1
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
2
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
3
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Prada MP, Syed AU, Reddy GR, Martín-Aragón Baudel M, Flores-Tamez VA, Sasse KC, Ward SM, Sirish P, Chiamvimonvat N, Bartels P, Dickson EJ, Hell JW, Scott JD, Santana LF, Xiang YK, Navedo MF, Nieves-Cintrón M. AKAP5 complex facilitates purinergic modulation of vascular L-type Ca 2+ channel Ca V1.2. Nat Commun 2020; 11:5303. [PMID: 33082339 PMCID: PMC7575592 DOI: 10.1038/s41467-020-18947-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
The L-type Ca2+ channel CaV1.2 is essential for arterial myocyte excitability, gene expression and contraction. Elevations in extracellular glucose (hyperglycemia) potentiate vascular L-type Ca2+ channel via PKA, but the underlying mechanisms are unclear. Here, we find that cAMP synthesis in response to elevated glucose and the selective P2Y11 agonist NF546 is blocked by disruption of A-kinase anchoring protein 5 (AKAP5) function in arterial myocytes. Glucose and NF546-induced potentiation of L-type Ca2+ channels, vasoconstriction and decreased blood flow are prevented in AKAP5 null arterial myocytes/arteries. These responses are nucleated via the AKAP5-dependent clustering of P2Y11/ P2Y11-like receptors, AC5, PKA and CaV1.2 into nanocomplexes at the plasma membrane of human and mouse arterial myocytes. Hence, data reveal an AKAP5 signaling module that regulates L-type Ca2+ channel activity and vascular reactivity upon elevated glucose. This AKAP5-anchored nanocomplex may contribute to vascular complications during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Maria Paz Prada
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Arsalan U Syed
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | | | | | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Mather, CA, 95655, USA
| | - Peter Bartels
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Seattle, Seattle, WA, 98195, USA
| | - Luis F Santana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, 95616, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Mather, CA, 95655, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA.
| | | |
Collapse
|
5
|
Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience 2020; 42:1387-1410. [PMID: 32696219 DOI: 10.1007/s11357-020-00233-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a leading risk factor for aging-related dementia; however, the underlying mechanisms are not well understood. The present study, utilizing a non-obese T2DN diabetic model, demonstrates that the myogenic response of the middle cerebral artery (MCA) and parenchymal arteriole (PA) and autoregulation of cerebral blood flow (CBF) in the surface and deep cortex were impaired at both young and old ages. The impaired CBF autoregulation was more severe in old than young DM rats, and in the deep than the surface cortex. The myogenic tone of the MCA was enhanced at perfusion pressure in the range of 40-100 mmHg in young DM rats but was reduced at 140-180 mmHg in old DM rats. No change of the myogenic tone of the PA was observed in young DM rats, whereas it was significantly reduced at 30-60 mmHg in old DM rats. Old DM rats had enhanced blood-brain barrier (BBB) leakage and neurodegeneration, reduced vascular density, tight junction, and pericyte coverage on cerebral capillaries in the CA3 region in the hippocampus. Additionally, DM rats displayed impaired functional hyperemia and spatial learning and short- and long-term memory at both young and old ages. Old DM rats had impaired non-spatial short-term memory. These results revealed that impaired CBF autoregulation and enhanced BBB leakage plays an essential role in the pathogenesis of age- and diabetes-related dementia. These findings will lay the foundations for the discovery of anti-diabetic therapies targeting restoring CBF autoregulation to prevent the onset and progression of dementia in elderly DM.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Thomas H Mosley
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xinlin Hu
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
6
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
7
|
Choi S, Kwon Y, Byeon S, Lee Y. Stimulation of autophagy improves vascular function in the mesenteric arteries of type 2 diabetic mice. Exp Physiol 2019; 105:192-200. [DOI: 10.1113/ep087737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Soo‐Kyoung Choi
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Youngin Kwon
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Seonhee Byeon
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| | - Young‐Ho Lee
- Department of Physiology College of Medicine Brain Korea 21 PLUS Project for Medical Sciences Yonsei University Seoul 03722 South Korea
| |
Collapse
|
8
|
Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintrón M, Navedo MF. Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 2019; 129:3140-3152. [PMID: 31162142 PMCID: PMC6668679 DOI: 10.1172/jci124705] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Luis F. Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| |
Collapse
|
9
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
Jackson WF, Boerman EM. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles. Am J Physiol Heart Circ Physiol 2017; 313:H667-H675. [PMID: 28667050 DOI: 10.1152/ajpheart.00183.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023]
Abstract
Myogenic tone is an important feature of arterioles and resistance arteries, but the mechanisms responsible for this hallmark characteristic remain unclear. We used pharmacological inhibitors to compare the roles played by phospholipase C (PLC; 10 μM U73122), inositol 1,4,5-trisphosphate receptors (IP3Rs; 100 μM 2-aminoethoxydiphenylborane), protein kinase C (10 μM bisindolylmaleimide I), angiotensin II type 1 receptors (1 μM losartan), Rho kinase (10 nM-30 μM Y27632 or 300 nM H1152), stretch-activated ion channels (10 nM-1 μM Gd3+ or 5 μM spider venom toxin GsMTx-4) and L-type voltage-gated Ca2+ channels (0.3-100 μM diltiazem) in myogenic tone of cannulated, pressurized (80 cmH2O), second-order hamster cremaster or cheek pouch arterioles. Effective inhibition of either PLC or IP3Rs dilated cremaster arterioles, inhibited Ca2+ waves, and reduced global Ca2+ levels. In contrast, cheek pouch arterioles did not display Ca2+ waves and inhibition of PLC or IP3Rs had no effect on myogenic tone or intracellular Ca2+ levels. Inhibition of Rho kinase dilated both cheek pouch and cremaster arterioles with equal efficacy and potency but also reduced intracellular Ca2+ signals in both arterioles. Similarly, inhibition of mechanosensitive ion channels with Gd2+ or GsMTx-4 produced comparable dilation in both arterioles. Inhibition of L-type Ca2+ channels with diltiazem was more effective in dilating cremaster (86 ± 5% dilation, n = 4) than cheek pouch arterioles (54 ± 4% dilation, n = 6, P < 0.05). Thus, there are substantial differences in the mechanisms underlying myogenic tone in hamster cremaster and cheek pouch arterioles. Regional heterogeneity in myogenic mechanisms could provide new targets for drug development to improve regional blood flow in a tissue-specific manner.NEW & NOTEWORTHY Regional heterogeneity in the mechanisms of pressure-induced myogenic tone implies that resistance vessels may be able to alter myogenic signaling pathways to adapt to their environment. A better understanding of the spectrum of myogenic mechanisms could provide new targets to treat diseases that affect resistance artery and arteriolar function.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Erika M Boerman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
El-Yazbi AF, Abd-Elrahman KS. ROK and Arteriolar Myogenic Tone Generation: Molecular Evidence in Health and Disease. Front Pharmacol 2017; 8:87. [PMID: 28280468 PMCID: PMC5322222 DOI: 10.3389/fphar.2017.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The myogenic response is an inherent property of resistance arteries that warrants a relatively constant blood flow in response to changes in perfusion pressure and protect delicate organs from vascular insufficiencies and excessive blood flow. This fundamental phenomenon has been extensively studied aiming to elucidate the underlying mechanisms triggering smooth muscle contraction in response to intraluminal pressure elevation, particularly, Rho-associated kinase (ROK)-mediated Ca2+-independent mechanisms. The size of the resistance arteries limits the capacity to examine changes in protein phosphorylation/expression levels associated with ROK signaling. A highly sensitive biochemical detection approach was beneficial in examining the role of ROK in different force generation mechanisms along the course of myogenic constriction. In this mini review, we summarize recent results showing direct evidence for the contribution of ROK in development of myogenic response at the level of mechanotransduction, myosin light chain phosphatase inhibition and dynamic actin cytoskeleton reorganization. We will also present evidence that alterations in ROK signaling could underlie the progressive loss in myogenic response in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Khaled S. Abd-Elrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
12
|
Abd-Elrahman KS, Colinas O, Walsh EJ, Zhu HL, Campbell CM, Walsh MP, Cole WC. Abnormal myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization contribute to impaired myogenic regulation of cerebral arterial diameter in the type 2 diabetic Goto-Kakizaki rat. J Cereb Blood Flow Metab 2017; 37:227-240. [PMID: 26721393 PMCID: PMC5363741 DOI: 10.1177/0271678x15622463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The myogenic response of cerebral resistance arterial smooth muscle to intraluminal pressure elevation is a key physiological mechanism regulating blood flow to the brain. Rho-associated kinase plays a critical role in the myogenic response by activating Ca2+ sensitization mechanisms: (i) Rho-associated kinase inhibits myosin light chain phosphatase by phosphorylating its targeting subunit myosin phosphatase targeting subunit 1 (at T855), augmenting 20 kDa myosin regulatory light chain (LC20) phosphorylation and force generation; and (ii) Rho-associated kinase stimulates cytoskeletal actin polymerization, enhancing force transmission to the cell membrane. Here, we tested the hypothesis that abnormal Rho-associated kinase-mediated myosin light chain phosphatase regulation underlies the dysfunctional cerebral myogenic response of the Goto-Kakizaki rat model of type 2 diabetes. Basal levels of myogenic tone, LC20, and MYPT1-T855 phosphorylation were elevated and G-actin content was reduced in arteries of pre-diabetic 8-10 weeks Goto-Kakizaki rats with normal serum insulin and glucose levels. Pressure-dependent myogenic constriction, LC20, and myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization were suppressed in both pre-diabetic Goto-Kakizaki and diabetic (18-20 weeks) Goto-Kakizaki rats, whereas RhoA, ROK2, and MYPT1 expression were unaffected. We conclude that abnormal Rho-associated kinase-mediated Ca2+ sensitization contributes to the dysfunctional cerebral myogenic response in the Goto-Kakizaki model of type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Olaia Colinas
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emma J Walsh
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Hai-Lei Zhu
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Christine M Campbell
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael P Walsh
- The Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - William C Cole
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
13
|
Haghighi F SR, Emamghorei M, Nekooeian AA, Farjadian S. Enalapril and Valsartan Improved Enhanced CPA-induced Aortic Contractile Response in Type 2 Diabetic Rats by Reduction in TRPC4 Protein Level. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.884.892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci (Lond) 2016; 130:1807-22. [PMID: 27634842 PMCID: PMC5599301 DOI: 10.1042/cs20160397] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2015] [Indexed: 01/01/2023]
Abstract
The incidence of diabetes has more than doubled in the United States in the last 30 years and the global disease rate is projected to double by 2030. Cognitive impairment has been associated with diabetes, worsening quality of life in patients. The structural and functional interaction of neurons with the surrounding vasculature is critical for proper function of the central nervous system including domains involved in learning and memory. Thus, in this review we explore cognitive impairment in patients and experimental models, focusing on links to vascular dysfunction and structural changes. Lastly, we propose a role for the innate immunity-mediated inflammation in neurovascular changes in diabetes.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Rebecca Ward
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Adviye Ergul
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A. Charlie Norwood Veterans Administration Medical Center, Augusta, GA 30912, U.S.A.
| |
Collapse
|
15
|
Mu ZH, Jiang Z, Lin XJ, Wang LP, Xi Y, Zhang ZJ, Wang YT, Yang GY. Vessel Dilation Attenuates Endothelial Dysfunction Following Middle Cerebral Artery Occlusion in Hyperglycemic Rats. CNS Neurosci Ther 2016; 22:316-24. [PMID: 26842484 DOI: 10.1111/cns.12500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Dynamically observe cerebral vascular changes in hyperglycemic rats in vivo and explore the effect of diabetes on endothelial function after ischemic stroke. BACKGROUND Diabetes affects both large and small vessels in the brain, but the dynamic process and mechanism are unclear. METHODS We investigated the structural and functional changes of brain vasculature in living hyperglycemic rats and their impact on stroke outcomes via a novel technique: synchrotron radiation angiography. We also examined the effect of prolonged fasudil treatment on arterial reactivity and hemorrhagic transformation. Adult Sprague Dawley rats were treated by streptozotocin to induce type 1 diabetes. These hyperglycemic rats received fasudil pretreatment and then underwent transient middle cerebral artery occlusion. RESULTS We found that diabetes caused arteries narrowing in the circus Willis as early as 2 weeks after streptozotocin injection (P < 0.05). These vessels were further constricted after middle cerebral artery occlusion. L-NAME could induce regional constrictions and impaired relaxation in hyperglycemic animals. Furthermore, hemorrhagic transformation was also increased in the hyperglycemic rats compared to the control (P < 0.05). In fasudil-treated rats, the internal carotid artery narrowing was ameliorated and L-NAME-induced regional constriction was abolished. Importantly, stroke prognosis was improved in fasudil-treated rats compared to the control (P < 0.05). CONCLUSIONS Our dynamic angiographic data demonstrated that diabetes could impair the cerebral arterial reactivity. Prolonged fasudil treatment could attenuate arterial dysfunction and improve the prognosis of ischemic stroke by affecting both the large and small vasculature.
Collapse
Affiliation(s)
- Zhi-Hao Mu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jie Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhi-Jun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Abstract
Store-operated Ca(2+) entry (SOCE) is mediated by the store-operated Ca(2+) channel (SOC) that opens upon depletion of internal Ca(2+) stores following activation of G protein-coupled receptors or receptor tyrosine kinases. Over the past two decades, the physiological and pathological relevance of SOCE has been extensively studied. Recently, accumulating evidence suggests associations of altered SOCE with diabetic complications. This review focuses on the implication of SOCE as it pertains to various complications resulting from diabetes. We summarize recent findings by us and others on the involvement of abnormal SOCE in the development of diabetic complications, such as diabetic nephropathy and diabetic vasculopathy. The underlying mechanisms that mediate the diabetes-associated alterations of SOCE are also discussed. The SOCE pathway may be considered as a potential therapeutic target for diabetes-associated diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| | - Rong Ma
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| |
Collapse
|
17
|
Brooks SD, DeVallance E, d'Audiffret AC, Frisbee SJ, Tabone LE, Shrader CD, Frisbee JC, Chantler PD. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 2015; 309:H1846-59. [PMID: 26475592 DOI: 10.1152/ajpheart.00691.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022]
Abstract
The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Stephanie J Frisbee
- Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Carl D Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
18
|
Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol 2015; 93:177-84. [PMID: 25660561 DOI: 10.1139/cjpp-2014-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural and functional integrity of the brain, and therefore, cognition, are critically dependent on the appropriate control of blood flow within the cerebral circulation. Inadequate flow leads to ischemia, whereas excessive flow causes small vessel rupture and (or) blood-brain-barrier disruption. Cerebral blood flow is controlled through the interplay of several physiological mechanisms that regulate the contractile state of vascular smooth muscle cells (VSMCs) within the walls of cerebral resistance arteries and arterioles. The myogenic response of cerebral VSMCs is a key mechanism that is responsible for maintaining constant blood flow during variations in systemic pressure, i.e., flow autoregulation. Inappropriate myogenic control of cerebral blood flow is associated with, and prognostic of, neurological deterioration and poor outcome in patients with several conditions, including type 2 diabetes. Here, we review recent advances in our understanding of the role of inappropriate Rho-associated kinase activity as a cause of impaired myogenic regulation of cerebral arterial diameter in type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Libin Cardiovascular Institute, Hotchkiss Brain Institute, and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
19
|
Abdelsaid M, Coucha M, Ergul A. Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes. Transl Res 2014; 164:424-32. [PMID: 24999268 PMCID: PMC4250409 DOI: 10.1016/j.trsl.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/11/2014] [Indexed: 01/13/2023]
Abstract
We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by the age of 18 weeks, which is characterized by increased media thickness and matrix deposition. Although early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II type 1 receptor blockers reverse pathologic vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new angiotensin II type 1 receptor blocker, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n = 6-8 per group) were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/d) from the age of 14 to 18 or 18 to 22 weeks before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared with Wistar rats. Azilsartan treatment lowered blood glucose in diabetic animals with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross-sectional area compared with control group animals, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Georgia Regents University, Augusta, GA; Department of Physiology, Georgia Regents University, Augusta, GA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Georgia Regents University, Augusta, GA; Department of Physiology, Georgia Regents University, Augusta, GA.
| |
Collapse
|
20
|
Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill-Eubanks DC, Nelson MT, Earley S. A PLCγ1-dependent, force-sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 2014; 7:ra49. [PMID: 24866019 DOI: 10.1126/scisignal.2004732] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4. We provide evidence that the activation of the γ1 isoform of phospholipase C (PLCγ1) is critical for pressure sensing in cerebral arteries. Inositol 1,4,5-trisphosphate (IP3), generated by PLCγ1 in response to pressure, sensitized IP3 receptors (IP3Rs) to Ca(2+) influx mediated by the mechanosensitive TRPC6 channel, synergistically increasing IP3R-mediated Ca(2+) release to activate TRPM4 currents, leading to smooth muscle depolarization and constriction of isolated cerebral arteries. Proximity ligation assays demonstrated colocalization of PLCγ1 and TRPC6 with TRPM4, suggesting the presence of a force-sensitive, local signaling network comprising PLCγ1, TRPC6, TRPM4, and IP3Rs. Src tyrosine kinase activity was necessary for stretch-induced TRPM4 activation and myogenic constriction, consistent with the ability of Src to activate PLCγ isoforms. We conclude that contraction of cerebral artery smooth muscle cells requires the integration of pressure-sensing signaling pathways and their convergence on IP3Rs, which mediate localized Ca(2+)-dependent depolarization through the activation of TRPM4.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA. Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Ying Yang
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lindsey Sanders
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Fabrice Dabertrand
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA. Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
21
|
Jarajapu YPR, Hazra S, Segal M, LiCalzi S, Jhadao C, Qian K, Mitter SK, Raizada MK, Boulton ME, Grant MB. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One 2014; 9:e93965. [PMID: 24713821 PMCID: PMC3979711 DOI: 10.1371/journal.pone.0093965] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/11/2014] [Indexed: 01/26/2023] Open
Abstract
We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.
Collapse
Affiliation(s)
- Yagna P. R. Jarajapu
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sugata Hazra
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mark Segal
- Department of Nephrology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sergio LiCalzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chandra Jhadao
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kevin Qian
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sayak K. Mitter
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Maria B. Grant
- Departments of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
23
|
Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 2014; 5:442-453. [PMID: 24619488 DOI: 10.1007/s12975-014-0336-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is a leading cause of disability and is considered now the fourth leading cause of death. Many clinical trials have shown that stroke patients with acute elevation in blood glucose at onset of stroke suffer worse functional outcomes, longer in-hospital stay, and higher mortality rates. The only therapeutic hope for these patients is the rapid restoration of blood flow to the ischemic tissue through intravenous administration of the only currently proven effective therapy, tissue plasminogen activator (tPA). However, even this option is associated with the increased risk of intracerebral hemorrhage. Nonetheless, the underlying mechanisms through which hyperglycemia (HG) and tPA worsen the neurovascular injury after stroke are not fully understood. Accordingly, this review summarizes the latest updates and recommendations about the management of HG and coadministration of tPA in a clinical setting while focusing more on the various experimental models studying (1) the effect of HG on stroke outcomes, (2) the potential mechanisms involved in worsening the neurovascular injury, (3) the different therapeutic strategies employed to ameliorate the injury, and finally, (4) the interaction between HG and tPA. Developing therapeutic strategies to reduce the hemorrhage risk with tPA in hyperglycemic setting is of great clinical importance. This can best be achieved by conducting robust preclinical studies evaluating the interaction between tPA and other therapeutics in order to develop potential therapeutic strategies with high translational impact.
Collapse
|
24
|
Abdelsaid M, Ma H, Coucha M, Ergul A. Late dual endothelin receptor blockade with bosentan restores impaired cerebrovascular function in diabetes. Life Sci 2014; 118:263-7. [PMID: 24434796 DOI: 10.1016/j.lfs.2013.12.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 01/21/2023]
Abstract
AIMS Up-regulation of the endothelin (ET) system in type-2 diabetes increases contraction and decreases relaxation in basilar artery. We showed that 1) ET-receptor antagonism prevents diabetes-mediated cerebrovascular dysfunction; and 2) glycemic control prevents activation of the ET-system in diabetes. Here, our goal is to determine whether and to what extent glycemic control or ET-receptor antagonism reverses established cerebrovascular dysfunction in diabetes. MAIN METHODS Non-obese type-2 diabetic Goto-Kakizaki rats were administered either vehicle, metformin (300 mg/kg/day) or dual ET-receptor antagonist bosentan (100mg/kg) for 4-weeks starting at 18-weeks after established cerebrovascular dysfunction (n=5-6/group). Control group included vehicle-treated aged-matched Wistar rats. Blood glucose and pressure were monitored weekly. At termination, basilar arteries were collected and cumulative dose-response curves to ET-1 (0.1-500 nM), 5-HT (1-1000 nM) and acetylcholine (Ach, 0.1 nM-5 μM) were studied by wire myograph. Middle cerebral artery (MCA) myogenic reactivity and tone were measured using pressurized arteriograph. KEY FINDINGS There was no difference in ET-1 and 5-HT-mediated constrictions. Endothelium-dependent relaxation was impaired in diabetes. Bosentan improved sensitivity to Ach as well as the maximum relaxation. Myogenic-tone is decreased over the course of the disease. Both treatments improved the ability of MCAs to develop tone at 80 mm Hg and only bosentan improved the tone at higher pressures. SIGNIFICANCE These results suggest that contractile response is not affected by glycemic control or ET-receptor antagonism. Meanwhile, dual ET-receptor blockade is effective in partially improving endothelium-dependent relaxation and myogenic response in a blood pressure-independent manner even after established cerebrovascular dysfunction and offers therapeutic potential.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Handong Ma
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
25
|
Prolonged treatment with angiotensin 1-7 improves endothelial function in diet-induced obesity. J Hypertens 2013; 31:730-8. [PMID: 23425706 DOI: 10.1097/hjh.0b013e32835ecbe5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The renin-angiotensin system peptides are critically involved in the regulation of endothelial function with important pathological implications. Angiotensin (Ang) 1-7 has many beneficial effects in the vasculature that modulate the cardiovascular risk. Here, we tested the hypothesis that Ang 1-7 has a protective role against the endothelial defects associated with diet-induced obesity (DIO) in mice. METHODS Ang 1-7 (with or without Ang II) was delivered subcutaneously for 4 weeks using osmotic minipumps. Vascular studies were performed using aortic rings. Arterial pressure and heart rate were measured in separate cohorts of mice by telemetry. RESULTS First, we examined whether chronic administration of Ang 1-7 improves the vascular dysfunctions caused by Ang II. Subcutaneous coinfusion of Ang 1-7 significantly attenuates Ang II-induced endothelial dysfunctions. In addition, DIO mice have significant impairment in the endothelium-dependent relaxation. The contractile responses induced by various stimuli, including serotonin and endothelin-1, were differentially altered in DIO mice. Notably, DIO mice treated with Ang 1-7 for 4 weeks displayed significant improvement in the endothelial function as indicated by the increased acetylcholine-induced relaxation. Consistent with this, chronic treatment with Ang 1-7 reversed the increased aortic expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) and plasma TBARS associated with DIO mice. In contrast, treatment with Ang 1-7 did not normalize the altered contractions associated with DIO mice. CONCLUSION Our data demonstrate a novel role for Ang 1-7 in improving obesity-associated endothelial dysfunction.
Collapse
|
26
|
Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: focus on stroke. Endocr Metab Immune Disord Drug Targets 2012; 12:148-58. [PMID: 22236022 DOI: 10.2174/187153012800493477] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/27/2011] [Indexed: 12/18/2022]
Abstract
Cerebrovascular complications make diabetic patients 2-6 times more susceptible to a stroke event and this risk is magnified in younger individuals and in patients with hypertension and complications in other vascular beds. In addition, when patients with diabetes and hyperglycemia experience an acute ischemic stroke they are more likely to die or be severely disabled and less likely to benefit from the one FDA-approved therapy, intravenous tissue plasminogen activator. Experimental stroke models have revealed that chronic hyperglycemia leads to deficits in cerebrovascular structure and function that may explain some of the clinical observations. Increased edema, neovascularization and protease expression as well as altered vascular reactivity and tone may be involved and point to potential therapeutic targets. Further study is needed to fully understand this complex disease state and the breadth of its manifestation in the cerebrovasculature.
Collapse
Affiliation(s)
- Adviye Ergul
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
27
|
Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012; 17:974-87. [PMID: 22521666 PMCID: PMC3414640 DOI: 10.1016/j.drudis.2012.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/23/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
28
|
Kelly-Cobbs AI, Prakash R, Coucha M, Knight RA, Li W, Ogbi SN, Johnson M, Ergul A. Cerebral myogenic reactivity and blood flow in type 2 diabetic rats: role of peroxynitrite in hypoxia-mediated loss of myogenic tone. J Pharmacol Exp Ther 2012; 342:407-15. [PMID: 22570365 PMCID: PMC3400801 DOI: 10.1124/jpet.111.191296] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/07/2012] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of cerebral vascular function and, ultimately, cerebral blood flow (CBF) may contribute to complications such as stroke and cognitive decline in diabetes. We hypothesized that 1) diabetes-mediated neurovascular and myogenic dysfunction impairs CBF and 2) under hypoxic conditions, cerebral vessels from diabetic rats lose myogenic properties because of peroxynitrite (ONOO(-))-mediated nitration of vascular smooth muscle (VSM) actin. Functional hyperemia, the ability of blood vessels to dilate upon neuronal stimulation, and myogenic tone of isolated middle cerebral arteries (MCAs) were assessed as indices of neurovascular and myogenic function, respectively, in 10- to 12-week control and type 2 diabetic Goto-Kakizaki rats. In addition, myogenic behavior of MCAs, nitrotyrosine (NY) levels, and VSM actin content were measured under normoxic and hypoxic [oxygen glucose deprivation (OGD)] conditions with and without the ONOO(-) decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl) prophyrinato iron (III), chloride (FeTPPs). The percentage of myogenic tone was higher in diabetes, and forced dilation occurred at higher pressures. Functional hyperemia was impaired. Consistent with these findings, baseline CBF was lower in diabetes. OGD reduced the percentage of myogenic tone in both groups, and FeTPPs restored it only in diabetes. OGD increased VSM NY in both groups, and although FeTPPs restored basal levels, it did not correct the reduced filamentous/globular (F/G) actin ratio. Acute alterations in VSM ONOO(-) levels may contribute to hypoxic myogenic dysfunction, but this cannot be solely explained by the decreased F/G actin ratio due to actin nitration, and mechanisms may differ between control and diabetic animals. Our findings also demonstrate that diabetes alters the ability of cerebral vessels to regulate CBF under basal and hypoxic conditions.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cell Hypoxia/physiology
- Cerebrovascular Circulation/drug effects
- Cerebrovascular Circulation/physiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Hyperemia/metabolism
- Hyperemia/physiopathology
- Male
- Metalloporphyrins/pharmacology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Peroxynitrous Acid/metabolism
- Rats
- Rats, Wistar
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
|
29
|
Mandalà M, Pedatella AL, Morales Palomares S, Cipolla MJ, Osol G. Maturation is associated with changes in rat cerebral artery structure, biomechanical properties and tone. Acta Physiol (Oxf) 2012; 205:363-71. [PMID: 22212496 DOI: 10.1111/j.1748-1716.2011.02406.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/04/2011] [Accepted: 12/20/2011] [Indexed: 01/17/2023]
Abstract
AIM This study evaluated the hypothesis that physiological maturation affects cerebral artery smooth muscle-endothelial interactions involved in pressure-induced tone and alters the dimensional and biomechanical properties of small posterior cerebral arteries (PCA). METHODS Secondary branches of PCA from young (4-5 weeks old, n=11), adult (14-16 weeks old, n=11) and mature (44-47 weeks old, n=11) male Sprague-Dawley rats were isolated, cannulated, pressurized and subjected to a range of intraluminal pressures (10-110 mmHg) to determine tone with and without pharmacologic nitric oxide synthase (NOS) inhibition. Measurements of passive lumen diameter and wall thickness as a function of pressure were used to determine changes in structure, distensibility and wall stress; histological analysis was performed on vessel cross-sections to assess collagen and elastin contents. RESULTS Although pressure-dependent tone decreased significantly during ageing, differences between groups were abolished by NOS inhibition. Vessel diameters increased in adult vs. young rats (at 90 mmHg, 233 ± 6.0 μm vs. 192 ± 4.5 μm; P<0.05), possibly secondary to somatic growth. Further ageing was associated with reductions in lumen diameter (207 ± 6.5 μm; P<0.05), increased wall and media thickness (and wall/lumen ratio) and cross-sectional area. Distensibility and wall collagen were unchanged, although elastin content was significantly reduced. CONCLUSIONS Maturation is associated with differences in PCA dimensional properties that indicate a pattern of initial outward eutrophic, followed by inward hypertrophic remodelling. Functionally, the contribution of basal NO increases with age in a way that reduces pressure-dependent tone and diminishes vasodilator reserve.
Collapse
Affiliation(s)
| | - A. L. Pedatella
- Department of Cell Biology; University of Calabria; Arcavacata di Rende; Italy
| | | | - M. J. Cipolla
- Department of Neurology; University of Vermont; Burlington; VT; USA
| | - G. Osol
- Department of Obstretrics and Gynecology; University of Vermont; Burlington; VT; USA
| |
Collapse
|
30
|
Sweazea KL, Walker BR. Impaired myogenic tone in mesenteric arteries from overweight rats. Nutr Metab (Lond) 2012; 9:18. [PMID: 22424473 PMCID: PMC3366911 DOI: 10.1186/1743-7075-9-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/16/2012] [Indexed: 02/07/2023] Open
Abstract
Background Rats fed high fat (HFD) or high sucrose (HSD) diets develop increased adiposity as well as impaired vasodilatory responsiveness stemming from oxidative stress. Moreover, HFD rats become hypertensive compared to either control (Chow) or HSD fed rats, suggesting elevated vascular tone. We hypothesized that rats with increased adiposity and oxidative stress demonstrate augmented pressure-induced vasoconstriction (i.e. myogenic tone) that could account for the hypertensive state. Methods Male Sprague-Dawley rats were fed Chow, HFD or HSD for 6 weeks. The effects of oxidative stress and endogenous nitric oxide on myogenic responses were examined in small mesenteric arteries by exposing the arteries to incremental intraluminal pressure steps in the presence of antioxidants or an inhibitor of nitric oxide synthase, LNNA (100 μM). Results Contrary to the hypothesis, rats fed either HSD or HFD had significantly impaired myogenic responses despite similar vascular morphology and passive diameter responses to increasing pressures. Vascular smooth muscle (VSM) calcium levels were normal in HFD arteries suggesting that diminished calcium sensitivity was responsible for the impaired myogenic response. In contrast, VSM calcium levels were reduced in HSD arteries but were increased with pre-exposure of arteries to the antioxidants tiron (10 mM) and catalase (1200 U/mL), also resulting in enhanced myogenic tone. These findings show that oxidative stress impairs myogenic tone in arteries from HSD rats by decreasing VSM calcium. Similarly, VSM calcium responses were increased in arteries from HFD rats following treatment with tiron and catalase, but this did not result in improved myogenic tone. Nitric oxide is involved in the impaired myogenic response in HFD, but not HSD, rats since inhibition with LNNA resulted in maximal myogenic responses at lower intraluminal pressures and VSM calcium levels, further implicating reduced calcium sensitivity in the impaired response. Conclusion The impaired myogenic responses observed in isolated arteries from HSD and HFD rats are attributed to changes in VSM calcium signaling.
Collapse
Affiliation(s)
- Karen L Sweazea
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA.
| | | |
Collapse
|
31
|
Graham S, Yuan JP, Ma R. Canonical transient receptor potential channels in diabetes. Exp Biol Med (Maywood) 2012; 237:111-8. [PMID: 22282397 DOI: 10.1258/ebm.2011.011208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channel proteins have been identified as downstream molecules in a G protein-coupled receptor signaling pathway and are involved in a variety of cell functions due to their ability to regulate intracellular calcium signaling. TRPC channel physiology has been an increasingly interesting and relevant topic over the last decade, and the outcomes from various studies have advanced our understanding of TRPC function in the normal state. Recently, attention has turned to whether or not TRPC proteins are implicated in diseases. Emerging evidence suggests a significant contribution of several isoforms of TRPC proteins to cardiovascular as well as renal diseases. This review focuses on the implication of TRPC proteins as they pertain to diabetes. We summarize the recent findings by other investigators as well as ourselves and additionally discuss the important role of TRPC proteins in the development of various diabetic complications, such as diabetic nephropathy and diabetic vasculopathy. The underlying mechanisms which contribute to these complications are also outlined. Lastly, we elaborate on the role of TRPC proteins as a potential therapeutic target for treating diabetes-associated diseases.
Collapse
Affiliation(s)
- Sarabeth Graham
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
32
|
Kelly-Cobbs A, Elgebaly MM, Li W, Ergul A. Pressure-independent cerebrovascular remodelling and changes in myogenic reactivity in diabetic Goto-Kakizaki rat in response to glycaemic control. Acta Physiol (Oxf) 2011; 203:245-51. [PMID: 21092073 DOI: 10.1111/j.1748-1716.2010.02230.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM We have shown hypertrophic cerebrovascular remodelling in the Goto-Kakizaki (GK) rat model of diabetes. This study tested the hypotheses that (1) vascular remodelling develops as the disease progresses and alters myogenic reactivity of resistance vessels important for regulation of cerebral blood flow (CBF), and (2) glycaemic control prevents cerebrovascular remodelling and myogenic dysfunction. METHODS Middle cerebral artery (MCA) lumen diameter, media : lumen (M : L) ratio, cross-sectional area (CSA) and myogenic tone were measured in 10- and 18-week-old control Wistar and diabetic GK rats using pressurized arteriograph (n = 8-14/group). Mean arterial blood pressure (MAP) was measured with telemetry (n = 5/group). Additional GK rats were treated with metformin (300 mg kg(-1) day(-1) ) for glycaemic control starting at 7 weeks after the onset of diabetes until 18 weeks (n = 9). RESULTS In the control group, there was no difference in remodelling indices, myogenic tone or MAP between ages. Eighteen week diabetic rats displayed increased M : L ratio and CSA, but decreased lumen diameter and myogenic tone compared to 10-week GK or 18-week control rats. MAP increased starting around 10 weeks of age and remained slightly higher in the GK rats. Glycaemic control normalized M : L ratio, CSA, lumen diameter and myogenic tone with no effect on blood pressure. CONCLUSIONS These findings suggest that diabetic rats develop MCA remodelling as the disease progresses but this is associated with impaired myogenic reactivity which may ultimately affect CBF. Our results also provide evidence that glycaemic control is an effective therapeutic strategy to prevent cerebrovascular remodelling and dysfunction.
Collapse
Affiliation(s)
- A Kelly-Cobbs
- Department of Physiology, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | |
Collapse
|
33
|
Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Moreno L, Menendez C, Flores-Hernandez J, Lorente JA, Cogolludo A, Perez-Vizcaino F. Type 1 diabetes-induced hyper-responsiveness to 5-hydroxytryptamine in rat pulmonary arteries via oxidative stress and induction of cyclooxygenase-2. J Pharmacol Exp Ther 2011; 338:400-7. [PMID: 21521772 DOI: 10.1124/jpet.111.179515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent epidemiological data suggest that diabetes is a risk factor for pulmonary arterial hypertension. The aim of the present study was to analyze the link between type 1 diabetes and pulmonary arterial dysfunction in rats. Male Sprague-Dawley rats were randomly divided into a control group (saline) and a diabetic group (70 mg/kg streptozotocin). After 6 weeks, diabetic animals showed a down-regulation of the lung bone morphogenetic protein receptor type 2, up-regulation of 5-hydroxytryptamine (5-HT) 2A receptors and cyclooxygenase-2 (COX-2) proteins as measured by Western blot analysis, and increased contractile responses to 5-HT in isolated intrapulmonary arteries. The hyper-responsiveness to 5-HT was endothelium-independent and unaffected by inhibition of nitric-oxide synthase but prevented by indomethacin, the selective COX-2 inhibitor N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398), superoxide dismutase, and the NADPH oxidase inhibitor apocynin or chronic treatment with insulin. However, diabetic rats at 6 weeks did not develop elevated right ventricular pressure or pulmonary artery muscularization, whereas a longer exposure (4 months) to diabetes induced a modest, but significant, increase in right ventricular systolic pressure. In conclusion, type 1 diabetes mellitus in rats induces a number of changes in lung protein expression and pulmonary vascular reactivity characteristic of clinical and experimental pulmonary arterial hypertension but insufficient to elevate pulmonary pressure. Our results further strengthen the link between diabetes and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jose G Lopez-Lopez
- Instituto de Fisiologia, Benemérita Universidad Autonoma de Puebla, Puebla, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bathula R, Hughes AD, Panerai RB, Potter JF, McG Thom SA, Tillin T, Shore AC, Hale R, Chambers J, Kooner J, Chaturvedi N. South Asians have adverse cerebrovascular haemodynamics, despite equivalent blood pressure, compared with Europeans. This is due to their greater hyperglycaemia. Int J Epidemiol 2011; 40:1490-8. [PMID: 21724578 DOI: 10.1093/ije/dyr101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND South Asians have a 1.5-fold increased stroke mortality compared with Europeans, despite similar blood pressures (BP). We hypothesized that it is the greater hyperglycaemia in South Asians that increases stroke risk, by adversely affecting cerebrovascular haemodynamics. METHODS A population-based sample of 149 Europeans and 151 South Asians underwent metabolic profiling and concurrent measurement of finger BP using a Finapres and middle cerebral artery (MCA) blood flow velocity using transcranial Doppler ultrasound. Cerebrovascular autoregulation, cerebrovascular resistance [resistive index (RI) and pulsatility index (PI)] were calculated. Means of cerebrovascular haemodynamic measures were compared by ethnicity, with the introduction of explanatory variables to a regression model to determine which variable could best account for ethnic differences. RESULTS Cerebrovascular resistance (RI) was 12.9 × 10(3) (0.9-24.8, P = 0.04) greater in South Asians than Europeans. Systolic, diastolic and mean MCA velocities were also higher in South Asians (mean velocity 41.4 ± 8.0 cm/s vs 38.0 ± 8.0 cm/s, respectively, P = 0.001). Low frequency gain, a measure of autoregulation, was worse in South Asians compared with Europeans (0.50 ± 0.01 cm/s mm/Hg vs 0.45 ± 0.01 cm/s mm/Hg, P = 0.01). RI positively correlated with HbA(1c) (r = 0.184; P < 0.01). Adjustment for BP could not explain the higher RI in South Asians, but adjustment for HbA(1c) abolished the ethnic difference in RI (5.8 × 10(3) (-6.5 to 18.1, P = 0.4). CONCLUSIONS Cerebrovascular resistance and autoregulation are worse in South Asians than in Europeans, despite equivalent resting BP. The greater hyperglycaemia in South Asians accounts for their adverse cerebrovascular resistance. This could explain excess stroke in South Asians but requires testing in longitudinal studies.
Collapse
Affiliation(s)
- Rajaram Bathula
- National Heart and Lung Institute, Imperial College Academic Health Sciences Centre, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vavrinec P, van Dokkum RP, Goris M, Buikema H, Henning RH. Losartan protects mesenteric arteries from ROS-associated decrease in myogenic constriction following 5/6 nephrectomy. J Renin Angiotensin Aldosterone Syst 2011; 12:184-94. [PMID: 21393360 DOI: 10.1177/1470320310391328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is associated with hypertension, proteinuria, loss of myogenic constriction (MC) of mesenteric arteries and increased production of reactive oxygen species (ROS) under experimental conditions. Previous results showed that ACE (angiotensin-converting enzyme activity) inhibitor therapy is effective in slowing down the progression of disease. Therefore, we wanted to study whether the inverse AT(1) (angiotensin II type 1) receptor agonist, losartan (LOS) was effective in preventing loss of MC in a rat model of CRF and whether acute ROS scavengers could improve MC. METHODS Rats underwent 5/6 nephrectomy (5/6 Nx) and were treated with vehicle or LOS (20 mg/kg/day; 5/6 Nx + LOS) for 12 weeks. Thereafter, the MC of the mesenteric arteries were measured in the presence and/or absence of tempol and catalase. Systolic blood pressure and proteinuria were measured weekly. RESULTS Systolic blood pressure and proteinuria in the 5/6 Nx + LOS group were significantly lower than in the 5/6 Nx group. Moreover, the MC of 5/6 Nx + LOS arteries was significantly increased compared with the untreated 5/6 Nx group (maximum MC, 32.3 ± 6.9 vs 8.9 ± 3.8% (p < 0.01)). Tempol + catalase significantly increased the MC in the 5/6 Nx group, but not in the 5/6 Nx + LOS group (increase in MC, 59.7 ± 13.0 (p < 0.05) vs. 17.0 ± 15.1%). CONCLUSION These results support the roles of the RAAS (renin-angiotensin-aldosterone system) and ROS in the vascular dysfunction of systemic vessels in CRF.
Collapse
Affiliation(s)
- Peter Vavrinec
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 2011; 300:H1616-30. [PMID: 21357503 DOI: 10.1152/ajpheart.00728.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
37
|
Vascular protection in diabetic stroke: role of matrix metalloprotease-dependent vascular remodeling. J Cereb Blood Flow Metab 2010; 30:1928-38. [PMID: 20664613 PMCID: PMC3002883 DOI: 10.1038/jcbfm.2010.120] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temporary focal ischemia causes greater hemorrhagic transformation (HT) in diabetic Goto-Kakizaki (GK) rats, a model with increased cerebrovascular matrix metalloprotease (MMP) activity and tortuosity. The objective of the current study was to test the hypotheses that (1) diabetes-induced cerebrovascular remodeling is MMP dependent and (2) prevention of vascular remodeling by glucose control or MMP inhibition reduces HT in diabetic stroke. Control and GK rats were treated with vehicle, metformin, or minocycline for 4 weeks, and indices of remodeling including vascular tortuosity index, lumen diameter, number of collaterals, and middle cerebral artery (MCA) MMP activity were measured. Additional animals were subjected to 3 hours MCA occlusion/21 hours reperfusion, and infarct size and HT were evaluated as indices of neurovascular injury. All remodeling markers including MMP-9 activity were increased in diabetes. Infarct size was smaller in minocycline-treated animals. Both metformin and minocycline reduced vascular remodeling and severity of HT in diabetes. These results provide evidence that diabetes-mediated stimulation of MMP-9 activity promotes cerebrovascular remodeling, which contributes to greater HT in diabetes. Metformin and minocycline offer vascular protection, which has important clinical implications for diabetes patients who are at a fourfold to sixfold higher risk for stroke.
Collapse
|
38
|
Navedo MF, Takeda Y, Nieves-Cintrón M, Molkentin JD, Santana LF. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. Am J Physiol Cell Physiol 2009; 298:C211-20. [PMID: 19846755 DOI: 10.1152/ajpcell.00267.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of L-type Ca(2+) channels (LTCCs). In cerebral arterial myocytes, Ca(2+) sparklet activity varies regionally, resulting in low and high activity, "persistent" Ca(2+) sparklet sites. Although increased Ca(2+) influx via LTCCs in arterial myocytes has been implicated in the chain of events contributing to vascular dysfunction during acute hyperglycemia and diabetes, the mechanisms underlying these pathological changes remain unclear. Here, we tested the hypothesis that increased Ca(2+) sparklet activity contributes to higher Ca(2+) influx in cerebral artery smooth muscle during acute hyperglycemia and in an animal model of non-insulin-dependent, type 2 diabetes: the dB/dB mouse. Consistent with this hypothesis, acute elevation of extracellular glucose from 10 to 20 mM increased the density of low activity and persistent Ca(2+) sparklet sites as well as the amplitude of LTCC currents in wild-type cerebral arterial myocytes. Furthermore, Ca(2+) sparklet activity and LTCC currents were higher in dB/dB than in control myocytes. We found that activation of PKA contributed to higher Ca(2+) sparklet activity during hyperglycemia and diabetes. In addition, we found that the interaction between PKA and the scaffolding protein A-kinase anchoring protein was critical for the activation of persistent Ca(2+) sparklets by PKA in cerebral arterial myocytes after hyperglycemia. Accordingly, PKA inhibition equalized Ca(2+) sparklet activity between dB/dB and wild-type cells. These findings suggest that hyperglycemia increases Ca(2+) influx by increasing Ca(2+) sparklet activity via a PKA-dependent pathway in cerebral arterial myocytes and contributes to vascular dysfunction during diabetes.
Collapse
Affiliation(s)
- Manuel F Navedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
39
|
Ergul A, Li W, Elgebaly MM, Bruno A, Fagan SC. Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature. Vascul Pharmacol 2009; 51:44-9. [PMID: 19258053 DOI: 10.1016/j.vph.2009.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/04/2009] [Accepted: 02/13/2009] [Indexed: 12/22/2022]
Abstract
Acute ischemic stroke (AIS) results from the occlusion of an artery and causes vascular and neuronal damage, both of which affect the extent of ischemic injury and stroke outcome. Despite extensive efforts, there is only one effective treatment for AIS. Given that up to 40% of the AIS patients present with admission hyperglycemia either as a result of diabetes or acute stress response, targets for neuronal and vascular protection under hyperglycemic conditions need to be better defined. Here, we review the impact of diabetes and acute hyperglycemia on experimental stroke with an emphasis on cerebrovasculature structure and function. The relevance to clinical evidence is also discussed.
Collapse
Affiliation(s)
- Adviye Ergul
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|