high number of proteins (the releasate). There are clear indications that these proteins are involved in the pathogenesis of several diseases, such as atherosclerosis. In the present study we compared the platelet releasate following platelet activation with two major endogenous agonists: thrombin and collagen. Proteome analysis was based on 2D-DIGE and LC-MS/MS. Firstly, we showed the primary role of thrombin and collagen receptors in platelet secretion by these agonists; moreover, we demonstrated that GPVI is the primary responsible for collagen-induced platelet activation/aggregation. Proteomic analysis allowed the detection of 122 protein spots differentially regulated between both conditions. After excluding fibrinogen spots, down-regulated in the releasate of thrombin-activated platelets, 84 differences remained. From those, we successfully identified 42, corresponding to 37 open-reading frames. Many of the differences identified correspond to post-translational modifications, primarily, proteolysis induced by thrombin. Among others, we show vitamin K-dependent protein S, an anticoagulant plasma protein, is up-regulated in thrombin samples. Our results could have pathological implications given that platelets might be playing a differential role in various diseases and biological processes through the secretion of different subsets of granule proteins and microvesicles following a predominant activation of certain receptors.
Collapse
Affiliation(s)
- Paula Vélez
- 1] Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain [3] Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Izquierdo
- 1] Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain [3] Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isaac Rosa
- 1] Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain [3] Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel García
- 1] Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain [3] Departament of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Gurbel PA, Kuliopulos A, Tantry US. G-protein-coupled receptors signaling pathways in new antiplatelet drug development. Arterioscler Thromb Vasc Biol 2015; 35:500-12. [PMID: 25633316 DOI: 10.1161/atvbaha.114.303412] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy.
Collapse
Affiliation(s)
- Paul A Gurbel
- From the Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, MD (P.A.G., U.S.T.); and Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (A.K.).
| | - Athan Kuliopulos
- From the Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, MD (P.A.G., U.S.T.); and Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (A.K.)
| | - Udaya S Tantry
- From the Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, MD (P.A.G., U.S.T.); and Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (A.K.)
| |
Collapse
|
15
|
Liao CY, Lee CL, Wang HC, Liang SS, Kung PH, Wu YC, Chang FR, Wu CC. CLL2-1, a chemical derivative of orchid 1,4-phenanthrenequinones, inhibits human platelet aggregation through thiol modification of calcium-diacylglycerol guanine nucleotide exchange factor-I (CalDAG-GEFI). Free Radic Biol Med 2015; 78:101-10. [PMID: 25451646 DOI: 10.1016/j.freeradbiomed.2014.10.512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
CalDAG-GEFI is a guanine nucleotide exchange factor, which actives small GTPase Rap1 and plays an important role in platelet aggregation. Our previous study has shown that CalDAG-GEFI contains redox-sensitive thiols, and its function can be inhibited by thiol modification. In the present study, the effect of CLL2-1, a 1,4-phenanthrenequinone, on CalDAG-GEFI and platelet functions was investigated. In human platelets, CLL2-1 prevented platelet aggregation caused by various stimulators. Flow cytometric analysis revealed that CLL2-1 inhibited GPIIb/IIIa activation and P-selectin secretion. Moreover, CLL2-1 prevented Rap1 activation caused by thrombin, the Ca(2+) ionophore A23187, and the diacylglycerol mimetic phorbol 12-myristate 13-acetate, while only slightly inhibited thrombin-induced increases in [Ca(2+)]i and did not inhibit protein kinase C activation. Western blots after reducing SDS-PAGE showed that treatment of either platelets or platelet lysates with CLL2-1 led to a decrease of monomeric CalDAG-GEFI and appearance of cross-linked oligomers of CalDAG-GEFI, and these effects were inhibited by pretreatment of platelets or lysates with thiol reducing agents prior to the addition of CLL2-1, indicating thiol modification of CalDAG-GEFI by CLL2-1. Furthermore, the thiol reducing agents also prevented the inhibitory effect of CLL2-1 on Rap1 activation, GPIIb/IIIa activation, and platelet aggregation. In CalDAG-GEFI-overexpressing human embryonic kidney 293T cells, CLL2-1 also inhibited CalDAG-GEFI-mediated Rap1 activation. Taken together, our results suggest that the antiplatelet effect of CLL2-1 is due to, at least in part, inhibition of CalDAG-GEFI-mediated Rap1 activation, and provide the basis for development of novel antiplatelet drugs.
Collapse
Affiliation(s)
- Chieh-Yu Liao
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Lin Lee
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Edelstein LC, Simon LM, Lindsay CR, Kong X, Teruel-Montoya R, Tourdot BE, Chen ES, Ma L, Coughlin S, Nieman M, Holinstat M, Shaw CA, Bray PF. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood 2014; 124:3450-8. [PMID: 25293779 PMCID: PMC4246040 DOI: 10.1182/blood-2014-04-572479] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023] Open
Abstract
Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Lukas M Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cory R Lindsay
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Xianguo Kong
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Raúl Teruel-Montoya
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Benjamin E Tourdot
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Edward S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lin Ma
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Shaun Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH; and
| | - Michael Holinstat
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Statistics, Rice University, Houston, TX
| | - Paul F Bray
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| |
Collapse
|
17
|
Judge HM, Jennings LK, Moliterno DJ, Hord E, Ecob R, Tricoci P, Rorick T, Kotha J, Storey RF. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact. Platelets 2014; 26:236-42. [DOI: 10.3109/09537104.2014.902924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Abstract
Platelets play crucial functions in hemostasis and the prevention of bleeding. During H1N1 influenza A virus infection, platelets display activation markers. The platelet activation triggers during H1N1 infection remain elusive. We observed that H1N1 induces surface receptor activation, lipid mediator synthesis, and release of microparticles from platelets. These activation processes require the presence of serum/plasma, pointing to the contribution of soluble factor(s). Considering that immune complexes in the H1N1 pandemic were reported to play a pathogenic role, we assessed their contribution in H1N1-induced platelet activation. In influenza-immunized subjects, we observed that the virus scaffolds with immunoglobulin G (IgG) to form immune complexes that promote platelet activation. Mechanistically, this activation occurs through stimulation of low-affinity type 2 receptor for Fc portion of IgG (FcγRIIA), a receptor for immune complexes, independently of thrombin. Using a combination of in vitro and in vivo approaches, we found that the antibodies from H3N2-immunized mice activate transgenic mouse platelets that express FcγRIIA when put in the presence of H1N1, suggesting that cross-reacting influenza antibodies suffice. Alternatively, H1N1 can activate platelets via thrombin formation, independently of complement and FcγRIIA. These observations identify both the adaptive immune response and the innate response against pathogens as 2 intertwined processes that activate platelets during influenza infections.
Collapse
|
19
|
Zhang Y, Yang R, Burwinkel B, Breitling LP, Holleczek B, Schöttker B, Brenner H. F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol 2014; 43:1215-25. [PMID: 24510982 DOI: 10.1093/ije/dyu006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Smoking is a major cause of morbidity and mortality. Smoking-related epigenetic biomarkers may open new avenues to better quantify the adverse health effects of smoking, and to better understanding of the underlying mechanisms. We aimed to evaluate the clinical implications of F2RL3 methylation, a novel epigenetic biomarker of smoking exposure disclosed by recent genome-wide methylation studies. METHODS Blood DNA methylation at F2RL3 (also known as PAR-4) was quantified in baseline samples of 3588 participants aged 50-75 years in a large population-based prospective cohort study by MALDI-TOF mass spectrometry. Deaths were recorded during a median follow-up of 10.1 years. The associations of methylation intensity and of smoking with all-cause, cardiovascular, cancer and other mortality were assessed by Cox's proportional hazards regression, controlling for potential confounding factors. RESULTS Lower methylation intensity at F2RL3 was strongly associated with mortality. After adjustment for multiple covariates including smoking, hazard ratios [95% confidence interval (CI)] for death from any cause, cardiovascular disease, cancer or other causes were 2.60 (95% CI, 1.81-3.74), 2.45 (95% CI, 1.28-4.68), 2.94 (95% CI, 1.68-5.14) and 2.39 (95% CI, 1.11-5.16), respectively, in subjects in the lowest quartile of methylation intensity compared with subjects in the highest quartile. The associations with mortality outcomes were much stronger among men than among women. In addition, strong positive associations of smoking with each of the outcomes were substantially weakened, and almost disappeared when controlling for F2RL3 methylation intensity. CONCLUSIONS F2RL3 methylation is a strong predictor of mortality, including all-cause, cardiovascular, cancer and other mortality. Systemic adverse effects of smoking may be mediated by pathways associated with F2RL3 methylation.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Rongxi Yang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, GermanyDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Barbara Burwinkel
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, GermanyDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| |
Collapse
|
20
|
Lee H, Sturgeon SA, Mountford JK, Jackson SP, Hamilton JR. Safety and efficacy of targeting platelet proteinase-activated receptors in combination with existing anti-platelet drugs as antithrombotics in mice. Br J Pharmacol 2012; 166:2188-97. [PMID: 22428607 DOI: 10.1111/j.1476-5381.2012.01944.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Developing novel anti-platelet strategies is fundamental to reducing the impact of thrombotic diseases. Thrombin activates platelets via proteinase-activated receptors (PARs), and PAR antagonists are being evaluated in clinical trials for prevention of arterial thrombosis. However, one such trial was recently suspended due to increased bleeding in patients receiving a PAR₁ antagonist in addition to anti-platelet drugs that most often included both aspirin and clopidogrel. Therefore, it remains unclear how to best manipulate PARs for safe antithrombotic activity. To address this, we have examined potential interactions between existing anti-platelet drugs and strategies that target PARs. EXPERIMENTAL APPROACH We used in vivo mouse models in which interactions between various anti-platelet strategies could be evaluated. We examined the effects on thrombosis and haemostasis in PAR₄ -/- mice (platelets unresponsive to thrombin) treated with therapeutic doses of either aspirin or clopidogrel. KEY RESULTS Using a model in which occlusive thrombosis occurred in PAR₄ -/- mice or wild-type mice treated with aspirin or clopidogrel, PAR₄ -/- mice treated with either anti-platelet agent showed marked protection against thrombosis. This antithrombotic effect occurred without any effect on haemostasis with aspirin, but not clopidogrel. Furthermore, specifically targeting thrombin-induced platelet activation (via PARs) improved the therapeutic window of non-specifically inhibiting thrombin functions (via anticoagulants). CONCLUSIONS AND IMPLICATIONS Our results indicate that PAR antagonists used in combination with aspirin provide a potent yet safe antithrombotic strategy in mice and provide insights into the safety and efficacy of using PAR antagonists for the prevention of acute coronary syndromes in humans.
Collapse
Affiliation(s)
- H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
21
|
Inhibition of proinflammatory cytokines by SCH79797, a selective protease-activated receptor 1 antagonist, protects rat kidney against ischemia-reperfusion injury. Shock 2012; 37:639-44. [PMID: 22592635 DOI: 10.1097/shk.0b013e3182507774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Renal ischemia-reperfusion injury (I/R) is the most common cause of acute renal failure. It is partially mediated by thrombin as it is attenuated by thrombin inhibition or deletion of its receptor protease-activated receptor 1 (PAR1). However, the role of PAR1 in renal I/R injury needs to be further elucidated. The present study investigated the effect of PAR1 antagonist, SCH79797 (SCH), on renal protection and downstream effectors involved. Male Wistar rats were pretreated with SCH (25 μg/kg i.p.) or vehicle, 15 min before 45 min of clamping of left renal pedicle after right nephrectomy. To investigate the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt, a group of rats was subjected to pretreatment with an inhibitor of PI3K/Akt (LY 29004, 3 mg/kg i.p.) before renal ischemia and SCH treatment. A sham-operated group served as control and received saline. All rats were killed 24 h after reperfusion or sham operation, and blood samples collected and kidney tissues processed either for immunostaining and histological assessment or for biochemical analysis. SCH79797 markedly attenuated kidney damage histologically and by improving serum creatinine. Both plasma and protein expression of P selectin were markedly reduced as well as neutrophil infiltration, cytokine-induced neutrophil chemoattractant 1, and tumor necrosis factor α. These protective effects of blocking PAR1 receptor were abolished by preadministration of LY29004. These results suggest that PAR1 mediates renal I/R injury and that blocking PAR1 using SCH limits renal injury by an anti-inflammatory effect possibly signaling via PI3K/Akt.
Collapse
|
22
|
Dumas M, Nadal-Wollbold F, Gaussem P, Perez M, Mirault T, Létienne R, Bourbon T, Grelac F, Le Grand B, Bachelot-Loza C. Antiplatelet and antithrombotic effect of F 16618, a new thrombin proteinase-activated receptor-1 (PAR1) antagonist. Br J Pharmacol 2012; 165:1827-1835. [PMID: 21913899 DOI: 10.1111/j.1476-5381.2011.01668.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New antithrombotic agents with the potential to prevent atherothrombotic complications are being developed to target receptors on platelets and other cells involved in plaque growth. The aim of this study was to investigate the antiplatelet effects of F 16618, a new non-peptidic PAR1 (thrombin receptor) antagonist. EXPERIMENTAL APPROACH We investigated the inhibitory effect of F 16618 on human platelet aggregation ex vivo, in whole blood and washed platelets, by using a multiple-electrode platelet aggregometer based on impedance and an optical aggregometer, respectively. Its effects on whole-blood haemostasis (clot parameters) were analysed with the ROTEM thromboelastometry device and the platelet function analyser PFA-100. A guinea-pig model of arterial thrombosis was used to investigate its effects on thrombus formation in vivo. KEY RESULTS F 16618 inhibited PAR1 agonist peptide (SFLLR-peptide)-induced washed platelet aggregation ex vivo. This effect was concentration-dependent and exhibited a competitive inhibition profile. Washed platelet aggregation, as well as P-selectin expression induced by thrombin, were significantly inhibited by 10 µM F 16618. In whole-blood experiments, 20 µM F 16618 inhibited SFLLR-induced platelet aggregation by 49%. In contrast, it had no effect on whole-blood haemostasis. In the guinea-pig model of carotid thrombosis, 0.32 mg·kg(-1) F 16618 doubled the occlusion time. CONCLUSIONS AND IMPLICATIONS F 16618 was shown to have strong antithrombotic activity in vivo and moderate antiplatelet effects ex vivo. As these effects were not associated with major effects on physiological haemostasis, this molecule is a good antiplatelet drug candidate for use either alone or in combination with current treatments.
Collapse
Affiliation(s)
- M Dumas
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - F Nadal-Wollbold
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - P Gaussem
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - M Perez
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - T Mirault
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - R Létienne
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - T Bourbon
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - F Grelac
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - B Le Grand
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| | - C Bachelot-Loza
- Inserm UMR S 765, Faculté de Pharmacie, Paris, FranceUniversité Paris Descartes, Sorbonne Paris Cité, Paris, FranceCentre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, Castres cedex, FranceAP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France
| |
Collapse
|
23
|
Breitling LP, Salzmann K, Rothenbacher D, Burwinkel B, Brenner H. Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. Eur Heart J 2012; 33:2841-8. [DOI: 10.1093/eurheartj/ehs091] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
Muehlschlegel JD, Perry TE, Liu KY, Fox AA, Smith SA, Lichtner P, Collard CD, Shernan SK, Hartwig JH, Body SC, Hoffmeister KM. Polymorphism in the protease-activated receptor-4 gene region associates with platelet activation and perioperative myocardial injury. Am J Hematol 2012; 87:161-6. [PMID: 22228373 DOI: 10.1002/ajh.22244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Protease-activated receptors (PAR)-1 and -4 are the principal receptors for thrombin-mediated platelet activation. Functional genetic variation has been described in the human PAR1 gene, but not in the PAR4 gene (F2RL3). We sought to identify variants in and around F2RL3 and to determine their association with perioperative myocardial injury (PMI) after coronary artery bypass graft surgery. We further explored possible mechanisms for F2RL3 single nucleotide polymorphism (SNP) associations with PMI including altered receptor expression and platelet activation. Twenty-three SNPs in the F2RL3 gene region were genotyped in two phases in 934 Caucasian subjects. Platelets from 43 subjects (23 major allele, 20 risk allele) homozygous for rs773857 (SNP with the strongest association with PMI) underwent flow cytometry to assess PAR4 receptor number and response to activation by a specific PAR4 activating peptide (AYPGKF) measured by von Willebrand factor (vWf) binding and P-selectin release and PAC-1 binding. We identified a novel association of SNP rs773857 with PMI (OR = 2.4, P = 0.004). rs773857 risk allele homozygotes have significantly increased platelet counts and platelets showed a significant increase in P-selectin release after activation (P = 0.004). We conclude that rs773857 risk allele homozygotes are associated with risk for increased platelet count and hyperactivity.
Collapse
Affiliation(s)
- Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
26
|
Buch MH, Prendergast BD, Storey RF. Antiplatelet therapy and vascular disease: an update. Ther Adv Cardiovasc Dis 2011; 4:249-75. [PMID: 21303843 DOI: 10.1177/1753944710375780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a diffuse, systemic disorder of the large and medium-sized arterial vessels, affecting the coronary, cerebral and peripheral circulation. Chronic inflammatory processes are the central pathophysiological mechanism largely driven by lipid accumulation, and provide the substrate for occlusive thrombus formation. The clinical sequelae of acute arterial thrombosis, heart attack and stroke, are the most common causes of morbidity and mortality in the industrialized world. Such acute events are characterized by rupture or erosion of the atherosclerotic plaque leading to acute thrombosis. The atherosclerotic process and associated thrombotic complications are collectively termed atherothrombosis. The platelet is a pivotal mediator of various endothelial, immune, thrombotic and inflammatory responses and therefore a key player in the initiation and progression of atherothrombosis. A robust evidence base supports the clear clinical benefits of antiplatelet agents in the primary and secondary therapy of atherothrombotic disorders. Percutaneous coronary and peripheral interventions have an established central role in the management of atherothrombotic disease and demand a greater understanding of platelet biology. In this article, we provide a clinically orientated overview of the pathophysiology of arterial thrombosis and the evidence supporting the use of the various established antiplatelet therapies, and discuss new and future agents.
Collapse
Affiliation(s)
- Mamta H Buch
- Cedars-Sinai Medical Center, Cardiovascular Intervention Center, 8631 W Third Street, Room 415E, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
27
|
Breitling L, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 2011; 88:450-7. [PMID: 21457905 DOI: 10.1016/j.ajhg.2011.03.003] [Citation(s) in RCA: 509] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 12/28/2022] Open
Abstract
Tobacco smoking is responsible for substantial morbidity and mortality worldwide, in particular through cardiovascular, pulmonary, and malignant pathology. CpG methylation might plausibly play a role in a variety of smoking-related phenomena, as suggested by candidate gene promoter or global methylation studies. Arrays allowing hypothesis-free searches on a scale resembling genome-wide studies of SNPs have become available only very recently. Methylation extents in peripheral-blood DNA were assessed at 27,578 sites in more than 14,000 gene promoter regions in 177 current smokers, former smokers, and those who had never smoked, with the use of the Illumina HumanMethylation 27K BeadChip. This revealed a single locus, cg03636183, located in F2RL3, with genome-wide significance for lower methylation in smokers (p = 2.68 × 10(-31)). This was similarly significant in 316 independent replication samples analyzed by mass spectrometry and Sequenom EpiTyper (p = 6.33 × 10(-34)). Our results, which were based on a rigorous replication approach, show that the gene coding for a potential drug target of cardiovascular importance features altered methylation patterns in smokers. To date, this gene had not attracted attention in the literature on smoking.
Collapse
|
28
|
Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett 2011; 2:599-608. [PMID: 22848234 DOI: 10.3892/ol.2011.291] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
The traditional view of the role of proteases in tumor growth, progression and metastasis has significantly changed. Apart from their contribution to cancer progression, it is evident that a subclass of proteases, such as thrombin, serves as signal molecules controlling cell functions through the protease-activated receptors (PARs). Among the four types of PAR (PAR1-4; cloned and named in order of their discovery), PAR1, PAR3 and PAR4 are activated by thrombin, unlike PAR2, which is activated by trypsin-like serine proteases. Thrombin has been proven to be a significant factor in both the behavior of cancer in its involvement in hemostasis and blood coagulation. Thrombin is a key supporter of various cellular effects relevant to tumor growth and metastasis, as well as a potent activator of angiogenesis, which is essential for the growth and development of all solid tumor types. This review presents an overview of the role of PAR-mediated thrombin in angiogenesis and cancer, focusing on the ability of PAR1- and PAR4-mediated thrombin to affect tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Na Han
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University: Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310016
| | | | | | | | | |
Collapse
|
29
|
Wu CC, Wu SY, Liao CY, Teng CM, Wu YC, Kuo SC. The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol 2011; 161:643-58. [PMID: 20880402 DOI: 10.1111/j.1476-5381.2010.00921.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of human platelets by thrombin is mediated predominately through two proteinase-activated receptors (PARs), PAR1 and PAR4. Phosphatidylinositol 3-kinase (PI3K) inhibition leads to reversible PAR1-mediated platelet aggregation, but has no effect on the stability of platelet aggregation induced by thrombin. In the present study, the molecular mechanisms underlying this difference were investigated. EXPERIMENTAL APPROACH The functions of PI3K and PAR4 were assessed using specific inhibitors and aggregometry. The duration of platelet glycoprotein (GP) IIb/IIIa exposure was determined by flow cytometry with the antibody PAC-1. Western blotting and fluo-3 was used to evaluate the activation of Akt and protein kinase C (PKC) and intracellular Ca(2+) mobilization respectively. KEY RESULTS When PAR4 function was inhibited either by the PAR4 antagonist YD-3 [1-benzyl-3-(ethoxycarbonylphenyl)-indazole] or by receptor desensitization, the PI3K inhibitor wortmannin turned thrombin-elicited platelet aggregation from an irreversible event to a reversible event. Moreover, wortmannin plus YD-3 markedly accelerated the inactivation of GPIIb/IIIa in thrombin-stimulated platelets. The aggregation-reversing activity mainly resulted from inhibition of both PI3K-dependent PKC activation and PAR4-mediated sustained intracellular Ca(2+) rises. Blockade of ADP P2Y(12) receptor with 2-methylthioadenosine 5'-monophosphate triethylammonium salt mimicked the inhibitory effect of wortmannin on PI3K-dependent PKC activation and its ability to reverse PAR1-activating peptide-induced platelet aggregation. Co-administration of 2-methylthioadenosine 5'-monophosphate triethylammonium salt with YD-3 also decreased the stability of thrombin-induced platelet aggregation. CONCLUSIONS AND IMPLICATIONS These results suggest that PAR4 acts in parallel with the P2Y(12)/PI3K pathway to stabilize platelet aggregates, and provide new insights into the mechanisms of thrombus stabilization and potential applications for antithrombotic therapy.
Collapse
Affiliation(s)
- Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Protease-activated receptor 1 antagonists prevent platelet aggregation and adhesion without affecting thrombin time. Eur J Pharmacol 2010; 644:188-94. [DOI: 10.1016/j.ejphar.2010.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/02/2010] [Accepted: 07/11/2010] [Indexed: 11/17/2022]
|
31
|
Erez O, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Kim CJ, Chaiworapongsa T, Hoppensteadt D, Fareed J, Than NG, Nhan-Chang CL, Yeo L, Pacora P, Mazor M, Hassan SS, Mittal P, Romero R. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med 2010; 22:672-87. [PMID: 19736615 DOI: 10.1080/14767050902853117] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Fetal death can lead to disseminated intravascular coagulation or fetal death syndrome. However, currently it is not clear what are the changes in the coagulation system in patients with a fetal death without the fetal death syndrome. This study was undertaken to determine: (1) whether fetal death in the absence of fetal death syndrome is associated with changes in hemostatic markers in maternal plasma and amniotic fluid; and (2) whether maternal hypertension or placental abruption are associated with further changes in the hemostatic profile of these patients. METHODS A cross-sectional study included the following: (1) determination of changes in markers of coagulation and platelet activation in patients with a normal pregnancy (n = 71) and patients with fetal demise (FD) without disseminated intravascular coagulation (n = 65); (2) determination of the amniotic fluid (AF)-tissue factor concentration and activity, as well as the concentrations of thrombin-antithrombin III (TAT) complexes in patients with a normal pregnancy (n = 25) and those with a FD (n = 36) who underwent amniocentesis. Plasma and AF concentrations of TAT complexes and TF (an index of thrombin generation), as well as maternal plasma concentrations of sCD40L (a marker of platelet activation), tissue factor pathway inhibitor (TFPI) and prothrombin fragments (PF) 1 + 2 (also an indicator of in vivo thrombin generation) were measured by ELISA. TF and TFPI activity were measured using chromogenic assays. RESULTS (1) patients with FD without hypertension had a higher median maternal plasma sCD40L concentration than normal pregnant women (P < 0.001); (2) patients with FD had a higher median maternal plasma TAT III complexes than women with a normal pregnancy (P < 0.001); (3) the median AF-TF concentration and activity were higher in the FD group than in the normal pregnancy group (P < 0.001 for both); (4) patients with preeclampsia and FD had a higher median maternal plasma immunoreactive TF concentration than both normotensive patients with FD and women with normal pregnancies (P < 0.001 and P = 0.001, respectively); (5) the median plasma TF activity was higher in patients with preeclampsia and FD than that of women with normal pregnancies (P = 0.003); (6) among patients with a FD, those with placental abruption had a higher median AF-TAT complexes concentration than those without abruption (P = 0.0004). CONCLUSIONS Our findings indicate that: (1) mothers with a FD have evidence of increased in vivo thrombin generation and platelet activation than women with normal pregnancies; (2) patients with a FD and hypertension had a higher degree of TF activation than those with fetal death but without hypertension; (3) the AF of women with a FD had a higher median TF concentration and activity than that of normal pregnant women. AF can be a potential source for tissue factor and it participates in the development of fetal death syndrome in patients with a retained dead fetus.
Collapse
Affiliation(s)
- Offer Erez
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sharma RK, Reddy HK, Singh VN, Sharma R, Voelker DJ, Bhatt G. Aspirin and clopidogrel hyporesponsiveness and nonresponsiveness in patients with coronary artery stenting. Vasc Health Risk Manag 2009; 5:965-72. [PMID: 19997577 PMCID: PMC2788601 DOI: 10.2147/vhrm.s6787] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 12/26/2022] Open
Abstract
Patients undergoing coronary artery stenting receive an antiplatelet regimen to reduce the risk of antithrombotic complications. Current guidelines recommend the use of acetyl salicylic acid (aspirin) and clopidogrel as evidenced by large clinical trials. There has been a concern about variable responses of patients to aspirin and clopidogrel which may predispose them to subacute stent thrombosis or late stent thrombosis. Up to 25% of patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI) were found to have hyporesponsiveness or resistance to clopidogrel which may predispose them to recurrent events. Dual antiplatelet regimen is a standard therapy in these patients and there is always a concern about variable responses to aspirin and clopidogrel predisposing them to acute coronary syndrome (ACS). Prevalence of this hyporesponsiveness or resistance may be due to noncompliance, genetic mutations, co-morbid situations and concomitant use of other drugs. This issue is of considerable importance in the era of coronary drug eluting stents when a long-term dual antiplatelet regimen is needed. This paper is a review for clinicians taking care of such patients with hyporesponsiveness or nonresponsiveness to dual antiplatelet regimen.
Collapse
Affiliation(s)
- Rakesh K Sharma
- Medical Center of South Arkansas, EL Dorado, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Angiolillo DJ, Bhatt DL, Gurbel PA, Jennings LK. Advances in antiplatelet therapy: agents in clinical development. Am J Cardiol 2009; 103:40A-51A. [PMID: 19166712 DOI: 10.1016/j.amjcard.2008.11.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antiplatelet agents are the cornerstone of treatment for patients with acute coronary syndromes and patients undergoing percutaneous coronary intervention. The current "gold standard" consists of a combination of aspirin and clopidogrel administered orally shortly before invasive procedures and then continued in the form of maintenance doses. Not all patients respond optimally to standard therapy. Resistance to the antiplatelet activity of both drugs when used either singly or in combination has been observed and may lead to treatment failure, including further atherothrombotic events. Potential limitations associated with the combined use of aspirin and clopidogrel have inspired clinical investigation into several promising new antiplatelet agents as potential additions or alternatives to standard therapy. The candidates include prasugrel, which has a mechanism similar to that of clopidogrel but with superior pharmacokinetics; ticagrelor, a nonthienopyridine that binds reversibly to the platelet P2Y(12) receptor; cangrelor, an intravenously administered analogue of ticagrelor; and various thrombin receptor antagonists.
Collapse
|
34
|
Platelet function in intravascular device implant-induced intimal injury. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:78-87. [PMID: 18486081 DOI: 10.1016/j.carrev.2007.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Platelets are involved in the rapid response to intimal injury in which the underlying thrombogenic subendothelial matrix is exposed, leading to platelet adhesion, secretion, aggregation, and initiation of arterial thrombus formation. The platelet activation pathway involves a multistep process of distinct receptors, adhesive ligands, release of mediators, receptor-ligand interactions, and recruitment of more platelets to the site of injury. The balance between blood fluidity and intimal injury-induced arterial thrombosis is maintained by an intact endothelium that controls vessel tone, synthesizes inhibitors and activators of platelet function, and thereby allows the free flow of blood cell elements. An intravascular device implant causes intimal injury, which is accompanied by decreased antithrombotic potential of the endothelial cells and increased release of prothrombotic substances. A trigger for the formation of intimal injury-induced thrombus formation may be due to endothelial dysfunction and/or the loss of endothelial cell barrier between the subendothelial matrix and flowing blood, which allows initiation of platelet activation. A thorough understanding of the platelet regulatory mechanisms is necessary to develop effective antiplatelet therapy to prevent the complications of thrombosis following revascularization procedures using percutaneous coronary intervention. This review summarizes the temporal events following intravascular device implants, including endothelial cell injury, platelet activation, receptor-mediated signaling events, platelet-rich thrombus formation, and the redundant platelet pathways, all of which may be potential therapeutic targets.
Collapse
|
35
|
|
36
|
Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, Gibbins JM. Future innovations in anti-platelet therapies. Br J Pharmacol 2008; 154:918-39. [PMID: 18587441 PMCID: PMC2451055 DOI: 10.1038/bjp.2008.151] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 12/15/2022] Open
Abstract
Platelets have long been recognized to be of central importance in haemostasis, but their participation in pathological conditions such as thrombosis, atherosclerosis and inflammation is now also well established. The platelet has therefore become a key target in therapies to combat cardiovascular disease. Anti-platelet therapies are used widely, but current approaches lack efficacy in a proportion of patients, and are associated with side effects including problem bleeding. In the last decade, substantial progress has been made in understanding the regulation of platelet function, including the characterization of new ligands, platelet-specific receptors and cell signalling pathways. It is anticipated this progress will impact positively on the future innovations towards more effective and safer anti-platelet agents. In this review, the mechanisms of platelet regulation and current anti-platelet therapies are introduced, and strong, and some more speculative, potential candidate target molecules for future anti-platelet drug development are discussed.
Collapse
Affiliation(s)
- N E Barrett
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L Holbrook
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - S Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - W J Kaiser
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L A Moraes
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R Rana
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - T Sage
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R G Stanley
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - K L Tucker
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - B Wright
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - J M Gibbins
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| |
Collapse
|
37
|
Abstract
The platelet, once thought to be solely involved in clot formation, is now known to be a key mediator in various others processes such as inflammation, thrombosis, and atherosclerosis. Supported by the wealth of evidence from clinical trials demonstrating their benefits in patient outcomes, antiplatelet agents have become paramount in the prevention and management of various diseases involving the cardiovascular, cerebrovascular, and peripheral arterial systems. Despite being among the most widely used and studied classes of medical therapies, new discoveries regarding important clinical aspects and properties of these agents continue to be made. As our understanding of platelet biology expands, more effective and safer novel therapies continue to be developed. The use of more refined agents in conjunction with a better understanding of their effects will further the ability to provide more optimized care on an individual basis.
Collapse
Affiliation(s)
- Telly A Meadows
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|