1
|
Skóra JP, Antkiewicz M, Kupczyńska D, Kulikowska K, Strzelec B, Janczak D, Barć P. Local intramuscular administration of ANG1 and VEGF genes using plasmid vectors mobilizes CD34+ cells to peripheral tissues and promotes angiogenesis in an animal model. Biomed Pharmacother 2021; 143:112186. [PMID: 34649339 DOI: 10.1016/j.biopha.2021.112186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Patients with peripheral artery disease have poor prognosis despite advances in vascular surgery. Therefore, attempts have been made at using gene and cell therapy to stimulate angiogenesis in the lower limbs in patients with critical lower limb ischemia (CLI). METHODS The study included 30 rats divided into 3 groups. An intramuscular injection of a therapeutic gene or cells in the right hind limb was administered in each group: angiopoietin-1 (ANG1) plasmid in group 1, ANG1/vascular endothelial growth factor (ANG1/VEGF) bicistronic construct in group 2, and naked plasmid in group 3 (control). After 3 months of follow-up, tissue samples were harvested, and vessels that stained positively for CD34 cells were quantified. RESULTS The highest CD34+ cell count was noted in the ANG1/VEGF group (98.26 cells), followed by the ANG1 group (80.31) and control group (47.93). The CD34+ cell count was significantly higher in the ANG1/VEGF and ANG1 groups than in the control group. There was no significant difference in the CD34+ cell count between the ANG1/VEGF and ANG1 groups. CONCLUSION Our study confirmed that therapy with ANG1 plasmid alone or ANG1/VEGF bicistronic construct is safe and effective in a rat model. The therapy resulted in the recruitment of more CD34+ vascular endothelial cells than in the control group receiving naked plasmid.
Collapse
Affiliation(s)
- Jan Paweł Skóra
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Antkiewicz
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland.
| | - Diana Kupczyńska
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kulikowska
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Janczak
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Barć
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Chen T, Ye B, Tan J, Yang H, He F, Khalil RA. CD146+Mesenchymal stem cells treatment improves vascularization, muscle contraction and VEGF expression, and reduces apoptosis in rat ischemic hind limb. Biochem Pharmacol 2021; 190:114530. [PMID: 33891966 DOI: 10.1016/j.bcp.2021.114530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
Peripheral arterial disease (PAD) is an increasingly common narrowing of the peripheral arteries that can lead to lower limb ischemia, muscle weakness and gangrene. Surgical vein or arterial grafts could improve PAD, but may not be suitable in elderly patients, prompting research into less invasive approaches. Mesenchymal stem cells (MSCs) have been proposed as potential therapy, but their effectiveness and underlying mechanisms in limb ischemia are unclear. We tested the hypothesis that treatment with naive MSCs (nMSCs) or MSCs expressing CD146 (CD146+MSCs) could improve vascularity and muscle function in rat model of hind-limb ischemia. Sixteen month old Sprague-Dawley rats were randomly assigned to 4 groups: sham-operated control, ischemia, ischemia + nMSCs and ischemia+CD146+MSCs. After 4 weeks of respective treatment, rat groups were assessed for ischemic clinical score, Tarlov score, muscle capillary density, TUNEL apoptosis assay, contractile force, and vascular endothelial growth factor (VEGF) mRNA expression. CD146+MSCs showed greater CD146 mRNA expression than nMSCs. Treatment with nMSCs or CD146+MSCs improved clinical and Tarlov scores, muscle capillary density, contractile force and VEGF mRNA expression in ischemic limbs as compared to non-treated ischemia group. The improvements in muscle vascularity and function were particularly greater in ischemia+CD146+MSCs than ischemia + nMSCs group. TUNEL positive apoptotic cells were least abundant in ischemia+CD146+MSCs compared with ischemia + nMSCs and non-treated ischemia groups. Thus, MSCs particularly those expressing CD146 improve vascularity, muscle function and VEGF expression and reduce apoptosis in rat ischemic limb, and could represent a promising approach to improve angiogenesis and muscle function in PAD.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China; Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Jing Tan
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Haifeng Yang
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Faming He
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Iwakoshi-Ukena E, Shikano K, Kondo K, Taniuchi S, Furumitsu M, Ochi Y, Sasaki T, Okamoto S, Bentley GE, Kriegsfeld LJ, Minokoshi Y, Ukena K. Neurosecretory protein GL stimulates food intake, de novo lipogenesis, and onset of obesity. eLife 2017; 6. [PMID: 28799896 PMCID: PMC5553934 DOI: 10.7554/elife.28527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying the central regulation of food intake and fat accumulation are not fully understood. We found that neurosecretory protein GL (NPGL), a newly-identified neuropeptide, increased food intake and white adipose tissue (WAT) in rats. NPGL-precursor gene overexpression in the hypothalamus caused increases in food intake, WAT, body mass, and circulating insulin when fed a high calorie diet. Intracerebroventricular administration of NPGL induced de novo lipogenesis in WAT, increased insulin, and it selectively induced carbohydrate intake. Neutralizing antibody administration decreased the size of lipid droplets in WAT. Npgl mRNA expression was upregulated by fasting and low insulin levels. Additionally, NPGL-producing cells were responsive to insulin. These results point to NPGL as a novel neuronal regulator that drives food intake and fat deposition through de novo lipogenesis and acts to maintain steady-state fat level in concert with insulin. Dysregulation of NPGL may be a root cause of obesity. DOI:http://dx.doi.org/10.7554/eLife.28527.001 Throughout history, our ancestors needed to accumulate fat to survive during times when food sources were scarce. However, for most people in the modern age, food is abundant and eating too much is a major cause of weight gain, obesity and diseases affecting the metabolism. Obesity in particular, can lead to diseases such as diabetes and heart disease. Hunger and appetite are regulated by proteins and other chemicals that act as messengers, for example insulin, and a region of the brain called the hypothalamus. However, the full mechanisms that regulate these sensations remain unclear. Only recently, a protein called NPGL was discovered in a part of the hypothalamus of birds and mammals. However, it was not known if NPGL plays a role in regulating eating habits and weight gain. Iwakoshi-Ukena et al. have now discovered that NPGL is found in the hypothalamus of rats and is regulated by diet and insulin. When the gene for NPGL was manipulated to produce too much of the protein, rats fed a high calorie diet started to eat more, and gained more weight and body fat. Adding additional NPGL to their brains had the same effect. When the animals were fed a normal diet, NPGL only moderately affected how much they ate, but it substantially increased how much fat they produced. Iwakoshi-Ukena et al. also observed that when animals were starved and insulin levels were low, the rats started to produce more NPGL. These results suggest that NPGL plays a role in fat storage when energy sources are limited, and can contribute to obesity when too much NPGL is produced in animals on a high calorie diet. These findings indicate that NPGL could be an additional brain chemical that regulates hunger and fat storage in mammals. A next step will be to reveal the specific mechanisms by which NPGL regulates overeating and fat accumulation. These findings will further advance the study and treatment of obesity and obesity-related diseases. DOI:http://dx.doi.org/10.7554/eLife.28527.002
Collapse
Affiliation(s)
- Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Integrative Biology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kunihiro Kondo
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shusuke Taniuchi
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuta Ochi
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai (The Graduate University for Advanced Studies), Hayama, Japan.,Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - George E Bentley
- Department of Integrative Biology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Psychology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
4
|
Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014; 6:555-63. [PMID: 24676392 PMCID: PMC4307755 DOI: 10.1039/c3ib40267c] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of functional microvascular networks is critical for the development of advanced in vitro models to replicate pathophysiological conditions. Mural cells provide structural support to blood vessels and secrete biomolecules contributing to vessel stability and functionality. We investigated the role played by two endothelium-related molecules, angiopoietin (Ang-1) and transforming growth factor (TGF-β1), on bone marrow-derived human mesenchymal stem cell (BM-hMSC) phenotypic transition toward a mural cell lineage, both in monoculture and in direct contact with human endothelial cells (ECs), within 3D fibrin gels in microfluidic devices. We demonstrated that the effect of these molecules is dependent on direct heterotypic cell-cell contact. Moreover, we found a significant increase in the amount of α-smooth muscle actin in microvascular networks with added VEGF and TGF-β1 or VEGF and Ang-1 compared to networks with added VEGF alone. However, the addition of TGF-β1 generated a non-interconnected microvasculature, while Ang-1 promoted functional networks, confirmed by microsphere perfusion and permeability measurements. The presence of mural cell-like BM-hMSCs coupled with the addition of Ang-1 increased the number of network branches and reduced mean vessel diameter compared to EC only vasculature. This system has promising applications in the development of advanced in vitro models to study complex biological phenomena involving functional and perfusable microvascular networks.
Collapse
Affiliation(s)
- Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience 2014; 267:135-46. [DOI: 10.1016/j.neuroscience.2014.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/22/2022]
|
6
|
Shimamura M, Nakagami H, Taniyama Y, Morishita R. Gene therapy for peripheral arterial disease. Expert Opin Biol Ther 2014; 14:1175-84. [PMID: 24766232 DOI: 10.1517/14712598.2014.912272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gene therapy has emerged as a novel therapy to promote angiogenesis in patients with critical limb ischemia (CLI) caused by peripheral artery disease. Researchers working in this area have focused on pro-angiogenic factors, such as VEGF, fibroblast growth factor (FGF) and hepatocyte growth factor (HGF). Based on the elaborate studies and favorable results of basic research using naked plasmid DNA (pDNA) encoding these growth factors, some clinical Phase I and Phase II trials have been performed. The results of these studies demonstrate the safety of these approaches and their potential for symptomatic improvement in CLI patients. However, the Phase III clinical trials have so far been limited to HGF gene therapy. Because one pitfall of the Phase III trials has been the limited transgene expression achieved using naked pDNA alone, the development of more efficient gene transfer systems, such as ultrasound microbubbles and the needleless injector, as well as the addition of other genes will make these novel therapies more effective and ease the symptoms of CLI. AREAS COVERED This study reviews the previously published basic research and clinical trials that have studied VEGF, FGF and HGF gene therapies for the treatment of CLI. Adjunctive therapies, such as the addition of prostacyclin synthase genes and the development of more efficient gene transfer techniques for pDNA, are also reviewed. EXPERT OPINION To date, clinical studies have demonstrated the safety of gene therapy in limb ischemia but the effectiveness of this treatment has not been determined. Larger clinical studies, as well as the development of more effective gene therapy, are needed to achieve and confirm beneficial effects.
Collapse
Affiliation(s)
- Munehisa Shimamura
- Osaka University, Kanazawa University and Hamamatsu University School of Medicine, United Graduate School of Child Development, Division of Vascular Medicine and Epigenetics, Department of Child Development , Suita , Japan
| | | | | | | |
Collapse
|
7
|
Hoffmann BR, Wagner JR, Prisco AR, Janiak A, Greene AS. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress. Physiol Genomics 2013; 45:1021-34. [PMID: 24022223 PMCID: PMC3841787 DOI: 10.1152/physiolgenomics.00070.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023] Open
Abstract
Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration.
Collapse
Affiliation(s)
- Brian R Hoffmann
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | | | | | | | |
Collapse
|
8
|
Impairment and Differential Expression of PR3 and MPO on Peripheral Myelomonocytic Cells with Endothelial Properties in Granulomatosis with Polyangiitis. Int J Nephrol 2012; 2012:715049. [PMID: 22792461 PMCID: PMC3390043 DOI: 10.1155/2012/715049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 11/17/2022] Open
Abstract
Background. Granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are autoimmune-mediated diseases characterized by vasculitic inflammation of respiratory tract and kidneys. Clinical observations indicated a strong association between disease activity and serum levels of certain types of autoantibodies (antineutrophil cytoplasm antibodies with cytoplasmic [cANCA in GPA] or perinuclear [pAN CA in MPA] immunofluorescence). Pathologically, both diseases are characterized by severe microvascular endothelial cell damage. Early endothelial outgrowth cells (eEOCs) have been shown to be critically involved in neovascularization under both physiological and pathological condition. Objectives. The principal aims of our study were (i) to analyze the regenerative activity of the eEOC system and (ii) to determine mPR3 and MPO expression in myelo monocytic cells with endothelial characteristics in GPA and MPA patients. Methods. In 27 GPA and 10 MPA patients, regenerative activity blood-derived eEOCs were analyzed using a culture-forming assay. Flk-1+, CD133+/Flk-1+, mPR3+, and Flk-1+/mPR3+ myelomonocytic cells were quantified by FACS analysis. Serum levels of Angiopoietin-1 and TNF-α were measured by ELISA. Results. We found reduced eEOC regeneration, accompanied by lower serum levels of Angiopoietin-1 in GPA patients as compared to healthy controls. In addition, the total numbers of Flk-1+ myelomonocytic cells in the peripheral circulation were decreased. Membrane PR3 expression was significantly higher in total as well as in Flk-1+ myelomonocytic cells. Expression of MPO was not different between the groups. Conclusions. These data suggest impairment of the eEOC system and a possible role for PR3 in this process in patients suffering from GPA.
Collapse
|
9
|
Herrera JJ, Sundberg LM, Zentilin L, Giacca M, Narayana PA. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury. J Neurotrauma 2010; 27:2067-76. [PMID: 20799882 DOI: 10.1089/neu.2010.1403] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) results in immediate disruption of the spinal vascular network, triggering an ischemic environment and initiating secondary degeneration. Promoting angiogenesis and vascular stability through the induction of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), respectively, provides a possible therapeutic approach in treating SCI. We examined whether supplementing the injured environment with these two factors, which are significantly reduced following injury, has an effect on lesion size and functional outcome. Sustained delivery of both VEGF(165) and Ang-1 was realized using viral vectors based on the adeno-associated virus (AAV), which were injected directly into the lesion epicenter immediately after injury. Our results indicate that the combined treatment with VEGF and Ang-1 resulted in both reduced hyperintense lesion volume and vascular stabilization, as determined by magnetic resonance imaging (MRI). Western blot analysis indicated that the viral vector expression was maintained into the chronic phase of injury, and that the use of the AAV vectors did not exacerbate infiltration of microglia into the lesion epicenter. The combined treatment with AAV-VEGF and AAV-Ang-1 improved locomotor recovery in the chronic phase of injury. These results indicate that combining angiogenesis with vascular stabilization may have potential therapeutic applications following SCI.
Collapse
Affiliation(s)
- Juan J Herrera
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
10
|
Li J, Wei Y, Liu K, Yuan C, Tang Y, Quan Q, Chen P, Wang W, Hu H, Yang L. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc Res 2010; 80:10-7. [DOI: 10.1016/j.mvr.2009.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
11
|
Chade AR, Zhu X, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells 2010; 28:1039-47. [PMID: 20506499 PMCID: PMC2958683 DOI: 10.1002/stem.426] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue injury triggers reparative processes that often involve endothelial progenitor cells (EPCs) recruitment. We hypothesized that atherosclerotic renal artery stenosis (ARAS) activates homing signals that would be detectable in both the kidney and EPCs, and attenuated on renal repair using selective cell-based therapy. Pigs were treated with intrarenal autologous EPC after 6 weeks of ARAS. Four weeks later, expression of homing-related signals in EPC and kidney, single kidney function, microvascular (MV) density, and morphology were compared with untreated ARAS and normal control pigs (n = 7 each). Compared with normal EPC, EPC from ARAS pigs showed increased stromal cell-derived factor (SDF)-1, angiopoietin-1, Tie-2, and c-kit expression, but downregulation of erythropoietin (EPO) and its receptor. The ARAS kidney released the c-kit-ligand stem cell factor, uric acid, and EPO, and upregulated integrin beta2, suggesting activation of corresponding homing signaling. However, angiopoietin-1 and SDF-1/CXCR4 were not elevated. Administration of EPC into the stenotic kidney restored angiogenic activity, improved MV density, renal hemodynamics and function, decreased fibrosis and oxidative stress, and attenuated endogenous injury signals. The ARAS kidney releases specific homing signals corresponding to cognate receptors expressed by EPC. EPC show plasticity for organ-specific recruitment strategies, which are upregulated in early atherosclerosis. EPC are renoprotective as they attenuated renal dysfunction and damage in chronic ARAS, and consequently decreased the injury signals. Importantly, manipulation of homing signals may potentially allow therapeutic opportunities to increase endogenous EPC recruitment.
Collapse
Affiliation(s)
| | - Xiangyang Zhu
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - James D. Krier
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Stephen C. Textor
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Amir Lerman
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lilach O. Lerman
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- The Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Su H, Takagawa J, Huang Y, Arakawa-Hoyt J, Pons J, Grossman W, Kan YW. Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart. Int J Cardiol 2009; 133:191-7. [PMID: 18295361 PMCID: PMC2692365 DOI: 10.1016/j.ijcard.2007.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/11/2007] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key angiogenic factor and has been used experimentally for induction of neovasculature in ischemic myocardium. However, blood vessels induced by VEGF are immature. Angiopoietin-1 (ang-1) has the ability to recruit and sustain periendothelial support cells and promote vascular maturation. Thus, co-expression of the two may yield a better result than expression of either one alone. Two adeno-associated viral vectors (AAV), CMVVEGF and CMVang-1 with the CMV promoter driving VEGF or ang-1 gene expression, respectively, were injected into ischemic mouse hearts individually or together in different ratios. The results show that co-injected groups had more capillaries than the CMVang-1 group and similar densities of capillaries and alpha-actin positive vessels as the CMVVEGF group. Neovasculature induced by CMVVEGF was leaky. In contrast, neovasculature in CMVang-1-injected or CMVVEGF and CMVang-1 co-injected hearts was less leaky than that in CMVVEGF-injected hearts. The group that received CMVang-1 and CMVVEGF in a 1:1 ratio had the smallest infarct size and best cardiac function and regional wall movement among all the groups. We conclude that ang-1 and VEGF can compensate for each others' shortcomings and yield a better therapeutic effect by acting together.
Collapse
Affiliation(s)
- Hua Su
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0793, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Alter A, Schmiedeck D, Fussnegger MR, Pries AR, Freesmeyer WB, Zakrzewicz A. Angiopoietin-1, but not Platelet-Derived Growth Factor-AB, Is a Cooperative Stimulator of Vascular Endothelial Growth Factor A-Accelerated Endothelial Cell Scratch Closure. Ann Vasc Surg 2009; 23:239-45. [DOI: 10.1016/j.avsg.2008.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/11/2008] [Accepted: 07/28/2008] [Indexed: 11/24/2022]
|
14
|
Testa U, Pannitteri G, Condorelli GL. Vascular endothelial growth factors in cardiovascular medicine. J Cardiovasc Med (Hagerstown) 2009; 9:1190-221. [PMID: 19001927 DOI: 10.2459/jcm.0b013e3283117d37] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of vascular endothelial growth factors (VEGFs) and their receptors has considerably improved the understanding of the development and function of endothelial cells. Each member of the VEGF family appears to have a specific function: VEGF-A induces angiogenesis (i.e. growth of new blood vessels from preexisting ones), placental growth factor mediates both angiogenesis and arteriogenesis (i.e. the formation of collateral arteries from preexisting arterioles), VEGF-C and VEGF-D act mainly as lymphangiogenic factors. The study of the biology of these endothelial growth factors has allowed a major progress in the comprehension of the genesis of the vascular system and its abnormalities observed in various pathologic conditions (atherosclerosis and coronary artery disease). The role of VEGF in the atherogenic process is still unclear, but actual evidence suggests both detrimental (development of a neoangiogenetic process within the atherosclerotic plaque) and beneficial (promotion of collateral vessel formation) effects. VEGF and other angiogenic growth factors (fibroblast growth factor), although initially promising in experimental studies and in initial phase I/II clinical trials in patients with ischemic heart disease or peripheral arterial occlusive disease, have subsequently failed to show significant therapeutic improvements in controlled clinical studies. Challenges still remain about the type or the combination of angiogenic factors to be administered, the form (protein vs. gene), the route, and the duration of administration.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Italy.
| | | | | |
Collapse
|
15
|
Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 2008; 38:1-11. [PMID: 18983622 DOI: 10.1111/j.1439-0264.2008.00894.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the course of new blood vessel formation, two different processes--vasculogenesis and angiogenesis--have to be distinguished. The term vasculogenesis describes the de novo emergence of a vascular network by endothelial progenitors, whereas angiogenesis corresponds to the generation of vessels by sprouting from pre-existing capillaries. Until recently, it was thought that vasculogenesis is restricted to the prenatal period. During the last decade, one of the most fascinating innovations in the field of vascular biology was the discovery of endothelial progenitor cells and vasculogenesis in the adult. This review aims at introducing the concept of adult vasculogenesis and discusses the efforts to identify and characterize adult endothelial progenitors. The different sources of adult endothelial progenitors like haematopoietic stem cells, myeloid cells, multipotent progenitors of the bone marrow, side population cells and tissue-residing pluripotent stem cells are considered. Moreover, a survey of cellular and molecular control mechanisms of vasculogenesis is presented. Recent advances in research on endothelial progenitors exert a strong impact on many different disciplines and provide the knowledge for functional concepts in basic fields like anatomy, histology as well as embryology.
Collapse
Affiliation(s)
- S Kässmeyer
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
16
|
Suriano R, Chaudhuri D, Johnson RS, Lambers E, Ashok BT, Kishore R, Tiwari RK. 17Beta-estradiol mobilizes bone marrow-derived endothelial progenitor cells to tumors. Cancer Res 2008; 68:6038-42. [PMID: 18676823 DOI: 10.1158/0008-5472.can-08-1009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neovascularization is critical for tumor growth and development. The cellular mediators for this process are yet to be defined. We discovered that bone marrow-derived endothelial progenitor cells (BM-EPC), having the phenotype (CD133+, CD34+, VEGFR-2+), initiate neovascularization in response to TG1-1 mammary cells implanted in the inguinal mammary gland of Tie-2 GFP transgenic mice. The fluorescence tag allowed for tracing the migration of green fluorescent protein-tagged endothelial progenitor cells to tumor tissues. We discovered that 17-beta estradiol supplementation of ovariectomized mice significantly enhanced BM-EPC-induced neovascularization and secretion of angiogenic factors within the tumor microenvironment. Cell-based system analyses showed that estrogen-stimulated BM-EPCs secreted paracrine factors which enhanced TG1-1 cell proliferation and migration. Furthermore, TG1-1 cell medium supplemented with estrogen-induced BM-EPC mediated tubulogenesis, which was an experimental in vivo representation of the neovasculature. Our data provide evidence of BM-EPC mammary tumor cell interactions and identify a novel cellular mediator of tumor progression that can be exploited clinically.
Collapse
Affiliation(s)
- Robert Suriano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Makinde T, Agrawal DK. Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. J Cell Mol Med 2008; 12:810-28. [PMID: 18266978 PMCID: PMC4401129 DOI: 10.1111/j.1582-4934.2008.00254.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Angiopoietin-1 (Ang-1) is the primary agonist for Tie2 tyrosine kinase receptor (Tie2), and the effect of Ang-1-Tie2 signalling is context-dependent. Deficiency in either Ang-1 or Tie2 protein leads to severe microvascular defects and subsequent embryonic lethality in murine model. Tie2 receptors are expressed in several cell types, including endothelial cells, smooth muscle cells, fibroblasts, epithelial cells, monocytes, neutrophils, eosinophils and glial cells. Ang-1-Tie2 signalling induces a chemotactic effect in smooth muscle cells, neutrophils and eosinophils, and induces differentiation of mesenchymal cells to smooth muscle cells. Additionally, this signalling pathway induces the secretion of serotonin, matrix metalloproteinases (MMPs) and plasmin. Ang-1 inhibits the secretion of tissue inhibitor of matrix metalloproteinase (TIMPs). Aberrant expression and activity of Tie2 in vascular and non-vascular cells may result in the development of rheumatoid arthritis, cancer, hypertension and psoriasis. Ang-1 has an anti-inflammatory effect, when co-localized with vascular endothelial growth factor (VEGF) in the vasculature. Thus, Ang-1 could be potentially important in the therapy of various pathological conditions such as pulmonary hypertension, arteriosclerosis and diabetic retinopathy. In this article, we have summarized and critically reviewed the pathophysiological role of Ang-1-Tie2 signalling pathway.
Collapse
Affiliation(s)
- T Makinde
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|