1
|
Potential Therapeutic Effects of Citrus hystrix DC and Its Bioactive Compounds on Metabolic Disorders. Pharmaceuticals (Basel) 2022; 15:ph15020167. [PMID: 35215280 PMCID: PMC8875002 DOI: 10.3390/ph15020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic disorders like diabetes mellitus, hypertension, dyslipidemia, and obesity are major medical problems globally. The incidence of these disorders has increased tremendously in recent years. Studies have demonstrated that plants with antioxidant and anti-inflammatory properties have beneficial effects on these disorders. One of these plants is Citrus hystrix DC, commonly known as kaffir lime. This review aims to present updates on the progress of research regarding the use of C. hystrix in metabolic disorders. Phytochemical compounds, including β-pinene, sabinene, citronellal, and citronellol, have been detected in the plant; and its extract exhibited potential antidiabetic, antihyperlipidemic and anti-obesity activity, as well as prevention of development of hypertension. These beneficial properties may be attributable to the presence of bioactive compounds which have therapeutic potential in treating these metabolic disorders. The compounds have the potential to be developed as candidate drugs. This review will assist in validating the regulatory role of the extract and its bioactive compounds on metabolic disorders, thus expediting future research in the area.
Collapse
|
2
|
Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 2021; 210:106981. [PMID: 34700272 DOI: 10.1016/j.clineuro.2021.106981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to discuss the influence of nimodipine+ulinastatin on the neurological function and inflammatory reaction in patients with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). METHODS Overall, 90 patients with CVS after SAH who were admitted to our hospital were enrolled in this study and randomly divided into research and control groups (n = 45 for both groups). On the basis of conventional therapy, patients in the control group were injected with ulinastatin and those in the research group were injected with ulinastatin+nimodipine through an intravenous drip for 7 days with the others the same as those of the control group. RESULTS Blood flow velocity in all cerebral arteries was lower in the research group than in the control group after treatment (P < 0.05). Calcitonin gene-related peptide and nitric oxide levels were higher in the research group than in the control group after treatment (P < 0.05). Endothelin levels were lower in the research group than in the control group (P < 0.05). The total effective rate was higher in the research group than in the control group (P < 0.05). Glasgow Coma Scale scores were higher in the research group than in the control group (P < 0.05). CONCLUSION The drug combination of nimodipine and ulinastatin improved blood flow and neurological function in patients with CVS after SAH and enhanced the therapeutic efficacy; the underlying mechanism may be associated with the regulation of vascular endothelial dilatation function and the inhibition of relevant inflammatory factors' expression.
Collapse
|
3
|
Syamsunarno MRA, Safitri R, Kamisah Y. Protective Effects of Caesalpinia sappan Linn. and Its Bioactive Compounds on Cardiovascular Organs. Front Pharmacol 2021; 12:725745. [PMID: 34603037 PMCID: PMC8479160 DOI: 10.3389/fphar.2021.725745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. The long-term aim of cardiovascular disease therapy is to reduce the mortality rate and decelerate the progression of cardiovascular organ damage. Current therapies focus on recovering heart function and reducing risk factors such as hyperglycemia and dyslipidemia. However, oxidative stress and inflammation are important causes of further damage to cardiovascular organs. Caesalpinia sappan Linn. (Fabaceae), a flowering tree native to tropical Asia, has antioxidant and anti-inflammatory properties. It is used as a natural dye to color food and beverages and as a traditional treatment for diarrhea, diabetes, and blood stasis. The phytochemical compounds in C. sappan, mainly the homoisoflavonoids brazilin, sappanone A, protosappanin, and hematoxylin, can potentially be used to protect cardiovascular organs. This review aims to provide updates on recent developments in research on C. sappan in relation to treatment of cardiovascular diseases. Many studies have reported protective effects of the plant’s bioactive compounds that reduce cardiac damage and enhance vasorelaxation. For example, brazilin and sappanone A have an impact on molecular and cellular changes in cardiovascular disease pathogenesis, mainly by modulating oxidative, inflammatory, and apoptotic signaling pathways. Therefore, bioactive compounds of C. sappan have the potential to be developed as therapeutic agents to combat cardiovascular diseases like myocardial infarction and vascular disease. This review could help further the understanding of the possible modulatory role of the compounds in cardiovascular diseases, thereby facilitating future studies.
Collapse
Affiliation(s)
- Mas Rizky Aa Syamsunarno
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ratu Safitri
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yuan ZY, Lei F, Chai YS, Wu H, Zhao S, Wang YG, Feng TS, Li HY, Li HY, Zhan HL, Xing DM, DU LJ. Reproductive toxicity of brazilein in ICR mice. Chin J Nat Med 2017; 14:441-8. [PMID: 27473962 DOI: 10.1016/s1875-5364(16)30041-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/27/2022]
Abstract
Brazilein is an active small molecular compound extracted from Caesalpinia sappan L. with favorable pharmacological properties on immune system, cardiovascular system, and nervous system. C. sappan has been used as a traditional medicine in China for hundreds of years for various diseases. However, the general reproductive toxicity of brazilein is still unknown. The purpose of the present study was to thoroughly evaluate the general reproductive toxicity of brazilein in ICR mice to support the future drug development and modernization of this potent traditional Chinese medicine. The results showed that, although no apparent toxicity on the reproducibility of the male was observed, brazilein might cause considerable risks to the fetuses and females as indicated by the ratios of dead fetuses and reabsorptions. In conclusion, our results from the present study provided some useful insights about the safety profile of brazilein, suggesting that brazilein should be used with caution in pregnant women.
Collapse
Affiliation(s)
- Zhi-Yi Yuan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hao Wu
- NGM Biopharmaceuticals, Inc., South San Francisco, CA 94080, United States
| | - Shuang Zhao
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui-Ying Li
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui-Yu Li
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong-Lei Zhan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Li-Jun DU
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Zhao S, Wang XP, Jiang JF, Chai YS, Tian Y, Feng TS, Ding Y, Huang J, Lei F, Xing DM, Du LJ. Transport and metabolism behavior of brazilein during its entrance into neural cells. PLoS One 2014; 9:e108000. [PMID: 25275506 PMCID: PMC4183444 DOI: 10.1371/journal.pone.0108000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023] Open
Abstract
Brazilein, a natural small molecule, shows a variety of pharmacological activities, especially on nervous system and immune system. As a potential multifunctional drug, we studied the distribution and the transport behavior and metabolic behavior of brazilein in vivo and in vitro. Brazilein was found to be able to distribute in the mouse brain and transport into neural cells. A metabolite was found in the brain and in the cells. Positive and negative mode-MS/MS and Q-TOF were used to identify the metabolite. MS/MS fragmentation mechanisms showed the methylation occurred at the 10-hydroxyl of brazilein (10-O-methylbrazilein). Further, catechol-O- methyltransferase (COMT) was confirmed as a crucial enzyme correlated with the methylated metabolite generation by molecular docking and pharmacological experiment.
Collapse
Affiliation(s)
- Shuang Zhao
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu Tian
- Drug Discovery Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yi Ding
- Drug Discovery Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Huang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Chen X, Liu H, Pan Z, Miao Q, Zhang Y. The inhibitory effects of m-nisoldipine on the 5-hydroxytryptamine-induced proliferation of pulmonary artery smooth muscle cells via Ca2+ antagonism and antioxidant mechanisms. Eur J Pharmacol 2012; 686:32-40. [PMID: 22575515 DOI: 10.1016/j.ejphar.2012.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/15/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
The excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays a critical role in the development of pulmonary arterial hypertension. Recent studies indicate that Ca(2+) and reactive oxygen species are critically involved in the process of smooth muscle cell proliferation stimulated by mitogens, such as 5-hydroxytryptamine (5-HT). Because m-nisoldipine, a Ca(2+) channel blocker of the dihydropyridine class, possesses some calcium antagonistic and antioxidant properties, we investigated the effect of m-nisoldipine on PASMC proliferation. The results indicated that m-nisoldipine inhibited 5-HT-induced PASMC proliferation, evaluated by BrdU incorporation and the MTT assay, and this effect was associated with a decreased expression of proliferating cell nuclear antigen (PCNA). Flow cytometry analysis showed that m-nisoldipine blocked 5-HT-induced cell-cycle progression by arresting the cells in the G(0)/G(1) phase. Next, the production of reactive oxygen species and the levels of [Ca(2+)](i) in PASMCs were measured by laser scanning confocal microscopy; m-nisoldipine pretreatment attenuated the [Ca(2+)](i) elevation and the production of reactive oxygen species induced by 5-HT. In addition, m-nisoldipine significantly decreased the 5-HT-induced activation of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) and the subsequent c-fos and c-jun mRNA expression. Meanwhile, results also showed that N-acetylcysteine (a reactive oxygen species scavenger) suppressed the proliferation and the ERK1/2 and JNK activation induced by 5-HT. In summary, this study demonstrated that m-nisoldipine effectively suppressed the 5-HT-induced PASMC proliferation, ERK1/2 and JNK activation and subsequent c-fos and c-jun mRNA expression, all of which might be associated with the Ca(2+) antagonistic and antioxidant properties of m-nisoldipine.
Collapse
Affiliation(s)
- Xueyan Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China
| | | | | | | | | |
Collapse
|
7
|
Comprehensive Study of Evodia rutaecarpa-induced Contraction on Blood Vascular in Vivo and in Vitro. Chin J Nat Med 2011. [DOI: 10.1016/s1875-5364(11)60023-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Lan J, Hu J, Li B, Xing D, Liu C, Wang W, Du L. Determination of brazilein in rat plasma after intravenous administration by HPLC. Biomed Chromatogr 2009; 22:1201-5. [PMID: 18651610 DOI: 10.1002/bmc.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quantification of brazilein in rat plasma following intravenous administration was achieved by reversed-phase high-performance liquid chromatography using a mobile phase of acetonitrile-0.05 m potassium dihydrogen phosphate water (containing 0.5% triethylamine, pH 3.0; 20:80 v/v) and UV detection at 445 nm. The method was linear (determination coefficient, r(2) = 0.9992) within the tested range (0.313-5.0 microg/mL). Intra- and inter-day precision coefficients of variation and accuracy bias were acceptable (maximal CV value was 2.06% for intra-day and 1.71% for inter-day) over the entire range. The recoveries were 81.48, 84.61 and 82.83% for concentrations of 0.313, 1.25 and 5.0 microg/mL, respectively. The concentration-time curve of brazilein after intravenous administration was fitted to the two-compartment model. This is the first time that brazilein in rat plasma was detected by HPLC-UV method and its pharmacokinetic characteristic was comprehensively studied.
Collapse
Affiliation(s)
- Jiaqi Lan
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|