1
|
Song J, Du J, Tan X, Chen H, Cong B. Bradykinin attenuates endothelial-mesenchymal transition following cardiac ischemia-reperfusion injury. Eur J Pharmacol 2024; 971:176556. [PMID: 38574840 DOI: 10.1016/j.ejphar.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 μg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor β1 (TGFβ1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China; Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiankui Du
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haiyan Chen
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China
| | - Binhai Cong
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
2
|
Alhenc-Gelas F, Bouby N, Girolami JP. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front Med (Lausanne) 2019; 6:136. [PMID: 31316987 PMCID: PMC6610447 DOI: 10.3389/fmed.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
Kallikrein-K1 is the main kinin-forming enzyme in organs in resting condition and in several pathological situations whereas angiotensin I-converting enzyme/kininase II (ACE) is the main kinin-inactivating enzyme in the circulation. Both ACE and K1 activity levels are genetic traits in man. Recent research based mainly on human genetic studies and study of genetically modified mice has documented the physiological role of K1 in the circulation, and also refined understanding of the role of ACE. Kallikrein-K1 is synthesized in arteries and involved in flow-induced vasodilatation. Endothelial ACE synthesis displays strong vessel and organ specificity modulating bioavailability of angiotensins and kinins locally. In pathological situations resulting from hemodynamic, ischemic, or metabolic insult to the cardiovascular system and the kidney K1 and kinins exert critical end-organ protective action and K1 deficiency results in severe worsening of the conditions, at least in the mouse. On the opposite, genetically high ACE level is associated with increased risk of developing ischemic and diabetic cardiac or renal diseases and worsened prognosis of these diseases. The association has been well-documented clinically while causality was established by ACE gene titration in mice. Studies suggest that reduced bioavailability of kinins is prominently involved in the detrimental effect of K1 deficiency or high ACE activity in diseases. Kinins are involved in the therapeutic effect of both ACE inhibitors and angiotensin II AT1 receptor blockers. Based on these findings, a new therapeutic hypothesis focused on selective pharmacological activation of kinin receptors has been launched. Proof of concept was obtained by using prototypic agonists in experimental ischemic and diabetic diseases in mice.
Collapse
Affiliation(s)
- Francois Alhenc-Gelas
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | - Nadine Bouby
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | | |
Collapse
|
3
|
Klumpe I, Savvatis K, Westermann D, Tschöpe C, Rauch U, Landmesser U, Schultheiss HP, Dörner A. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J Mol Med (Berl) 2016; 94:645-53. [PMID: 27080394 DOI: 10.1007/s00109-016-1413-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. KEY MESSAGES ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.
Collapse
Affiliation(s)
- Inga Klumpe
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Institute of Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Centre for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Centre, Hamburg, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Centre for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ursula Rauch
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Department of Cardiology, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
4
|
Figueiredo EL, Magalhães CA, Belli KC, Mandil A, Garcia JCF, Araújo RA, Figueiredo AFDS, Pellanda LC. Human Tissue Kallikrein Activity in Angiographically Documented Chronic Stable Coronary Artery Disease. Arq Bras Cardiol 2015; 105:457-565. [PMID: 26351984 PMCID: PMC4651403 DOI: 10.5935/abc.20150109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/15/2015] [Indexed: 01/22/2023] Open
Abstract
Background Human tissue kallikrein (hK1) is a key enzyme in the kallikrein–kinin system
(KKS). hK1-specific amidase activity is reduced in urine samples from hypertensive
and heart failure (HF) patients. The pathophysiologic role of hK1 in coronary
artery disease (CAD) remains unclear. Objective To evaluate hK1-specific amidase activity in the urine of CAD patients Methods Sixty-five individuals (18–75 years) who underwent cardiac catheterism (CATH) were
included. Random midstream urine samples were collected immediately before CATH.
Patients were classified in two groups according to the presence of coronary
lesions: CAD (43 patients) and non-CAD (22 patients). hK1 amidase activity was
estimated using the chromogenic substrate D-Val-Leu-Arg-Nan. Creatinine was
determined using Jaffé’s method. Urinary hK1-specific amidase activity was
expressed as µM/(min · mg creatinine) to correct for differences
in urine flow rates. Results Urinary hK1-specific amidase activity levels were similar between CAD [0.146
µM/(min ·mg creatinine)] and non-CAD [0.189
µM/(min . mg creatinine)] patients (p = 0.803) and remained
similar to values previously reported for hypertensive patients [0.210
µM/(min . mg creatinine)] and HF patients [0.104
µM/(min . mg creatinine)]. CAD severity and hypertension were
not observed to significantly affect urinary hK1-specific amidase activity. Conclusion CAD patients had low levels of urinary hK1-specific amidase activity, suggesting
that renal KKS activity may be reduced in patients with this disease.
Collapse
Affiliation(s)
| | - Carolina Antunes Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karlyse Claudino Belli
- Divisão de Cardiologia, Laboratório de Pesquisa de Patofisiologia do Exercício, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ari Mandil
- Departamento de Hemodinâmica, Hospital Lifecenter, Belo Horizonte, MG, Brazil
| | | | | | | | - Lucia Campos Pellanda
- Programa de Pós-Graduação em Cardiologia, Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Zhang Q, Ran X, Wang DW. Relation of plasma tissue kallikrein levels to presence and severity of coronary artery disease in a Chinese population. PLoS One 2014; 9:e91780. [PMID: 24626253 PMCID: PMC3953537 DOI: 10.1371/journal.pone.0091780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Objectives Tissue kallikrein (TK) has been shown to provide cardiovascular and cerebrovascular protective effects in animal models. The aim of this study was to investigate the relationship of plasma TK levels with the presence and severity of coronary artery disease (CAD) in the Chinese. Methods The study involved 898 consecutive CAD patients and 905 ethnically and geographically matched controls. CAD was angiographically confirmed in all the patients, and the severity of CAD was expressed by the number of affected vessel and coronary artery stenosis scores. Plasma TK levels were measured using an enzyme-linked immunosorbent assay. Results Plasma TK levels were significantly higher in CAD patients than controls (0.347±.082 vs. 0.256±0.087 mg/L, P<0.001), and elevated plasma TK levels were directly associated with a higher risk of CAD (OR = 3.49, 95% CI 2.90–4.19). One-way ANOVA and multivariable stepwise linear regression analysis demonstrated that TK levels were negatively associated with the severity of CAD according to vessel scores (P<0.001) and stenosis scores (r = −0.211, p<0.001). Conclusions Our findings suggest that higher levels of TK in plasma are associated with the presence of CAD and are a predictor of mild coronary arteriosclerosis.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
6
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
7
|
Zhang Q, Ding H, Yan J, Wang W, Ma A, Zhu Z, Cianflone K, Hu FB, Hui R, Wang DW. Plasma tissue kallikrein level is negatively associated with incident and recurrent stroke: a multicenter case-control study in China. Ann Neurol 2011; 70:265-73. [PMID: 21823154 DOI: 10.1002/ana.22404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Tissue kallikrein (TK) cleaves kininogen to produce the potent bioactive compounds kinin and bradykinin, which lower blood pressure and protect the heart, kidneys, and blood vessels. Reduction in TK levels is associated with cardiovascular disease and diabetes in animal models. In this study, we investigated the association of TK levels with event-free survival over 5 years in Chinese first-ever stroke patients. METHODS We conducted a case-control study with 1,268 stroke patients (941 cerebral infarction, 327 cerebral hemorrhage) and 1,210 controls. Plasma TK levels were measured with an enzyme-linked immunosorbent assay. We used logistic regression and Cox proportional hazards models to assess the relationship between TK levels and risk of first-time or recurrent stroke. RESULTS Plasma TK levels were significantly lower in stroke patients (0.163 ± 0.064mg/l vs 0.252 ± 0.093mg/l, p < 0.001), especially those with ischemic stroke. After adjustment for traditional risk factors, plasma TK levels were negatively associated with the risk of first-ever stroke (odds ratio [OR], 0.344; 95% confidence interval [CI], 0.30-0.389; p < 0.001) and stroke recurrence and positively associated with event-free survival during 5 years of follow-up (relative risk, 0.82; 95% CI, 0.74-0.90; p < 0.001). Compared with the first quartile of plasma TK levels, the ORs for first-ever stroke patients were as follows: second quartile, 0.77 (95% CI, 0.56-1.07); third quartile, 0.23 (95% CI, 0.17-0.32); fourth quartile, 0.04 (95% CI, 0.03-0.06). INTERPRETATION Lower plasma TK levels are independently associated with first-ever stroke and are an independent predictor of recurrence after an initial stroke.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Duchene J, Bader M. Bradykinin B2 receptor agonism: a novel therapeutic strategy for myocardial infarction? Am J Hypertens 2010; 23:459. [PMID: 20404805 DOI: 10.1038/ajh.2010.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Savvatis K, Westermann D, Schultheiss HP, Tschöpe C. Kinins in cardiac inflammation and regeneration: insights from ischemic and diabetic cardiomyopathy. Neuropeptides 2010; 44:119-25. [PMID: 20036002 DOI: 10.1016/j.npep.2009.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/05/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
Abstract
The kallikrein-kinin system (KKS) is a system of vasoactive peptides, the kinins, involved in different aspects of remodeling, inflammation and angiogenesis. Kinins mediate their actions through two receptors, B1R and B2R. It is increasingly recognized that the KKS is involved in the inflammatory processes of the heart. Evidence shows that the B2R is beneficial in myocardial diseases, protecting from inflammation, fibrosis and apoptosis, while B1R shows a proinflammatory character contributing to the disease progression by increasing the production of cytokines and stimulating the migration of immune cells. Furthermore, novel important actions of the KKS and its receptors contribute to neovascularization and recruitment of endothelial progenitor cells in ischemic areas and endothelial dysfunction. The kinin receptors could therefore constitute potential therapeutic targets in the treatment of myocardial ischemia and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Konstantinos Savvatis
- Charité - Universitätsmedizin Berlin, Department of Cardiology and Pneumonology, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschöpe C. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes 2009; 58:1373-81. [PMID: 19276445 PMCID: PMC2682670 DOI: 10.2337/db08-0329] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. RESEARCH DESIGN AND METHODS We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes. RESULTS B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. CONCLUSIONS These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Westermann
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Walther
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Konstantinos Savvatis
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Felcicitas Escher
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Meike Sobirey
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Alexander Riad
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Corresponding author: Carsten Tschöpe,
| |
Collapse
|
11
|
Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009; 75:1019-30. [PMID: 19190676 DOI: 10.1038/ki.2008.647] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since kallikrein was discovered as a vasodilatory substance in human urine, the kallikrein-kinin system (KKS) has been considered to play a physiological role in controlling blood pressure. Gene targeting experiments in mice in which the KKS has been inactivated to varying degrees have, however, questioned this role, because basal blood pressures are not altered. Rather, these experiments have shown that the KKS has a different and important role in preventing changes associated with normal senescence in mice, and in reducing the nephropathy and accelerated senescence-associated phenotypes induced in mice by diabetes. Other experiments have shown that the KKS suppresses mitochondrial respiration, partly by nitric oxide and prostaglandins, and that this suppression may be a key to understanding how the KKS influences senescence-related diseases. Here we review the logical progression and experimental data leading to these conclusions, and discuss their relevance to human conditions.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
12
|
Tschöpe C, Westermann D. Development of diabetic cardiomyopathy and the kallikrein-kinin system--new insights from B1 and B2 receptor signaling. Biol Chem 2008; 389:707-11. [PMID: 18627288 DOI: 10.1515/bc.2008.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is a specific cardiomyopathy which develops in patients with diabetes mellitus in the absence of coronary atherosclerosis and hypertension. Despite the potential importance of this disease entity, the underlying mechanisms are only incompletely understood. Changes in calcium handling, disruption of the extracellular matrix regulation with accumulation of cardiac collagen, and furthermore cardiac inflammation may be an important mediator of this disease. This brief review focuses on the current aspects of the kallikrein-kinin system and its influence on the development of diabetic cardiomyopathy with particular regard to the kinin receptors B1 and B2, as their role in the development of this disease is still under discussion. Whether the role of the B1 receptor is similar to the well-described beneficial role of the B2 receptor or whether its function is opposed to the B2 receptor is controversial. Some recent findings suggest that the B1 receptor mediates cardiac inflammation and therefore may be detrimental for cardiac function in the setting of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité-University Medicine Berlin, Campus Benjamin Franklin, D-12200 Berlin, Germany.
| | | |
Collapse
|
13
|
Koch M, Bonaventura K, Spillmann F, Dendorfer A, Schultheiss HP, Tschöpe C. Attenuation of left ventricular dysfunction by an ACE inhibitor after myocardial infarction in a kininogen-deficient rat model. Biol Chem 2008; 389:719-23. [DOI: 10.1515/bc.2008.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bradykinin (BK) coronary outflow and left ventricular (LV) performance of kininogen-deficient Brown Norway Katholiek (BNK) rats and Brown Norway Hannover (BNH) controls were investigated. We analyzed whether the angiotensin-converting enzyme (ACE) inhibitor ramipril is able to attenuate LV dysfunction after induction of myocardial infarction (MI) in this animal model. Ex vivo, the basal BK content in the coronary outflow of buffer-perfused, isolated hearts was measured by specific radioimmunoassay. In vivo, left ventricular pressure (LVP), the maximal rate of LVP increase, LV end-diastolic pressure, the maximal rate of LVP decrease and heart rate were determined using a tip catheter 3 weeks after induction of MI. Compared to BNK rats, basal BK outflow was increased 30-fold in controls (p<0.01). In vivo, we found no significant differences between sham-ligated BNK and BNH rats in basal LV function. After MI, the impairment of LV function was significantly worse in BNK rats when compared to BNH rats. ACE inhibition significantly attenuated this LV dysfunction in both groups, when compared to untreated animals. Reduced basal BK level resulting from kininogen deficiency has no effect on basal LV function, but remains to be a risk factor for the ischemic heart. However, ACE inhibition is sufficient to improve LV function despite kininogen deficiency.
Collapse
|
14
|
The cardiovascular influence of interleukin-1β on the expression of bradykinin B1 and B2 receptors. Int Immunopharmacol 2008; 8:222-30. [DOI: 10.1016/j.intimp.2007.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022]
|
15
|
Westermann D, Schultheiss HP, Tschöpe C. New perspective on the tissue kallikrein–kinin system in myocardial infarction: Role of angiogenesis and cardiac regeneration. Int Immunopharmacol 2008; 8:148-54. [DOI: 10.1016/j.intimp.2007.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/17/2022]
|
16
|
Participation of kallikrein-kinin system in different pathologies. Int Immunopharmacol 2007; 8:135-42. [PMID: 18182216 DOI: 10.1016/j.intimp.2007.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 02/07/2023]
Abstract
The general description of kinins refers to these peptides as molecules involved in vascular tone regulation and inflammation. Nevertheless, in the last years a series of evidences has shown that local hormonal systems, such as the kallikrein-kinin system, may be differently regulated and are of pivotal importance to pathophysiological control. The combined interpretations of many recent studies allow us to conclude that the kallikrein-kinin system plays broader and richer roles than those classically described until recently. In this review, we report findings concerning the participation of the kallikrein-kinin system in inflammation, cancer, and in pathologies related to cardiovascular, renal and central nervous systems.
Collapse
|
17
|
Kakoki M, McGarrah RW, Kim HS, Smithies O. Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2007; 104:7576-81. [PMID: 17452647 PMCID: PMC1855073 DOI: 10.1073/pnas.0701617104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To explore the role of the kallikrein-kinin system in relation to ischemia/reperfusion injury in the kidney, we generated mice lacking both the bradykinin B1 and B2 receptor genes (B1RB2R-null, Bdkrb1-/-/Bdkrb2-/-) by deleting the genomic region encoding the two receptors. In 4-month-old mice, blood pressures were not significantly different among B1RB2R-null, B2R-null (Bdkrb2-/-), and WT mice. After 30 min of bilateral renal artery occlusion and 24 h of reperfusion, mortality rates, renal histological and functional changes, 8-hydroxy-2'-deoxyguanosine levels in total DNA, mtDNA deletions, and the number of TUNEL-positive cells in the kidneys increased progressively in the following order (from lowest to highest): WT, B2R-null, and B1RB2R-null mice. Increases in mRNA levels of TGF-beta1, connective tissue growth factor, and endothelin-1 after ischemia/reperfusion injury were also exaggerated in the same order (from lowest to highest): WT, B2R-null, and B1RB2R-null. Thus, both the B1 and B2 bradykinin receptors play an important role in reducing DNA damage, apoptosis, morphological and functional kidney changes, and mortality during renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| | - Robert W. McGarrah
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
18
|
ACE Inhibition in Heart Failure and Ischaemic Heart Disease. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7122740 DOI: 10.1007/978-1-4020-6372-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|