1
|
Ayala C, Pennacchio GE, Soaje M, Bittencourt JC, Celis ME, Jahn GA, Valdez SR, Seltzer AM. Differential effects of hypo- and hyperthyroidism on remodeling of contacts between neurons expressing the neuropeptide EI and tyrosine hydroxylase in hypothalamic areas of the male rat. Peptides 2019; 113:1-10. [PMID: 30590076 DOI: 10.1016/j.peptides.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Abstract
The Neuropeptide EI (NEI, glutamic acid- isoleucine amide) participates in neuroendocrine function. Previously we demonstrated that NEI concentration is regulated by thyroid hormones in discrete hypothalamic areas in rats. We observed that the thyroid status affects the dopaminergic regulation of the pituitary hormones. In this study we explored possible interactions between NEI and tyrosine hydroxylase (TH) containing elements in selected hypothalamic areas of male rats. Neuronal somas, terminals and boutons were assessed by confocal microscopy, in hypo- and hyperthyroid animals. We observed a remodeling of the contacts between the TH and NEI immunoreactive elements in the incerto-hypothalamic area (IHy, also known as rostromedial zona incerta) according to thyroid function. However, in the dorsolateral zone of the peduncular part of the lateral hypothalamus (DL-PLH) the thyroid hormones affect the dendritic trees of the neurons without perturbing the overall NEI/TH contacts. Also, we demonstrated that TRH Receptor 1 (TRH-R1) is colocalized in NEI immunoreactive neurons in the peduncular part of the lateral hypothalamus (PLH) and NEI precursor mRNA expression increased by hypothyroidism indicating that NEI neurons are responsive to the feedback mechanisms of the Hypothalamic Pituitary-Thyroid Axis (HPT). In conclusion, the hypothyroid status seems to increase the interactions between the NEI neurons and the dopaminergic pathways while hyperthyroidism either decreases or displays no effects. Altogether these observations support the participation of the IHy and PLH NEI as a modulating component of the HPT suggesting that altered neuroendocrine, behavioral and cognitive dysfunctions induced by dysthyroidism could be in part mediated by NEI.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Neurobiología, Instituto de Embriología e Histología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina; Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Gisela E Pennacchio
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Centro Científico Tecnológico (CCT), 5500, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina
| | - Marta Soaje
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Centro Científico Tecnológico (CCT), 5500, Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, UNCuyo, 5500, Mendoza, Argentina
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - María E Celis
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Centro Científico Tecnológico (CCT), 5500, Mendoza, Argentina
| | - Susana R Valdez
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Centro Científico Tecnológico (CCT), 5500, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina.
| | - Alicia M Seltzer
- Laboratorio de Neurobiología, Instituto de Embriología e Histología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| |
Collapse
|
2
|
Zhang FF, Morioka N, Abe H, Fujii S, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Stimulation of spinal dorsal horn β2-adrenergic receptor ameliorates neuropathic mechanical hypersensitivity through a reduction of phosphorylation of microglial p38 MAP kinase and astrocytic c-jun N-terminal kinase. Neurochem Int 2016; 101:144-155. [PMID: 27840124 DOI: 10.1016/j.neuint.2016.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
Abstract
The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are involved in controlling pain transduction at the spinal level as well. The current study elucidated a role of β-adrenergic receptors in neuropathic pain in mice following a partial sciatic nerve ligation (PSNL). In addition, the cellular and intracellular signaling cascade induced by β-adrenergic receptors in neuropathic mice was elaborated. Intrathecal injection of isoproterenol (1 nmol), a nonselective β-adrenergic receptor agonist, briefly ameliorated hind paw mechanical hypersensitivity of PSNL mice. Isoproterenol's antinociceptive effect was mediated through β2-adrenergic receptors since pretreatment with ICI118551, a selective β2-adrenergic receptor antagonist, but not with CGP20712A, a selective β1-adrenergic receptor antagonist, significantly attenuated isoproterenol's effect. Furthermore, intrathecal treatment with a selective β2-adrenergic receptor agonist, terbutaline, but not a selective β1-adrenergic receptor agonist, dobutamine, also significantly ameliorated neuropathic pain. Fourteen days after PSNL, increased phosphorylation of both p38 Mitogen-activated protein kinase (MAPK) in microglia and c-jun N-terminal kinase (JNK) in astrocytes of ipsilateral spinal dorsal horn were observed. Phosphorylation of both microglial p38 MAPK and astrocytic JNK were downregulated by stimulation of the β2-adrenergic receptor. Together, these results suggest that spinal β2-adrenergic receptor have an inhibitory role in neuropathic nociceptive transduction at the spinal level through a downregulation of glial activity, perhaps through modulation of MAP kinases phosphorylation. Thus, targeting of β2-adrenergic receptors could be an effective therapeutic strategy in treating neuropathic pain.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road, Taian, Shandong, 271016, China
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Hiromi Abe
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shiori Fujii
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuki Miyauchi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
3
|
Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013; 49:74-80. [PMID: 24028792 DOI: 10.1016/j.peptides.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023]
Abstract
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Sección de Desarrollo Cerebral Perinatal (SPBD), Instituto de Histología y Embriología Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Parque General San Martín, CP 5500 Mendoza, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fan SJ, Jiang H, Yang LJ, Liu X, Song J, Pan F. Effects of adrenergic agents on stress-induced brain microstructural and immunochemical changes in adult male Wistar rats. Ann Anat 2011; 193:418-24. [DOI: 10.1016/j.aanat.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 12/31/2022]
|
5
|
Ayala C, Valdez SR, Morero MLN, Soaje M, Carreño NB, Sanchez MS, Bittencourt JC, Jahn GA, Celis ME. Hypo- and hyperthyroidism affect NEI concentration in discrete brain areas of adult male rats. Peptides 2011; 32:1249-54. [PMID: 21530599 DOI: 10.1016/j.peptides.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and l-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of l-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ayala C, Celis ME. Experimental autoimmune oophoritis and α-melanocyte-stimulating hormone. Expert Rev Endocrinol Metab 2010; 5:539-547. [PMID: 30780797 DOI: 10.1586/eem.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on primary ovarian insufficiency and the experimental models used in recent years to explain the probable mechanisms of autoimmune oophoritis and idiopathic primary ovarian insufficiency. The relationship between the immune system and the neuroendocrine system is also an important focus of this article. Activation of the immune system is necessary for maintaining homeostasis and this requires multiple interactions and regulation between the immune system and the neuroendocrine system. Neuropeptides, neuroendocrine mediators, are expressed and released primarily, but not exclusively, by the nervous system and have profound effects on the immune system. As an example of one of these peptides we describe the α-melanocyte-stimulating hormone and its anti-inflammatory properties.
Collapse
Affiliation(s)
- Carolina Ayala
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
| | - María Ester Celis
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
- b
| |
Collapse
|
7
|
Bittencourt J, Celis ME. Anatomy, function and regulation of neuropeptide EI (NEI). Peptides 2008; 29:1441-50. [PMID: 18456371 DOI: 10.1016/j.peptides.2008.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
This review is focused on the anatomy, role and behavior of neuropeptide-glutamic acid-isoleucine (NEI), providing a general report on the neuropeptide. In addition to hormone release, this peptide also takes part in the regulation of grooming behavior and locomotor activity. NEI is produced by cleavage of prepro-MCH that probably takes place at the Lys(129)-Arg(130) and Arg(145)-Arg(146) sites (the glycine residue on the C-terminus of NEI strongly suggests that this peptide is amidated). This same prohormone is also the precursor of MCH, widely studied in relation to food and water intake, and NGE, of which little is known. NEI and MCH are extensively colocalized throughout the central nervous system (CNS), and NEI is also present in peripheral tissues. The latter is also effective in stimulating luteinizing hormone (LH) release and, to a lesser extent, FSH from primary pituitary cell cultures. In addition to releasing LH from the medial eminence, NEI also acts directly on gonadotropes. Lastly, this neuropeptide also acts at the CNS level on gonadotropin-releasing hormone (GnRH) neurons.
Collapse
Affiliation(s)
- Jackson Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|