1
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
2
|
Ko CY, Wu CH, Nguyen TKN, Chen LW, Wu JSB, Huang WC, Shen SC. Alleviative Effect of Ficus formosana Extract on Peripheral Neuropathy in Ovariectomized Diabetic Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3774. [PMID: 37960130 PMCID: PMC10649879 DOI: 10.3390/plants12213774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In diabetes mellitus, Ficus formosana has been reported to ameliorate blood sugar levels and inhibit inflammation through its polyphenol and flavonoid contents. However, its effect on diabetic peripheral neuropathy (DPN) remains unknown. This study aimed to investigate the effect of Ficus formosana extract (FFE) on DPN in ovariectomized diabetic mice. Ovariectomized female C57BL/6J mice fed a high-fat diet plus streptozotocin injections to induce type 2 diabetes were orally administered FEE at 20 or 200 mg/kg BW daily, for 6 weeks. To evaluate the pain responses in the paws of the mice, a von Frey filament test and a thermal hyperalgesia test were performed. Additionally, the intraepidermal and sciatic nerve sections were examined, along with an assessment of inflammation- and pain response-related mRNA expression in the paws of the mice. The results showed that the oral administration of both 20 and 200 mg/kg BW FEE significantly alleviated the hypersensitivity of the paw and the abnormal proliferation and rupture of the C fiber, and reduced the mRNA expression of interleukin-1β, interleukin-6, interferon-γ, cyclooxygenase-2, and voltage-gated sodium channel 1.8 in the sciatic nerve of ovariectomized diabetic mice. We propose that FFE ameliorates peripheral neuropathy by suppressing oxidative damage in ovariectomized diabetic mice.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 10617, Taiwan;
| | - Thi Kim Ngan Nguyen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - Li-Wen Chen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10617, Taiwan; (T.K.N.N.); (L.-W.C.)
| |
Collapse
|
3
|
Galosi E, Hu X, Michael N, Nyengaard JR, Truini A, Karlsson P. Redefining distal symmetrical polyneuropathy features in type 1 diabetes: a systematic review. Acta Diabetol 2022; 59:1-19. [PMID: 34213655 PMCID: PMC8758619 DOI: 10.1007/s00592-021-01767-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetic neuropathy is among the most frequent complications of both type 1 (T1DM) and type 2 diabetes (T2DM) and commonly manifests as a distal symmetrical polyneuropathy (DSPN). Despite evidence that T1DM- and T2DM-related DSPN are separate entities, most of our knowledge on diabetic DSPN derives from studies focused on type 2 diabetes. This systematic review provides an overview of current evidence on DSPN in T1DM, including its epidemiological, pathophysiological and clinical features, along with principal diagnostic tests findings. This review included 182 clinical and preclinical studies. The results indicate that DSPN is a less frequent complication in T1DM compared with T2DM and that distinctive pathophysiological mechanisms underlie T1DM-related DSPN development, with hyperglycemia as a major determinant. T1DM-related DSPN more frequently manifests with non-painful than painful symptoms, with lower neuropathic pain prevalence compared with T2DM-associated DSPN. The overt clinical picture seems characterized by a higher prevalence of large fiber-related clinical signs (e.g., ankle reflexes reduction and vibration hypoesthesia) and to a lesser extent small fiber damage (e.g., thermal or pinprick hypoesthesia). These findings as a whole suggest that large fibers impairment plays a dominant role in the clinical picture of symptomatic T1DM-related DSPN. Nevertheless, small fiber diagnostic testing shows high diagnostic accuracy in detecting early nerve damage and may be an appropriate diagnostic tool for disease monitoring and screening.
Collapse
Affiliation(s)
- Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| | - Xiaoli Hu
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Nivatha Michael
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Páll Karlsson
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed Pharmacother 2021; 145:112305. [PMID: 34872802 DOI: 10.1016/j.biopha.2021.112305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.
Collapse
|
5
|
Dunn S, Hilgers RH, Das KC. Thioredoxin deficiency exacerbates vascular dysfunction during diet-induced obesity in small mesenteric artery in mice. Microcirculation 2020; 28:e12674. [PMID: 33316843 DOI: 10.1111/micc.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Thioredoxin (Trx) is a small cellular redox protein with established antioxidant and disulfide reductase properties. We hypothesized that Trx deficiency in mice would cause increased oxidative stress with consequent redox imbalance that would exacerbate obesity-induced vascular dysfunction. METHODS Non-transgenic (NT, C57BL/6) and dominant-negative Trx (dnTrx-Tg, low levels of redox-active protein) mice were either fed a normal diet (NC) or high fat diet plus sucrose (HFS) diet for 4 months (3-month HFD+ 1-month HFS). Weight gain, glucose tolerance test (GTT), insulin tolerance test (ITT), and other metabolic parameters were performed following NC or HFS diet. Arterial structural remodeling and functional parameters were assessed by myography. RESULTS Our study found that dnTrx mice with lower levels of active Trx exacerbated myogenic tone, inward arterial remodeling, arterial stiffening, phenylephrine-induced contraction, and endothelial dysfunction of MA. Additionally, FeTMPyP, a peroxynitrite decomposition catalyst, acutely decreased myogenic tone and contraction and normalized endothelial function in MA from dnTrx-Tg mice on HFS via increasing nitric oxide (NO)-mediated relaxation. CONCLUSIONS Our results indicate that deficiency of active Trx exacerbates MA contractile and relaxing properties during diet-induced obesity demonstrating that loss of redox balance in obesity is a key mechanism of vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon Dunn
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert H Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
6
|
Maher S, Mahmoud M, Rizk M, Kalil H. Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19115-19126. [PMID: 30982188 DOI: 10.1007/s11356-019-05111-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Melanin is a ubiquitous natural polyphenolic pigment with versatile applications including physiological functions. This polymeric material is found in a diversity of living organisms from bacteria to mammals. The biocompatibility and thermal stability of melanin nanoparticles make them good candidates to work as free radical scavengers and photothermal anticancer substrates. Research studies have identified melanin as an antioxidative therapeutic agent and/or reactive oxygen species (ROS) scavenger that includes neutralization of peroxynitrite. In addition, melanin nanoparticles have emerged as an anticancer photothermal platform that has the capability to kill cancer cells. Recently, melanin nanoparticles have been successfully used as chelating agents to purify water from heavy metals, such as hexavalent chromium. This review article highlights some selected aspects of cutting-edge melanin applications. Herein, we will refer to the recent literature that addresses melanin nanoparticles and its useful physicochemical properties as a hot topic in biomaterial science. It is expected that the techniques of Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and time-resolved Electron Paramagnetic Resonance (EPR) will have a strong impact on the full characterization of melanin nanoparticles and the subsequent exploration of their physiological and chemical mechanisms.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA
| | - Marwa Mahmoud
- Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt
| | - Moustafa Rizk
- Department of Chemistry, Faculty of Science and Arts, Najran University, Sharourah, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Haitham Kalil
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA.
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, 44601, USA.
| |
Collapse
|
7
|
Prnova MS, Kovacikova L, Svik K, Bezek S, Elmazoğlu Z, Karasu C, Stefek M. Triglyceride-lowering effect of the aldose reductase inhibitor cemtirestat-another factor that may contribute to attenuation of symptoms of peripheral neuropathy in STZ-diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:651-661. [PMID: 31802170 DOI: 10.1007/s00210-019-01769-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
Hyperglycemia is considered a key risk factor for development of diabetic complications including neuropathy. There is strong scientific evidence showing a primary role of aldose reductase, the first enzyme of the polyol pathway, in the cascade of metabolic imbalances responsible for the detrimental effects of hyperglycemia. Aldose reductase is thus considered a significant drug target. We investigated the effects of cemtirestat, a novel aldose reductase inhibitor, in the streptozotocin-induced rat model of uncontrolled type 1 diabetes in a 4-month experiment. Markedly increased sorbitol levels were recorded in the erythrocytes and the sciatic nerve of diabetic animals. Osmotic fragility of red blood cells was increased in diabetic animals. Indices of thermal hypoalgesia were significantly increased in diabetic rats. Tactile allodynia, recorded in diabetic animals in the early stages, turned to mechanical hypoalgesia by the end of the experiment. Treatment of diabetic animals with cemtirestat (i) reduced plasma triglycerides and TBAR levels; (ii) did not affect the values of HbA1c and body weights; (iii) reversed erythrocyte sorbitol accumulation to near control values, while sorbitol in the sciatic nerve was not affected; (iv) ameliorated indices of the erythrocyte osmotic fragility; and (v) attenuated the symptoms of peripheral neuropathy more significantly in the middle of the experiment than at the end of the treatment. Taking into account the lipid metabolism as an interesting molecular target for prevention or treatment of diabetic peripheral neuropathy, the triglyceride-lowering effect of cemtirestat should be considered in future studies. The most feasible mechanisms of triglyceride-lowering action of cemtirestat were suggested.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Karol Svik
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Stefan Bezek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Zübeyir Elmazoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia.
| |
Collapse
|
8
|
Kanzawa-Lee GA, Knoerl R, Donohoe C, Bridges CM, Smith EML. Mechanisms, Predictors, and Challenges in Assessing and Managing Painful Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2019; 35:253-260. [PMID: 31053396 DOI: 10.1016/j.soncn.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To describe the known predictors and pathophysiological mechanisms of chronic painful chemotherapy-induced peripheral neuropathy (CIPN) in cancer survivors and the challenges in assessing and managing it. DATA SOURCES PubMed/Medline, CINAHL, Scopus, and PsycINFO. CONCLUSION The research on chronic painful CIPN is limited. Additional research is needed to identify the predictors and pathophysiological mechanisms of chronic painful CIPN to inform the development of assessment tools and management options for this painful and possibly debilitating condition. IMPLICATIONS FOR NURSING PRACTICE Recognition of the predictors of chronic painful CIPN and proactive CIPN assessment and palliative management are important steps in reducing its impact on physical function and quality of life.
Collapse
Affiliation(s)
| | - Robert Knoerl
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA
| | - Clare Donohoe
- School of Nursing, University of Michigan, Ann Arbor, MI
| | | | | |
Collapse
|
9
|
Pham VM, Matsumura S, Katano T, Funatsu N, Ito S. Diabetic neuropathy research: from mouse models to targets for treatment. Neural Regen Res 2019; 14:1870-1879. [PMID: 31290436 PMCID: PMC6676867 DOI: 10.4103/1673-5374.259603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic neuropathy is one of the most serious complications of diabetes, and its increase shows no sign of stopping. Furthermore, current clinical treatments do not yet approach the best effectiveness. Thus, the development of better strategies for treating diabetic neuropathy is an urgent matter. In this review, we first discuss the advantages and disadvantages of some major mouse models of diabetic neuropathy and then address the targets for mechanism-based treatment that have been studied. We also introduce our studies on each part. Using stem cells as a source of neurotrophic factors to target extrinsic factors of diabetic neuropathy, we found that they present a promising treatment.
Collapse
Affiliation(s)
- Vuong M Pham
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Funatsu
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata; Department of Anesthesiology, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
10
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|
11
|
Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother 2017; 91:31-42. [DOI: 10.1016/j.biopha.2017.04.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
|
12
|
Yorek MS, Davidson EP, Poolman P, Coppey LJ, Obrosov A, Holmes A, Kardon RH, Yorek MA. Corneal Sensitivity to Hyperosmolar Eye Drops: A Novel Behavioral Assay to Assess Diabetic Peripheral Neuropathy. Invest Ophthalmol Vis Sci 2017; 57:2412-9. [PMID: 27145474 PMCID: PMC5113984 DOI: 10.1167/iovs.16-19435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Diagnosis of peripheral neuropathy (PN), which affects approximately 50% of the diabetic population, is subjective, with many patients seeking a diagnosis only after presenting with symptoms. Recently, in vivo confocal microscopy of subepithelial corneal nerve density has been promoted as a surrogate marker for early detection of PN, but imaging of corneal nerves requires sophisticated instrumentation, expertise in confocal imaging, cooperative patients, and automated analysis tools to derive corneal nerve density. As an alternative, we developed a simple screening method that is based on the sensitivity of corneal nerves to cause reflex eyelid squinting in response to hyperosmolar eye drops. Methods Eyes of control and type 2 diabetic rats were given an eye drop of a 290- to 900-mOsm solution, and the ocular response was video recorded. Other neuropathic end points including nerve conduction velocity and subepithelial cornea nerve density were determined. Results Motor and sensory nerve conduction velocity and total nerve fiber length of corneal nerves in the subepithelial layer were significantly decreased in diabetic rats. Applying the hyperosmotic solutions to the ocular surface caused an osmolarity-dependent increase in squinting of the treated eye in control rats. Squinting was almost totally blocked by preapplication of proparacaine or N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide, a transient receptor potential melastatin-8 channel blocker. Squinting in response to the 900-mOsm solution was significantly reduced in diabetic rats. Conclusions Preclinical studies show that evaluation of corneal sensitivity may be an alternative method for the early detection of PN and has potential for translation to clinical studies.
Collapse
Affiliation(s)
- Matthew S Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, United States 2Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Eric P Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Pieter Poolman
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, United States 2Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States 4Department of Ophthalmology and Visual Sciences, Universi
| | - Lawrence J Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Alexander Obrosov
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Amey Holmes
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, United States
| | - Randy H Kardon
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, United States 2Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States 4Department of Ophthalmology and Visual Sciences, Universi
| | - Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, United States 2Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States 3Department of Internal Medicine, University of Iowa, Iowa
| |
Collapse
|
13
|
Sanna MD, Lucarini L, Durante M, Ghelardini C, Masini E, Galeotti N. Histamine H 4 receptor agonist-induced relief from painful peripheral neuropathy is mediated by inhibition of spinal neuroinflammation and oxidative stress. Br J Pharmacol 2016; 174:28-40. [PMID: 27714773 DOI: 10.1111/bph.13644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain is under-treated, with a detrimental effect on quality of life, partly because of low treatment efficacy, but also because pathophysiological mechanisms are not fully elucidated. To clarify the pathobiology of neuropathic pain, we studied the contribution of neuroinflammation and oxidative stress in a model of peripheral neuropathy. We also assessed an innovative treatment for neuropathic pain by investigating the effects of histamine H4 receptor ligands in this model. EXPERIMENTAL APPROACH A peripheral mononeuropathy was induced in mice, by spared nerve injury (SNI). Neuroinflammation and oxidative stress parameters were evaluated by spectrophotometry. The mechanical (von Frey test) and thermal (plantar test) nociceptive thresholds were evaluated. KEY RESULTS SNI mice showed increased expression of the pro-inflammatory cytokines IL-1ß and TNF-α, decreased antioxidant enzyme Mn-containing SOD (MnSOD), increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an indicator of oxidative DNA damage, and of PARP, nuclear enzyme activated upon DNA damage. Intrathecal administration of VUF 8430 (H4 receptor agonist) reversed the mechanical and thermal allodynia and was associated with decreased expression of IL-1ß, TNF-α, 8-OHdG and PARP and with restoration of MnSOD activity in the spinal cord and sciatic nerve. These effects were prevented by JNJ 10191584 (H4 receptor antagonist). CONCLUSION AND IMPLICATIONS In the SNI mouse model of neuropathic pain, neuronal H4 receptor stimulation counteracts hyperalgesia and reduces neuroinflammation and oxidative stress in the spinal cord and sciatic nerve. Targeting both oxidative stress and pro-neuroinflammatory pathways through H4 receptor-mediated mechanisms could have promising therapeutic potential for neuropathic pain management.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Mariaconcetta Durante
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Abstract
Diabetic polyneuropathy (DPN) is a common but intractable degenerative disorder of peripheral neurons. DPN first results in retraction and loss of sensory terminals in target organs such as the skin, whereas the perikarya (cell bodies) of neurons are relatively preserved. This is important because it implies that regrowth of distal terminals, rather than neuron replacement or rescue, may be useful clinically. Although a number of neuronal molecular abnormalities have been examined in experimental DPN, several are prominent: loss of structural proteins, neuropeptides, and neurotrophic receptors; upregulation of "stress" and "repair" proteins; elevated nitric oxide synthesis; increased AGE-RAGE signaling, NF-κB and PKC; altered neuron survival pathways; changes of pain-related ion channel investment. There is also a role for abnormalities of direct signaling of neurons by insulin, an important trophic factor for neurons that express its receptors. While evidence implicating each of these pathways has emerged, how they link together and result in neuronal degeneration remains unclear. However, several offer interesting new avenues for more definitive therapy of this condition.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Zochodne DW. Sensory Neurodegeneration in Diabetes: Beyond Glucotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:151-80. [PMID: 27133149 DOI: 10.1016/bs.irn.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetic polyneuropathy in humans is of gradual, sometimes insidious onset, and is more likely to occur if glucose control is poor. Arguments that the disorder arises chiefly from glucose toxicity however ignore the greater complexity of a unique neurodegenerative disorder. For example, sensory neurons regularly thrive in media with levels of glucose at or exceeding those of poorly controlled diabetic persons. Also, all of the linkages between hyperglycemia and neuropathy develop in the setting of altered insulin availability or sensitivity. Insulin itself is recognized as a potent growth, or trophic factor for adult sensory neurons. Low doses of insulin, insufficient to alter blood glucose levels, reverse features of diabetic neurodegeneration in animal models. Insulin resistance, as occurs in diabetic adipose tissue, liver, and muscle, also develops in sensory neurons, offering a mechanism for neurodegeneration in the setting of normal or elevated insulin levels. Other interventions that "shore up" sensory neurons prevent features of diabetic polyneuropathy from developing despite persistent hyperglycemia. More recently evidence has emerged that a series of subtle molecular changes in sensory neurons can be linked to neurodegeneration including epigenetic changes in the control of gene expression. Understanding the new complexity of sensory neuron degeneration may give rise to therapeutic strategies that have a higher chance of success in the clinical trial arena.
Collapse
Affiliation(s)
- D W Zochodne
- Neuroscience and Mental Health Institute and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Zochodne DW. Diabetes and the plasticity of sensory neurons. Neurosci Lett 2015; 596:60-5. [DOI: 10.1016/j.neulet.2014.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
|
18
|
Nugroho A, Lim SC, Karki S, Choi JS, Park HJ. Simultaneous quantification and validation of new peroxynitrite scavengers from Artemisia iwayomogi. PHARMACEUTICAL BIOLOGY 2015; 53:653-661. [PMID: 25474707 DOI: 10.3109/13880209.2014.936022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Artemisia iwayomogi Kitamura (Compositae) has been very widely used for the treatment of acute or chronic hepatitis, jaundice, and gastritis. In the course of our continuing efforts to identify and quantify peroxynitrite scavengers from Compositae plants, A. iwayomogi was used in this study. OBJECTIVE The present study was aimed to identify and quantify the peroxynitrite scavengers of A. iwayomogi. MATERIALS AND METHODS Silica gel and ODS were used for column chromatography. The isolated compounds were quantified using an HPLC equipped with a Capcell Pak C18 column (5 μm, 250 mm × 4.6 mm i.d.), and the method was validated for the quality control. Peroxynitrite (ONOO(-))-scavenging activities of the compounds and extracts were evaluated on the measurement of highly fluorescent rhodamine 123 converted from non-fluorescent dihydrorhodamine (DHR)-123 under the presence of peroxynitrite. RESULTS Based on the spectroscopic evidences, a new compound, 2"-O-caffeoylrutin (2"-O-trans-caffeic acid ester of quercetin 3-O-α-L-rhamnopyranosyl(1 → 6)-β-D-glucopyranoside) was isolated and determined together with patuletin 3-O-glucoside, scopolin, scopoletin, rutin, 3,4-dicaffeoylquinic acid, and chlorogenic acid. All of them were potent peroxynitrite scavengers (IC50 ≤ 1.88 μg/mL). DISCUSSION AND CONCLUSION The peroxynitrite scavengers were mainly distributed in the EtOAc fraction rather than the ether and BuOH fractions. The 70% MeOH extract exhibited a high peroxynitrite-scavenging activity. Through the validation, the present HPLC method was verified to be sufficiently sensitive, accurate, precise, and stable. Therefore, this method can be used for the quality control of A. iwayomogi.
Collapse
Affiliation(s)
- Agung Nugroho
- Department of Agro-industrial Technology, Faculty of Agriculture, Lambung Mangkurat University , Banjarbaru , Indonesia
| | | | | | | | | |
Collapse
|
19
|
Andersson DA, Filipović MR, Gentry C, Eberhardt M, Vastani N, Leffler A, Reeh P, Bevan S. Streptozotocin Stimulates the Ion Channel TRPA1 Directly: INVOLVEMENT OF PEROXYNITRITE. J Biol Chem 2015; 290:15185-96. [PMID: 25903127 DOI: 10.1074/jbc.m115.644476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/01/2023] Open
Abstract
Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.
Collapse
Affiliation(s)
- David A Andersson
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom,
| | - Milos R Filipović
- the Bioinorganic Chemistry Division, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Clive Gentry
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Mirjam Eberhardt
- the Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany, and
| | - Nisha Vastani
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Andreas Leffler
- the Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany, and
| | - Peter Reeh
- the Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, D-91054 Erlangen, Germany
| | - Stuart Bevan
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
20
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
21
|
Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 2015; 25:443-66. [PMID: 25576197 DOI: 10.1517/13543776.2014.1000862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Peroxynitrite is a cytotoxic oxidant species implicated in a host of pathologies, including inflammatory and neurodegenerative diseases, cancer, radiation injury and chronic pain. With the recognition of the role of peroxynitrite in disease, numerous experimental and therapeutic tools have arisen to probe peroxyntirite's pathophysiological contribution and attenuate its oxidative damage. Peroxynitrite decomposition catalysts (PNDCs) are redox-active compounds that detoxify peroxynitrite by catalyzing its isomerization or reduction to nitrate or nitrite. AREAS COVERED This review discusses recent research articles and patents published 1995 - 2014 on the development and therapeutic use of PNDCs. Iron and manganese metalloporphyrin PNDCs attenuate the toxic effects of peroxynitrite and are currently being developed for clinical applications. Additionally, some Mn porphyrin-based PNDCs have optimized pharmaceutical properties such that they exhibit greater peroxynitrite selectivity. Other classes of PNDC agents, including bis(hydroxyphenyl)dipyrromethenes and metallocorroles, have demonstrated preclinical efficacy, oral availability and reduced toxicity risk. EXPERT OPINION Interest in the drug-like properties of peroxynitrite-neutralizing agents has grown with the realization that PNDCs will be powerful tools in the treatment of disease. The design of compounds with enhanced oral availability and peroxynitrite selectivity is a critical step toward the availability of safe, effective and selective redox modulators for the treatment of peroxynitrite-associated pathologies.
Collapse
Affiliation(s)
- Lauren M Slosky
- University of Arizona, Department of Pharmacology , Life Science North Rm 621, 1501 North Campbell Ave., Tucson, AZ 85721 , USA
| | | |
Collapse
|
22
|
Flatters SJ. The Contribution of Mitochondria to Sensory Processing and Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:119-46. [DOI: 10.1016/bs.pmbts.2014.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Coppey LJ, Davidson EP, Obrosov A, Yorek MA. Enriching the diet with menhaden oil improves peripheral neuropathy in streptozotocin-induced type 1 diabetic rats. J Neurophysiol 2014; 113:701-8. [PMID: 25376787 DOI: 10.1152/jn.00718.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to determine the effect of supplementing the diet of type 1 diabetic rats with menhaden oil on diabetic neuropathy. Menhaden oil is a natural source for n-3 fatty acids, which have been shown to have beneficial effects in cardiovascular disease and other morbidities. Streptozotocin-induced diabetic rats were used to examine the influence of supplementing their diet with 25% menhaden oil on diabetic neuropathy. Both prevention and intervention protocols were used. Endpoints included motor and sensory nerve conduction velocity, thermal and mechanical sensitivity, and innervation and sensitivity of the cornea and hindpaw. Diabetic neuropathy as evaluated by the stated endpoints was found to be progressive. Menhaden oil did not improve elevated HbA1C levels or serum lipid levels. Diabetic rats at 16-wk duration were thermal hypoalgesic and had reduced motor and sensory nerve conduction velocities, and innervation and sensitivity of the cornea and skin were impaired. These endpoints were significantly improved with menhaden oil treatment following the prevention or intervention protocol. We found that supplementing the diet of type 1 diabetic rats with menhaden oil improved a variety of endpoints associated with diabetic neuropathy. These results suggest that enriching the diet with n-3 fatty acids may be a good treatment strategy for diabetic neuropathy.
Collapse
Affiliation(s)
- Lawrence J Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Eric P Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Alexander Obrosov
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa; Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa; and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, Yorek MA. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2014; 30:669-78. [PMID: 24687457 PMCID: PMC4177961 DOI: 10.1002/dmrr.2549] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peroxynitrite, a product of the reaction of superoxide with nitric oxide, causes oxidative stress with concomitant inactivation of enzymes, poly(ADP-ribosylation), mitochondrial dysfunction and impaired stress signalling, as well as protein nitration. In this study, we sought to determine the effect of preventing protein nitration or increasing peroxynitrite decomposition on diabetic neuropathy in mice after an extended period of untreated diabetes. METHODS C57Bl6/J male control and diabetic mice were treated with the peroxynitrite decomposition catalyst Fe(III) tetramesitylporphyrin octasulfonate (FeTMPS, 10 mg/kg/day) or protein nitration inhibitor (-)-epicatechin gallate (20 mg/kg/day) for 4 weeks, after an initial 28 weeks of hyperglycaemia. RESULTS Untreated diabetic mice developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia and loss of intraepidermal nerve fibres. Both FeTMPS and epicatechin gallate partially corrected sensory nerve conduction slowing and small sensory nerve fibre dysfunction without alleviation of hyperglycaemia. Correction of motor nerve conduction deficit and increase in intraepidermal nerve fibre density were found with FeTMPS treatment only. CONCLUSIONS Peroxynitrite injury and protein nitration are implicated in the development of diabetic peripheral neuropathy. The findings indicate that both structural and functional changes of chronic diabetic peripheral neuropathy can be reversed and provide rationale for the development of a new generation of antioxidants and peroxynitrite decomposition catalysts for treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Sergey Lupachyk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Alexander Obrosov
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, NJ, 08544
| | - Irina G. Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Mark A. Yorek
- Department of Veterans Affairs Iowa City Health Care System and Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246
| |
Collapse
|
25
|
Abo-Salem OM. Kaempferol Attenuates the Development of Diabetic Neuropathic Pain in Mice: Possible Anti-Inflammatory and Anti-Oxidant Mechanisms. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetic neuropathic pain (DNP) is one of the most difficult types of pain to treat. Many studies emphasized on the role of microglial cells, oxidative stress (OS) and inflammatory cytokines (IC) in the development of diabetic neuropathy (DN).AIM: Present study was designed to evaluate the effect of kaempferol in attenuation of DN in mice. METHODS: Diabetes was induced in mice by i.p. injection of a single dose of streptozotocin (STZ) (200 mg/kg). Cold allodynia, thermal hyperalgesia and chemical hyperalgesia were assessed, as well as markers of inflammation and OS.RESULTS: Diabetic mice (DM) showed an increased pain sensation, IC and OS accompanied with reduced body weigh gain. Treatment of DM with kaempferol (25, 50 and 100 mg/kg/day/orally) attenuated the development of DN and reduced pain sensation. Moreover, it reduced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), lipid peroxidation and nitrite, concomitant with the improvement of antioxidant defense and body weight gain. In contrast, kaempferol (100 mg/kg) had no effects on the behavioral and biochemical parameters. Our results strongly suggest that activated microglia, IC and OS are involved in the development of DN.CONCLUSIONS: Kaempferol attenuates the development of DNP in mice probably by inhibition of neuroimmune activation of microglia and, partly mediated by reducing IC and OS.
Collapse
|
26
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
27
|
Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 2014; 5:17-39. [PMID: 24567799 PMCID: PMC3932425 DOI: 10.4239/wjd.v5.i1.17] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN) is an often overlooked and common complication of diabetes mellitus. CAN is associated with increased cardiovascular morbidity and mortality. The pathogenesis of CAN is complex and involves a cascade of pathways activated by hyperglycaemia resulting in neuronal ischaemia and cellular death. In addition, autoimmune and genetic factors are involved in the development of CAN. CAN might be subclinical for several years until the patient develops resting tachycardia, exercise intolerance, postural hypotension, cardiac dysfunction and diabetic cardiomyopathy. During its sub-clinical phase, heart rate variability that is influenced by the balance between parasympathetic and sympathetic tones can help in detecting CAN before the disease is symptomatic. Newer imaging techniques (such as scintigraphy) have allowed earlier detection of CAN in the pre-clinical phase and allowed better assessment of the sympathetic nervous system. One of the main difficulties in CAN research is the lack of a universally accepted definition of CAN; however, the Toronto Consensus Panel on Diabetic Neuropathy has recently issued guidance for the diagnosis and staging of CAN, and also proposed screening for CAN in patients with diabetes mellitus. A major challenge, however, is the lack of specific treatment to slow the progression or prevent the development of CAN. Lifestyle changes, improved metabolic control might prevent or slow the progression of CAN. Reversal will require combination of these treatments with new targeted therapeutic approaches. The aim of this article is to review the latest evidence regarding the epidemiology, pathogenesis, manifestations, diagnosis and treatment for CAN.
Collapse
|
28
|
Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Curr Top Behav Neurosci 2014; 20:147-70. [PMID: 24510303 DOI: 10.1007/7854_2014_280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropathy will afflict over half of the approximately 350 million people worldwide who currently suffer from diabetes and around one-third of diabetic patients with neuropathy will suffer from painful symptoms that may be spontaneous or stimulus evoked. Diabetes can be induced in rats or mice by genetic, dietary, or chemical means, and there are a variety of well-characterized models of diabetic neuropathy that replicate either type 1 or type 2 diabetes. Diabetic rodents display aspects of sensorimotor dysfunction such as stimulus-evoked allodynia and hyperalgesia that are widely used to model painful neuropathy. This allows investigation of pathogenic mechanisms and development of potential therapeutic interventions that may alleviate established pain or prevent onset of pain.
Collapse
|
29
|
Lupachyk S, Shevalye H, Watcho P, Obrosov A, Obrosova IG, Yorek MA. Treatment of peripheral diabetic neuropathy in Zucker diabetic fatty (ZDF) rats with cariporide. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jdm.2014.41011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Quintans JSS, Antoniolli AR, Almeida JRGS, Santana-Filho VJ, Quintans-Júnior LJ. Natural products evaluated in neuropathic pain models - a systematic review. Basic Clin Pharmacol Toxicol 2013; 114:442-50. [PMID: 24252102 DOI: 10.1111/bcpt.12178] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Chronic pain conditions, such as neuropathic pain, are a common problem that poses a major challenge to health-care providers due to its complex natural history, unclear aetiology and poor response towards therapy. Despite the large number of drugs available, the adherence is limited by the large range of side effects and pharmacological ineffectiveness. Thus, the search for new chemical entities that can act as promising molecules to treat chronic pain conditions has emerged. The natural products remain as the most promising sources of new chemical entities with applicability for the medical approach. Hence, we performed a systematic review analysing pre-clinical studies shown to be promising in a possible applicability in neuropathic pain. The search terms neuropathic pain, phytotherapy and medicinal plants were used to retrieve English language articles in LILACS, PUBMED and EMBASE published until 10 April 2013. From a total of 1529 articles surveyed, 28 met the inclusion and exclusion criteria established. The main chemical compounds studied were flavonoids (28%), terpenes (17%), alkaloids (14%), phenols (10%), carotenoids (10%) and others (21%). The mostly described animal models for the study of neuropathic pain included were chronic constriction injury (CCI - 32%), partial sciatic nerve ligation (PSNL - 28%), streptozotocin - induced diabetic (28%), alcoholic neuropathy (3.5%), sodium monoiodoacetate (MIA - 3.5%) and neuropathic pain induced by paclitaxel (3.5%). The opioids, serotonergic and cannabinoid systems are suggested as the most promising targets for the natural products described. Therefore, the data reviewed here suggest that these compounds are possible candidates for the treatment of chronic painful conditions, such as neuropathic pain.
Collapse
|
31
|
Kwak KH, Jung H, Park JM, Yeo JS, Kim H, Lee HC, Byun SH, Kim JC, Park SS, Lim DG. A peroxynitrite decomposition catalyst prevents mechanical allodynia and NMDA receptor activation in the hind-paw ischemia reperfusion injury rats. Exp Ther Med 2013; 7:508-512. [PMID: 24396435 PMCID: PMC3881072 DOI: 10.3892/etm.2013.1440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/28/2013] [Indexed: 01/05/2023] Open
Abstract
The contributions of superoxide and nitric oxide to ischemia/reperfusion (I/R)-induced neuropathic pain have previously been demonstrated in an animal model that mimics the symptoms of complex regional pain syndrome type I (CRPS I). Targeting peroxynitrite, which is the product of their interaction, may provide effective treatments for I/R-induced neuropathic pain. In this study, the effect of the peroxynitrite decomposition catalyst FeTMPyP [5,10,15,20-tetrakis (N-methyl-4′-pyridyl)porphyrinato iron (III)], administered at doses of 1, 3 and 10 mg/kg via intraperitoneal injection 30 min prior to reperfusion, was evaluated in rats with chronic post-ischemic pain. The pain behavior of the rats was tested with a von Frey filament. Phosphorylation of N-methyl-D-aspartate (NMDA) receptors in the L4/6 section of the spinal cord was measured on the third day following reperfusion by western blotting. The rats treated with 3 or 10 mg/kg FeTMPyP demonstrated significant increases in their paw withdrawal thresholds and decreased levels of phosphorylated NMDA receptor subunit 1 compared with those of the vehicle group (all P<0.001). These findings suggest that nitrosative stress, specifically that associated with peroxynitrite, may be involved in the mechanical allodynia and central sensitization that are associated with CRPS I and may provide a rationale for CRPS I treatment strategies using peroxynitrite decomposition catalysts.
Collapse
Affiliation(s)
- Kyung-Hwa Kwak
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Hoon Jung
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Jun Mo Park
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Jin-Seok Yeo
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Hyunjee Kim
- Department of Anesthesiology and Pain Medicine, Keimyung University Dongsan Medical Center, Daegu 700-721, Republic of Korea
| | - Hyung Chul Lee
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Sung Hye Byun
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Jong-Chan Kim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Sung-Sik Park
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| |
Collapse
|
32
|
Nugroho A, Rhim TJ, Choi MY, Choi JS, Kim YC, Kim MS, Park HJ. Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supina. Arch Pharm Res 2013; 37:890-8. [DOI: 10.1007/s12272-013-0307-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023]
|
33
|
Lupachyk S, Watcho P, Shevalye H, Vareniuk I, Obrosov A, Obrosova IG, Yorek MA. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats. Am J Physiol Endocrinol Metab 2013; 305:E396-404. [PMID: 23736542 PMCID: PMC3742852 DOI: 10.1152/ajpendo.00186.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence for an important role for Na(+)/H(+) exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na(+)/H(+) exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na(+)/H(+) exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na(+)/H(+) exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na(+)/H(+) exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na(+)/H(+) exchanger 1 inhibitors for treatment of diabetic vascular and neural complications.
Collapse
Affiliation(s)
- Sergey Lupachyk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Brederson JD, Joshi SK, Browman KE, Mikusa J, Zhong C, Gauvin D, Liu X, Shi Y, Penning TD, Shoemaker AR, Giranda VL. PARP inhibitors attenuate chemotherapy-induced painful neuropathy. J Peripher Nerv Syst 2013; 17:324-30. [PMID: 22971094 DOI: 10.1111/j.1529-8027.2012.00413.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major toxicity of chemotherapy treatment for which no therapy is approved. Poly(ADP-ribose) polymerase (PARP)1/2 are nuclear enzymes activated upon DNA damage, and PARP1/2 inhibition provides resistance against DNA damage. A role for PARP inhibition in sensory neurotransmission has also been established. PARP inhibitors attenuate pain-like behaviors and neuropathy-associated decreased peripheral nerve function in diabetic models. The hypothesis tested was that PARP inhibition protects against painful neuropathy. The objective of this study was to investigate whether the novel, selective PARP1/2 inhibitors (ABT-888 and related analogues) would attenuate development of mechanical allodynia in vincristine-treated rats. PARP inhibitors were dosed for 2 days, and then co-administered with vincristine for 12 days. Mechanical allodynia was observed in rats treated with vincristine. PARP1/2 inhibition significantly attenuated development of mechanical allodynia and reduced poly ADP-ribose (PAR) activation in rat skin. The data presented here show that PARP inhibition attenuates vincristine-induced mechanical allodynia in rats, and supports that PARP inhibition may represent a novel therapeutic approach for CIPN.
Collapse
Affiliation(s)
- Jill-Desiree Brederson
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6123, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Haber A, Angel I, Mahammed A, Gross Z. Combating diabetes complications by 1-Fe, a corrole-based catalytic antioxidant. J Diabetes Complications 2013; 27:316-21. [PMID: 23602197 DOI: 10.1016/j.jdiacomp.2013.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/28/2013] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
The potent corrole-based ROS/RNS decomposition catalyst 1-Fe was examined regarding its effect on the development of diabetes complications, in parallel with studies that addressed safety and toxicity issues that are crucial for forwarding the compound towards clinical trials. Cardiotoxicity and mutagenic potential were addressed by applying the hERG and AMES tests on 1-Fe, revealing that it is safe enough for further development. General toxicity studies in rats disclosed the appearance of mild adverse effect only at a dose of 300 mg/kg/day. In the streptozotocin-induced rat model of diabetes, 20 mg/kg/day 1-Fe prevented cataract incidents and reduced its severity, displayed a favorable effect on kidney function, and also decreased serum cholesterol and triglyceride levels. Comparisons with alpha lipoic acid, a compound with reported benefits in the same mouse model, indicate that the benefits of 1-Fe are due to the combination of its ability to disarm ROS/RNS and its positive effect on lipid profile.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | |
Collapse
|
36
|
Abstract
Oxidative stress and diabetes, both Type 1 and Type 2 as well as their related conditions have been extensively studied. As diabetes, obesity and metabolic syndrome have reached at epidemic levels, there is a huge need and effort to understand the detailed molecular mechanisms of the possible redox imbalance, underlying the cause of pathology and progression of the disease. These studies provide new insights at cellular and subcellular levels to design effective clinical interventions. This chapter is intended to emphasize the latest knowledge and current evidence on the role of oxidative stress in diabetes as well as to discuss some key questions that are currently under discussion.
Collapse
|
37
|
Nugroho A, Lim SC, Byeon JS, Choi JS, Park HJ. Simultaneous quantification and validation of caffeoylquinic acids and flavonoids in Hemistepta lyrata and peroxynitrite-scavenging activity. J Pharm Biomed Anal 2012; 76:139-44. [PMID: 23333682 DOI: 10.1016/j.jpba.2012.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/25/2023]
Abstract
Traditionally, Hemistepta lyrata is consumed as a mountainous vegetable or a medicinal herb to treat inflammation, fever, hemorrhage, and hemorrhoids. In order to provide the scientific evidence of traditional uses of this plant, we identified and quantified thirteen active substances (caffeic acid, chlorogenic acid, and 3,5-di-O-caffeoylquinic acid as caffeoylquinic acids; apigenin, isorhoifolin, acacetin, linarin, diosmetin, diosmin, pectolinarigenin, and pectolinarin as flavones or their glycosides; kaempferol 3-O-rutinoside and rutin as flavonol glycosides) from H. lyrata and evaluated their peroxynitrite-scavenging activity. The chromatographic separation was performed on a Capcell Pak C18 column (5μm, 250mm×4.6mm i.d.) with a gradient elution of 0.05% TFA (trifluoroacetic acid) and 0.05% TFA in MeOH-CH(3)CN (60:40). Validation of HPLC methods on the linearity, LOD, LOQ, intra-day and inter-day variabilities, recovery, and repeatability proved that this method is selective, sensitive, precise, accurate, and reproducible. In peroxynitrite-scavenging assay, caffeic acid derivatives (chlorogenic acid, caffeic acid, and 3,5-di-O-caffeoylquinic acid) exhibited relatively lower IC(50) values than other substances tested. And HPLC simultaneous quantification showed that the 70% MeOH extract and the BuOH fraction contain a higher quantity of caffeic acid derivatives (17.82 and 30.09mg/g, consecutively). Therefore, caffeic acid derivatives could be the main contributors to the peroxynitrite-scavenging activity of H. lyrata than other phenolic substances.
Collapse
Affiliation(s)
- Agung Nugroho
- Department of Applied Plant Sciences, Graduate School, Sangji University, Wonju 220-702, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Severo Do Nascimento P, Lovatel GA, Ilha J, Schaan BD, Achaval M. Diabetes increases mechanical sensitivity and causes morphological abnormalities in the sural nerve that are prevented by treadmill training. Muscle Nerve 2012; 47:46-52. [DOI: 10.1002/mus.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
|
39
|
Nugroho A, Kim MH, Choi J, Choi JS, Jung WT, Lee KT, Park HJ. Phytochemical studies of the phenolic substances in Aster glehni extract and its sedative and anticonvulsant activity. Arch Pharm Res 2012; 35:423-30. [DOI: 10.1007/s12272-012-0304-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
40
|
Abstract
Peripheral neuropathies are common neurological diseases, and various animal models have been developed to study disease pathogenesis and test potential therapeutic drugs. Three commonly studied disease models with huge public health impact are diabetic peripheral neuropathy, chemotherapy-induced peripheral neuropathy, and human immunodeficiency virus-associated sensory neuropathies. A common theme in these animal models is the comprehensive use of pathological, electrophysiological, and behavioral outcome measures that mimic the human disease. In recent years, the focus has shifted to the use of outcome measures that are also available in clinical use and can be done in a blinded and quantitative manner. One such evaluation tool is the evaluation of epidermal innervation with a simple skin biopsy. Future clinical trials will be needed to validate the translational usefulness of this outcome measure and validation against accepted outcome measures that rely on clinical symptoms or examination findings in patients.
Collapse
Affiliation(s)
- Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Simultaneous quantitative determination and validation of quercetin glycosides with peroxynitrite-scavenging effects from Saussurea grandifolia. J Pharm Biomed Anal 2012; 61:247-51. [DOI: 10.1016/j.jpba.2011.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/29/2023]
|
42
|
Abstract
Diabetic autonomic neuropathies are a heterogeneous and progressive disease entity and commonly complicate both type 1 and type 2 diabetes mellitus. Although the aetiology is not entirely understood, hyperglycaemia, insulin deficiency, metabolic derangements and potentially autoimmune mechanisms are thought to play an important role. A subgroup of diabetic autonomic neuropathy, cardiovascular autonomic neuropathy (CAN), is one of the most common diabetes-associated complications and is ultimately clinically important because of its correlation with increased mortality. The natural history of CAN is unclear, but is thought to progress from a subclinical stage characterized by impaired baroreflex sensitivity and abnormalities of spectral analysis of heart rate variability to a clinically apparent stage with diverse and disabling symptoms. Early diagnosis of CAN, using spectral analysis of heart rate variability or scintigraphic imaging techniques, might enable identification of patients at highest risk for the development of clinical CAN and, thereby, enable the targeting of intensive therapeutic approaches. This Review discusses methods for diagnosis, epidemiology, natural history and potential causes and consequences of CAN.
Collapse
Affiliation(s)
- Michael Kuehl
- Cardiovascular Research Department, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
43
|
Janes K, Neumann WL, Salvemini D. Anti-superoxide and anti-peroxynitrite strategies in pain suppression. Biochim Biophys Acta Mol Basis Dis 2011; 1822:815-21. [PMID: 22200449 DOI: 10.1016/j.bbadis.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/08/2023]
Abstract
Superoxide (SO, O(2)·(-)) and its reaction product peroxynitrite (PN, ONOO(-)) have been shown to be important in the development of pain of several etiologies. While significant progress has been made in teasing out the relative contribution of SO and PN peripherally, spinally, and supraspinally during the development and maintenance of central sensitization and pain, there is still a considerable void in our understanding. Further research is required in order to develop improved therapeutic strategies for selectively eliminating SO and/or PN. Furthermore, it may be that PN is a more attractive target, in that unlike SO it has no currently known beneficial role. Our group has been at the forefront of research concerning the role of SO and PN in pain, and our current findings have led to the development of two new classes of orally active catalysts which are selective for PN decomposition while sparing SO. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
44
|
Phenotypic changes in diabetic neuropathy induced by a high-fat diet in diabetic C57BL/6 mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:848307. [PMID: 22144990 PMCID: PMC3226416 DOI: 10.1155/2011/848307] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 01/05/2023]
Abstract
Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy.
Collapse
|
45
|
Treatment of streptozotocin-induced diabetic rats with alogliptin: effect on vascular and neural complications. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:810469. [PMID: 21822422 PMCID: PMC3142682 DOI: 10.1155/2011/810469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/21/2011] [Indexed: 01/22/2023]
Abstract
We sought to determine the effect of dipeptidyl peptidase IV (DPP-IV) inhibition on streptozotocin diabetes-induced vascular and neural dysfunction. After 4 weeks of untreated diabetes, rats were treated for 12 weeks with Alogliptin (DPP-IV inhibitor). Diabetes caused a slowing of motor and sensory nerve conduction velocity, thermal hypoalgesia, reduction in intraepidermal nerve fiber density in the hindpaw, and impairment in vascular relaxation to acetylcholine and calcitonin gene-related peptide in epineurial arterioles. Treatment significantly improved motor nerve conduction velocity and thermal response latency. Sensory nerve conduction velocity was marginally improved with treatment of diabetic rats, and treatment did not improve the decrease in intraepidermal nerve fiber density. Vascular relaxation by epineurial arterioles to calcitonin gene-related peptide but not acetylcholine was significantly improved with treatment. These studies suggest that some but not all vascular and neural complications associated with type 1 diabetes can be improved with the inhibition of DPP-IV activity.
Collapse
|
46
|
Minocycline attenuates the development of diabetic neuropathic pain: Possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2011; 661:15-21. [DOI: 10.1016/j.ejphar.2011.04.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 03/25/2011] [Accepted: 04/12/2011] [Indexed: 12/21/2022]
|
47
|
Otto KJ, Wyse BD, Cabot PJ, Smith MT. Insulin Implants Prevent the Temporal Development of Mechanical Allodynia and Opioid Hyposensitivity for 24-Wks in Streptozotocin (STZ)-Diabetic Wistar Rats. PAIN MEDICINE 2011; 12:782-93. [DOI: 10.1111/j.1526-4637.2011.01102.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, Obrosova IG. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Exp Neurol 2011; 230:106-13. [PMID: 21515260 DOI: 10.1016/j.expneurol.2011.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
With the consideration of the multifactorial etiology of diabetic peripheral neuropathy, an ideal drug or drug combination should target at least several key pathogenetic mechanisms. The flavonoid baicalein (5,6,7-trihydroxyflavone) has been reported to counteract sorbitol accumulation, activation of 12/15-lipoxygenase, oxidative-nitrosative stress, inflammation, and impaired signaling in models of chronic disease. This study evaluated baicalein on diabetic peripheral neuropathy. Control and streptozotocin-diabetic C57Bl6/J mice were maintained with or without baicalein treatment (30 mg kg(-1) d(-1), i.p., for 4 weeks after 12 weeks without treatment). Neuropathy was evaluated by sciatic motor and hind-limb digital sensory nerve conduction velocities, thermal algesia (Hargreaves test), tactile response threshold (flexible von Frey filament test), and intraepidermal nerve fiber density (fluorescent immunohistochemistry with confocal microscopy). Sciatic nerve and spinal cord 12/15-lipoxygenase and total and phosphorylated p38 mitogen-activated protein kinase expression and nitrated protein levels were evaluated by Western blot analysis, 12(S)hydroxyeicosatetraenoic acid concentration (a measure of 12/15-lipoxygenase activity) by ELISA, and glucose and sorbitol pathway intermediate concentrations by enzymatic spectrofluorometric assays. Baicalein did not affect diabetic hyperglycemia, and alleviated nerve conduction deficit and small sensory nerve fiber dysfunction, but not intraepidermal nerve fiber loss. It counteracted diabetes-associated p38 mitogen-activated protein kinase phosphorylation, oxidative-nitrosative stress, and 12/15-lipoxygenase overexpression and activation, but not glucose or sorbitol pathway intermediate accumulation. In conclusion, baicalein targets several mechanisms implicated in diabetic peripheral neuropathy. The findings provide rationale for studying hydroxyflavones with an improved pharmacological profile as potential treatments for diabetic neuropathy and other diabetic complications.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Matsumoto Y, Sumiya E, Sugita T, Sekimizu K. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS One 2011; 6:e18292. [PMID: 21479175 PMCID: PMC3068166 DOI: 10.1371/journal.pone.0018292] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/02/2011] [Indexed: 11/25/2022] Open
Abstract
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Eriko Sumiya
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sugita
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Rausaria S, Kamadulski A, Rath NP, Bryant L, Chen Z, Salvemini D, Neumann WL. Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. J Am Chem Soc 2011; 133:4200-3. [PMID: 21370860 PMCID: PMC3075724 DOI: 10.1021/ja110427e] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a new series of biscyclohexano-fused Mn(III) complexes of bis(hydroxyphenyl)dipyrromethenes, 4a-c, as potent and orally active peroxynitrite scavengers. Complexes 4a-c are shown to reduce peroxynitrite through a two-electron mechanism, thereby forming the corresponding Mn(V)O species, which were characterized by UV, NMR, and LC-MS methods. Mn(III) complex 4b and its strained BODIPY analogue 9b were analyzed by X-ray crystallography. Finally, complex 4a is shown to be an orally active and potent analgesic in a model carrageenan-induced hyperalgesia known to be driven by the overproduction of peroxynitrite.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026, Department of Pharmacology and Physiology, St. Louis University, St. Louis, Missouri, 63104, Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri St. Louis, St. Louis Missouri, 63121
| | - Andrew Kamadulski
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026, Department of Pharmacology and Physiology, St. Louis University, St. Louis, Missouri, 63104, Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri St. Louis, St. Louis Missouri, 63121
| | | | | | | | | | - William L. Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026, Department of Pharmacology and Physiology, St. Louis University, St. Louis, Missouri, 63104, Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri St. Louis, St. Louis Missouri, 63121
| |
Collapse
|