1
|
Yu Q, Dai Q, Huang Z, Li C, Yan L, Fu X, Wang Q, Zhang Y, Cai L, Yang Z, Xiao R. Microfat exerts an anti-fibrotic effect on human hypertrophic scar via fetuin-A/ETV4 axis. J Transl Med 2023; 21:231. [PMID: 37004048 PMCID: PMC10064544 DOI: 10.1186/s12967-023-04065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Hypertrophic scar is a fibrotic disease following wound healing and is characterized by excessive extracellular matrix deposition. Autologous microfat grafting proves an effective strategy for the treatment thereof as it could improve the texture of scars and relieve relevant symptoms. This study aims to explore the potential mechanisms underlying the anti-fibrotic effect of microfat on hypertrophic scars. METHODS In this study, we injected microfat into transplanted hypertrophic scars in mouse models and investigated the subsequent histological changes and differential expression of mRNAs therein. As for in vitro studies, we co-cultured microfat and hypertrophic scar fibroblasts (HSFs) and analyzed molecular profile changes in HSFs co-cultured with microfat by RNA sequencing. Moreover, to identify the key transcription factors (TFs) which might be responsible for the anti-fibrotic function of microfat, we screened the differentially expressed TFs and transfected HSFs with lentivirus to overexpress or knockdown certain differentially expressed TFs. Furthermore, comparative secretome analyses were conducted to investigate the proteins secreted by co-cultured microfat; changes in gene expression of HSFs were examined after the administration of the potential anti-fibrotic protein. Finally, the relationship between the key TF in HSFs and the microfat-secreted anti-fibrotic adipokine was analyzed. RESULTS The anti-fibrotic effect of microfat was confirmed by in vivo transplanted hypertrophic scar models, as the number of α-SMA-positive myofibroblasts was decreased and the expression of fibrosis-related genes downregulated. Co-cultured microfat suppressed the extracellular matrix production of HSFs in in vitro experiment, and the transcription factor ETV4 was primarily differentially expressed in HSFs when compared with normal skin fibroblasts. Overexpression of ETV4 significantly decreased the expression of fibrosis-related genes in HSFs at both mRNA and protein levels. Fetuin-A secreted by microfat could also downregulate the expression of fibrosis-related genes in HSFs, partially through upregulating ETV4 expression. CONCLUSIONS Our results demonstrated that transcription factor ETV4 is essential for the anti-fibrotic effect of microfat on hypertrophic scars, and that fetuin-A secreted by microfat could suppress the fibrotic characteristic of HSFs through upregulating ETV4 expression. Microfat wields an alleviative influence over hypertrophic scars via fetuin-A/ETV4 axis.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiang Dai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Zonglin Huang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Li
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Zhang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lei Cai
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
| | - Zhigang Yang
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Ran Xiao
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China.
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Wang M, Li L, Xu Y, Du J, Ling C. Roles of hepatic stellate cells in NAFLD: From the perspective of inflammation and fibrosis. Front Pharmacol 2022; 13:958428. [PMID: 36313291 PMCID: PMC9606692 DOI: 10.3389/fphar.2022.958428] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common diseases and severe problems worldwide because of the global increase in obesity, dyslipidemia, hypertension, and type 2 diabetes mellitus. NAFLD includes a wide spectrum of liver diseases, the histological forms of which range from non-alcoholic fatty liver (NAFL), which is generally nonprogressive, to non-alcoholic steatohepatitis (NASH), which can progress to chronic hepatitis, liver cirrhosis (LC), and sometimes hepatocellular carcinoma (HCC). Unlike NAFL, as the progressive form of NAFLD, NASH is characterized by the presence of inflammation with or without fibrosis in addition to hepatic steatosis. Although it is widely known and proved that persistent hepatic injury and chronic inflammation in the liver activate quiescent hepatic stellate cells (HSCs) and lead to hepatic fibrosis, the three-step process of “inflammation-fibrosis-carcinoma” in NAFLD has not been investigated and clarified clearly. In this process, the initiation of inflammation in the liver and the function of various liver inflammatory cells have been discussed regularly, while the activated HSCs, which constitute the principal cells responsible for fibrosis and their cross-talk with inflammation, seem not to be investigated specifically and frequently. Also, accumulated evidence suggests that HSCs can not only be activated by inflammation but also participate in the regulation of liver inflammation. Therefore, it is necessary to investigate the unique roles of HSCs in NAFLD from the perspective of inflammation and fibrosis. Here, we review the pivotal effects and mechanisms of HSCs and highlight the potential value of HSC-targeted treatment methods in NAFLD.
Collapse
Affiliation(s)
- Man Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yannan Xu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. New Drugs for Hepatic Fibrosis. Front Pharmacol 2022; 13:874408. [PMID: 35770089 PMCID: PMC9234287 DOI: 10.3389/fphar.2022.874408] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The morbidity and mortality of hepatic fibrosis caused by various etiologies are high worldwide, and the trend is increasing annually. At present, there is no effective method to cure hepatic fibrosis except liver transplantation, and its serious complications threaten the health of patients and cause serious medical burdens. Additionally, there is no specific drug for the treatment of hepatic fibrosis, and many drugs with anti-hepatic fibrosis effects are in the research and development stage. Recently, remarkable progress has been made in the research and development of anti-hepatic fibrosis drugs targeting different targets. We searched websites such as PubMed, ScienceDirect, and Home-ClinicalTrials.gov and found approximately 120 drugs with anti-fibrosis properties, some of which are in phase Ⅱ or Ⅲ clinical trials. Additionally, although these drugs are effective against hepatic fibrosis in animal models, most clinical trials have shown poor results, mainly because animal models do not capture the complexity of human hepatic fibrosis. Besides, the effect of natural products on hepatic fibrosis has not been widely recognized at home and abroad. Furthermore, drugs targeting a single anti-hepatic fibrosis target are prone to adverse reactions. Therefore, currently, the treatment of hepatic fibrosis requires a combination of drugs that target multiple targets. Ten new drugs with potential for development against hepatic fibrosis were selected and highlighted in this mini-review, which provides a reference for clinical drug use.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| |
Collapse
|
5
|
Ipsen DH, Skat-Rørdam J, Svenningsen M, Andersen M, Latta M, Buelund LE, Lintrup K, Skaarup R, Lykkesfeldt J, Tveden-Nyborg P. The effect of acetylsalicylic acid and pentoxifylline in guinea pigs with non-alcoholic steatohepatitis. Basic Clin Pharmacol Toxicol 2021; 128:583-593. [PMID: 33354924 DOI: 10.1111/bcpt.13549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic options are urgently needed for non-alcoholic fatty liver disease (NAFLD), but development is time-consuming and costly. In contrast, drug repurposing offers the advantages of re-applying compounds that are already approved, thereby reducing cost. Acetylsalicylic acid (ASA) and pentoxifylline (PTX) have shown promise for treatment of NAFLD, but have not yet been tested in combination. Guinea pigs were fed a high-fat diet for 16 weeks and then continued on the diet while being treated with ASA, PTX or ASA+PTX for 8 weeks. Chow-fed animals served as healthy controls. Guinea pigs were CT scanned before intervention start and at intervention end. Animals without steatosis (ie NAFLD) at week 16 were excluded from the data analysis. ASA and PTX alone or in combination did not improve hepatic steatosis, ballooning, inflammation or fibrosis nor did the treatments affect liver enzymes (aminotransferases and alkaline phosphatase) or circulating lipids. Liver triglyceride levels, relative liver weight and hepatic mRNA expression of monocyte chemoattractant protein 1, interleukin 8 and platelet-derived growth factor b were nominally decreased. Thus, in the current study, treatment with ASA and PTX alone or in combination for 8 weeks did not ameliorate NASH or hepatic fibrosis in guinea pigs.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Josephine Skat-Rørdam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne Svenningsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mia Andersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Markus Latta
- Liver Disease Research, Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Lene Elisabeth Buelund
- Section of Veterinary Imaging, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristine Lintrup
- Section of Veterinary Imaging, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - René Skaarup
- Section of Veterinary Imaging, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Pentoxifylline with metformin treatment improves biochemical parameters in patients with nonalcoholic steatohepatitis. J Med Biochem 2019; 39:290-298. [PMID: 33269017 DOI: 10.2478/jomb-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background The progression of the nonalcoholic fatty liver disease to nonalcoholic steatohepatitis (NASH) is multifactorial, and there is still a lack of approved medications for its treatment. The study aimed to evaluate the impact of combined treatment with Pentoxifylline and Metformin on biochemical parameters in patients with Nash. Setting: Outpatient hepatology clinic. Methods A prospective trial was conducted. The first cohort included patients with biopsy-proven Nash, while the second cohort consisted of patients with biopsy-confirmed NAFLD. Blood tests were checked at baseline and every three months. Pentoxifylline at a dosage of 400 mg t.i.d. and Metformin at the dosage of 500 mg t.i.d. were introduced for six months in Nash group. The impact of the treatment was assessed based on biochemical results after combined treatment with low-cost medications. Results All 33 Nash patients completed 24 weeks of treatment. We observed significant improvement (p<0.05) of median values after treatment for the following parameters: serum uric acid levels decreased by 51.0 mmol/L, calcium decreased for 0.27 mmoL/L, magnesium showed an increase of 0.11 mmoL/L. Insulin resistance improved as a reduction of HOMA - IR by 1.3 was detected. A significant decrease of median in liver enzymes, alanine aminotransferase, aspartate aminotransferase and gamma-glutamyltransferase by 24.0 U/L, 9.1 U/L, 10.8 U/L respectively, was noted. Conclusions Pentoxifylline and Metformin may provide possible treatment option in Nash. Some new potential benefit of the therapy in improving liver function whilst decreasing cardiovascular risk was perceived.
Collapse
|
7
|
Lorbek G, Urlep Ž, Rozman D. Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics 2016; 17:1273-1288. [PMID: 27377717 DOI: 10.2217/pgs-2016-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a raising liver disease with increasing prevalence due to the epidemics of obesity and diabetes, with end points in cirrhosis or hepatocellular carcinoma. A multitude of genetic and metabolic perturbations, together with environmental factors, likely drive the disease. However, to date only a few genes, primarily PNPLA3 and TM6SF2, associate with NAFLD and there is no specific treatment. In this review we focus on the therapeutical aspects of NAFLD, taking into account drugs and lifestyle interventions. Sex also influences disease progression and treatment outcomes. Lastly, we discuss the present and potential future of personalized approaches to tackle NAFLD and how the known polymorphisms of NAFLD associated genes influence the choice and success of therapy.
Collapse
Affiliation(s)
- Gregor Lorbek
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Sato M, Kamada Y, Takeda Y, Kida S, Ohara Y, Fujii H, Akita M, Mizutani K, Yoshida Y, Yamada M, Hougaku H, Takehara T, Miyoshi E. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int 2015; 35:925-935. [PMID: 25627311 DOI: 10.1111/liv.12478] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/26/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Fetuin-A (α2HS-glycoprotein), a liver secretory glycoprotein, is known as a transforming growth factor (TGF)-β1 signalling inhibitor. Serum fetuin-A concentration is associated with nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease. However, the usefulness of serum fetuin-A as a predictive fibrosis biomarker in NAFLD patients remains unclear. In this study, we investigated the relationship between circulating fetuin-A levels and fibrosis-related markers [platelet count, NAFLD fibrosis score and carotid intima media thickness (IMT)] in subjects with NAFLD. METHODS A total of 295 subjects (male, 164; female, 131) who received medical health check-ups were enrolled in this study. NAFLD was diagnosed using abdominal ultrasonography. Serum fetuin-A was measured by ELISA. IMT was assessed using a high-resolution ultrasound scanner. Using recombinant human fetuin-A, we investigated the effects of fetuin-A on hepatic stellate cells, which play a pivotal role in the process of hepatic fibrosis. RESULTS Serum fetuin-A concentration was significantly correlated with platelet count (R = 0.19, P < 0.01), NAFLD fibrosis score (R = -0.25, P < 0.01) and mean IMT (R = -0.22, P < 0.01). Multivariate analyses revealed that the fetuin-A concentration is a significant and independent determinant of platelet count, NAFLD fibrosis score and mean IMT. Recombinant fetuin-A suppressed TGF-β1 signalling and fibrosis-related gene expression and increased the expression of TGF-β1 pseudoreceptor bone morphogenic protein and activin membrane-bound inhibitor (BAMBI). CONCLUSIONS Serum fetuin-A level is associated with liver/vessel fibrosis-related markers in NAFLD patients. Circulating fetuin-A could be a useful serum biomarker for predicting liver and vascular fibrosis progression in NAFLD patients.
Collapse
Affiliation(s)
- Motoya Sato
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peterson TC, Peterson MR, Raoul JM. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis. Eur J Pharmacol 2011; 662:47-54. [PMID: 21554874 DOI: 10.1016/j.ejphar.2011.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 12/19/2022]
Abstract
TNBS-induced colitis has characteristics resembling human Crohn's disease including transmural inflammation, ulceration, and fibrosis. Current treatments target acute symptoms but do not necessarily prevent fibrotic complications of the disease. The aim of this study was to determine the effect of pentoxifylline and its primary metabolite (M-1) on fibrosis in the TNBS-induced colitis model. Myeloperoxidase activity and interleukin-18 are indicators of inflammation and were elevated in the TNBS model. The morphology damage score assesses colon damage and was also elevated in the TNBS model. Collagen as the indicator of fibrosis was quantified and visualized by the Sirius Red/Fast Green staining technique and collagen type I was assessed by Western analysis. Collagen was elevated in the TNBS-induced model. Pentoxifylline and M-1 treatment significantly attenuated colon damage and inflammation in TNBS-colitis (P<0.05). M-1 treatment significantly reduced the TNBS-induced increase in colon weight, colon thickness and total collagen content (P<0.05). Results suggest that pentoxifylline and M-1 inhibit intestinal fibrosis in this experimental model and may prove beneficial in the treatment of intestinal fibrosis associated with human Crohn's disease with the added benefit of inhibiting inflammation and ulceration. This is the first study to examine the effects of racemic M-1 in vivo and one of the few studies to examine the effect of drugs on both inflammation and fibrosis in an experimental model of colitis.
Collapse
Affiliation(s)
- Theresa C Peterson
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
10
|
Roos M, Heinemann FM, Lindemann M, Horn PA, Lutz J, Stock K, Thürmel K, Baumann M, Witzke O, Heemann U. Fetuin-A Pretransplant Serum Levels, Kidney Allograft Function and Rejection Episodes: A 3-Year Posttransplantation Follow-Up. ACTA ACUST UNITED AC 2011; 34:328-33. [DOI: 10.1159/000327848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/27/2011] [Indexed: 01/11/2023]
|
11
|
Yilmaz Y, Yonal O, Kurt R, Ari F, Oral AY, Celikel CA, Korkmaz S, Ulukaya E, Ozdogan O, Imeryuz N, Avsar E, Kalayci C. Serum fetuin A/α2HS-glycoprotein levels in patients with non-alcoholic fatty liver disease: relation with liver fibrosis. Ann Clin Biochem 2010; 47:549-53. [PMID: 20926473 DOI: 10.1258/acb.2010.010169] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Serum concentrations of fetuin A/α2HS-glycoprotein (AHSG) have been linked to human metabolic alterations and can serve as an indicator of liver cell function. We assayed serum levels of AHSG in patients with non-alcoholic fatty liver disease (NAFLD), a hepatic manifestation of the metabolic syndrome, and examined their association with clinical, biochemical and histological phenotypes. METHODS Serum AHSG levels were determined by enzyme linked immunosorbent assay in 99 patients with biopsy-proven NAFLD and 75 age- and gender-matched controls. RESULTS Serum AHSG levels were significantly higher in patients with NAFLD (940 ± 120 μg/mL) compared with healthy controls (800 ± 130 μg/mL, Student's t test, P < 0.001). Bivariate analyses (Spearman's rank correlation) in patients with NAFLD showed a statistically significant association between AHSG levels and insulin resistance as assessed by the HOMA (homeostasis model assessment) index (r = 0.31, P < 0.01) and the liver fibrosis score index (r = 0.36, P < 0.001). The association between AHSG and fibrosis remained statistically significant even after adjustment for potential confounders, including the HOMA index ([beta] = 1.65, t = 2.38, P < 0.05). CONCLUSION Serum AHSG levels are significantly increased in adult patients with biopsy-proven NAFLD and are associated with insulin resistance. Importantly, our pilot data indicate that serum AHSG levels may identify NAFLD patients with higher fibrosis scores.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, Marmara University School of Medicine, Altunizade, Istanbul.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cheung KJ, Tilleman K, Deforce D, Colle I, Van Vlierberghe H. The HCV serum proteome: a search for fibrosis protein markers. J Viral Hepat 2009; 16:418-29. [PMID: 19226329 DOI: 10.1111/j.1365-2893.2009.01083.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver fibrosis/cirrhosis is a serious health issue in hepatitis C virus (HCV-) infected patients and is currently diagnosed by the invasive liver biopsy. The aim of this study was to find useful fibrosis markers in HCV-patients' sera of different fibrosis degrees (METAVIR F0-F4) based on proteomics. Serum proteome profiles were created by two-dimensional gel electrophoresis. Profiles were analysed between different degrees of fibrosis (F0-F4) and between early (F0F1) and late (F2F3F4) fibrosis by univariate analyses (P <or= 0.05). Differentially expressed proteins were subsequently identified by mass spectrometry. Mac-2-binding protein, alpha-2-macroglobulin and hemopexin were increased in F4 opposite F0/F1. A-1-antitrypsin, leucine-rich alpha-2-glycoprotein and fetuin-A were decreased in F4 opposite F0/F1. Late fibrosis was characterized by an increase in Mac-2-binding protein, alpha-2-macroglobulin and alpha-1B-glycoprotein expression and a decrease in haptoglobin expression. Mac-2-binding protein expression was confirmed by dot blot assay and enzyme-linked immunosorbent assay in a secondary population. In conclusion, serum proteome analysis enabled the detection/identification of existing and new candidate markers in line with fibrosis progression in HCV-patients.
Collapse
Affiliation(s)
- K J Cheung
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
13
|
Toda K, Kumagai N, Kaneko F, Tsunematsu S, Tsuchimoto K, Saito H, Hibi T. Pentoxifylline prevents pig serum-induced rat liver fibrosis by inhibiting interleukin-6 production. J Gastroenterol Hepatol 2009; 24:860-5. [PMID: 19220679 DOI: 10.1111/j.1440-1746.2008.05749.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIM Pig serum-induced rat liver fibrosis is a model of liver fibrosis in the absence of obvious hepatocyte injury. Penoxifylline (PTX), a xanthine derivative, which is a well-known suppressor of tumor necrosis factor-alpha (TNF-alpha) production from inflammatory cells, has also been shown to inhibit the growth of hepatic stellate cells and to inhibit collagen synthesis in these cells in vitro. We investigated the effect of PTX on pig serum-induced liver fibrosis in vivo, and assessed the mechanisms of prevention of fibrogenesis by this drug. METHODS Male Wistar rats were given intraperitoneal injections of 0.5 ml normal pig serum twice a week for 10 weeks with or without concomitant oral administration of PTX (20 mg/kg). RESULTS Rats that received pig serum showed significant liver fibrosis, and their serum interleukin-6 (IL-6) and hyaluronic acid levels were significantly increased. The serum levels of IL-6 were well correlated with the serum levels of hyaluronic acid, and increased as the liver fibrosis progressed. Penoxifylline prevented the development of fibrosis in this animal model and reduced the serum levels of IL-6 in a dose-dependent manner. In vitro, by the addition of PTX to the culture medium of the rat hepatic stellate cells (HSCs), the proliferation of the HSCs was significantly inhibited and IL-6 in the culture supernatant was also reduced significantly. Exogenous addition of IL-6 partially restored the proliferation. CONCLUSION Penoxifylline prevents pig serum-induced rat liver fibrosis by inhibiting the proliferation of HSCs and by inhibiting the production of IL-6 from HSCs.
Collapse
Affiliation(s)
- Kyoko Toda
- Division of Basic Research, Bio Medical Laboratory, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Fetuin-A and arterial stiffness in patients with normal kidney function. ACTA ACUST UNITED AC 2009; 154:39-43. [DOI: 10.1016/j.regpep.2008.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/12/2008] [Accepted: 12/06/2008] [Indexed: 11/18/2022]
|
15
|
Khan F, Peltekian KM, Peterson TC. Effect of interferon-alpha, ribavirin, pentoxifylline, and interleukin-18 antibody on hepatitis C sera-stimulated hepatic stellate cell proliferation. J Interferon Cytokine Res 2009; 28:643-51. [PMID: 18844579 DOI: 10.1089/jir.2007.0123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver fibrosis ultimately leading to cirrhosis. Hepatic stellate cell (HSC) proliferation is crucial in fibrosis development. Current antiviral treatment for HCV involves interferon-alpha (IFN-alpha) and Ribavirin combination therapy. IL-18, a novel cytokine of the IL-1 family of cytokines, is involved in inflammation and may be important in HCV-related inflammation. We hypothesize that block of one of the crucial events will block fibrosis due to HCV. The effect of HCV patient sera with and without IFN-alpha, ribavirin, and IL-18 antibody on HSC proliferation was assessed by [(3)H]-thymidine incorporation assays. Western analysis was used to assess the effect of pentoxifylline (PTX) on c-Jun immediate early gene phosphorylation (p-c-Jun formation). We demonstrate that HCV patient sera-stimulated HSC proliferation. Ribavirin with or without IFN-alpha significantly decreased HCV sera-stimulated HSC proliferation by 50%. Western analysis revealed that HCV serum increased p-c-Jun levels, which were decreased with Ribavirin and PTX. ELISA results showed an elevation of IL-18 levels in HCV sera when compared to normal sera. IL-18 did not stimulate HSC proliferation. However, IL-18 antibody significantly decreased patient sera-stimulated HSC proliferation. In conclusion, Ribavirin decreased HSC proliferation and may act by decreasing p-c-Jun levels in HSCs. IL-18 alone did not stimulate HSC proliferation but IL-18 antibody decreased stimulation, suggesting that IL-18 may work in conjunction with some other factor to increase HSC proliferation.
Collapse
Affiliation(s)
- Fareeha Khan
- Departments of Medicine and Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|