1
|
Penna DBDS, Gumiéro Costa S, Romão JS, da Costa Calaza K, de Jesus Oliveira K, Dos Santos Rodrigues A, Pandolfo P. Age- and sex-dependent participation of the endocannabinoid system in locomotion and risk assessment of an ADHD rat model. Pharmacol Biochem Behav 2025; 248:173969. [PMID: 39922504 DOI: 10.1016/j.pbb.2025.173969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting individuals across age groups. Impairments in executive function characterize ADHD and are often associated with elevated levels of risk-taking behaviors. The endocannabinoid system plays a crucial role in modulating prefrontal cortex circuits. Here, we assessed the effects of acute pharmacological manipulation of cannabinoid CB1 and CB2 receptors on locomotion and risk assessment/anxiety-like behaviors in an ADHD animal model during adolescence and adulthood. Further, we investigated the protein levels and gene expression of endocannabinoid system components (CB1, CB2, FAAH, MAGL) in the prefrontal cortex at both ages. During adolescence, activation of cannabinoid receptors aggravated the hyperactivity and risky behaviors of the ADHD model. These behavioral traits were more evident in female rats. In adulthood, manipulation of cannabinoid receptors did not alter hyperactivity but worsened risk assessment. Overall, gene expression levels of receptors and enzymes of the endocannabinoid system were increased in the ADHD model. Our findings suggest that the endocannabinoid system may operate differently in ADHD, and manipulating this system, especially in adolescents, could exacerbate deficits in inhibitory control.
Collapse
MESH Headings
- Animals
- Female
- Attention Deficit Disorder with Hyperactivity/metabolism
- Attention Deficit Disorder with Hyperactivity/physiopathology
- Attention Deficit Disorder with Hyperactivity/psychology
- Endocannabinoids/metabolism
- Endocannabinoids/physiology
- Rats
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/agonists
- Male
- Locomotion/drug effects
- Locomotion/physiology
- Disease Models, Animal
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/drug effects
- Amidohydrolases/metabolism
- Amidohydrolases/genetics
- Risk-Taking
- Age Factors
- Risk Assessment
- Sex Factors
- Rats, Wistar
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Daniel Bussinger de Souza Penna
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil.
| | - Samara Gumiéro Costa
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Juliana Santos Romão
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Karin da Costa Calaza
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil; Institute of Biology, Program of Neurosciences, Federal Fluminense University, Niteroi, Brazil
| | - Karen de Jesus Oliveira
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | | | - Pablo Pandolfo
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil; Institute of Biology, Program of Neurosciences, Federal Fluminense University, Niteroi, Brazil
| |
Collapse
|
2
|
Oosten W, Vos E, Los L, Nelwan M, Pieters T. Towards a New Dynamic Interaction Model of Adolescent CUD Manifestation, Prevention, and Treatment: A Narrative Review. PSYCHOACTIVES 2023; 2:294-316. [PMID: 39280928 PMCID: PMC7616443 DOI: 10.3390/psychoactives2040019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Cannabis is one of the most popular drugs of the 21st century, especially among adolescents and young adults. Evidence of a variety of lasting neuropsychological deficits as a result of chronic cannabis use has increased. Furthermore, regular cannabis use is found to be a predictor of mental health problems, less motivation in school, and school dropout. Aim Our goal is to propose a theoretical model of adolescent cannabis use disorder (CUD) based on Zinberg's drug, set, and setting model and explicated by a review of the literature on adolescent cannabis use to improve the prevention and treatment of CUD for adolescents. Methods PubMed and Web of Science were searched for relevant publications as part of a hypothesis-based and model-generating review. Results Individual (set) and environmental (setting) risk factors play important roles in the development of CUD in adolescents. School performance, motivation, and attendance can be negatively influenced by persistent cannabis use patterns and adolescent brain development can consequently be impaired. Thus, cannabis use can be understood as both being the cause of poor school performance but also the consequence of poor school performance. To prevent and reduce adolescent CUD the drug, set, and setting must all be considered. It is important to notice that the multiple feedback loops (indicated in our dynamic interaction model) are not mutually exclusive, but offer important intervention focus points for social workers, addiction professionals, parents, and other care takers. Conclusion We argue that the three dimensions of drug, set, and setting contribute significantly to the eventual manifestation of CUD. Based on our dynamic interaction model, recommendations are made for possible preventive and therapeutic interventions for the treatment of adolescents and young adults with CUD.
Collapse
Affiliation(s)
- Wesley Oosten
- Freudenthal Institute, Utrecht University, P.O. Box 85 170, 3508 AD Utrecht, The Netherlands
| | - Elena Vos
- Trimbos Institute, P.O. Box 80 125, 3500 AS Utrecht, The Netherlands
| | - Leontien Los
- Department of Adolescent Psychiatry and Addiction Prevention, Brijder-Jeugd, 2553 NZ The Hague, The Netherlands
| | - Michel Nelwan
- Department of Children and Adolescent Psychiatry, Erasmus Medical Center Sophia, P.O. Box 2060, 3015 CN Rotterdam, The Netherlands
| | - Toine Pieters
- Freudenthal Institute, Utrecht University, P.O. Box 85 170, 3508 AD Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80 082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
3
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
4
|
Karimi SA, Noorbakhsh M, Komaki H, Reza Nikoo M, Hasanein P, Shahidi S, Faraji N, Komaki A. The interactive effects of verapamil and CB1 cannabinoid receptor antagonist/inverse agonist, AM251 on passive avoidance learning and memory in rat. Behav Pharmacol 2022; 33:222-229. [PMID: 34845169 DOI: 10.1097/fbp.0000000000000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There are reports regarding the effects of intracellular Ca2+ and synthesis and release of endocannabinoids. The secretion of endocannabinoids depends on the L-type calcium channel. The present study evaluated the involvement of the cannabinoid CB1 receptors in the effect of L-type calcium channel blocker verapamil on passive avoidance learning (PAL) in adult male rats. In this study, we examined the effects of an acute administration of the cannabinoid CB1 receptors antagonist/inverse agonist AM251 following a chronic administration of the Ca2+ channel blocker verapamil on PAL. Male Wistar rats were administered verapamil (10, 25 and 50 mg/kg) or saline intraperitoneally (i.p) daily for 13 days (n = 10/group). After this treatment period, a learning test (acquisition) was performed, and a retrieval test was performed the following day. The results indicated that chronic systemic administration of verapamil (in a dose-dependent manner) impaired memory acquisition and retrieval. Pre-training acute administration of a selective CB1 antagonist/inverse agonist, AM251 (5 mg/kg, i.p.) did not change memory acquisition and retrieval. Co-administration of the verapamil and AM251 significantly reversed verapamil-induced amnesia, suggesting a functional interaction between AM251 and verapamil. The results indicated the interactive effects of cannabinoid CB1 receptors and L-type calcium channel in passive avoidance learning and AM251 can counter the effects of verapamil on memory.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences
| | - Mariam Noorbakhsh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
| | - Hamidreza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
| | - Mohammad Reza Nikoo
- Department of Occupational Therapy, School of Rehabilitation Sciences, Hamedan University of Medical Sciences, Hamedan
| | - Parisa Hasanein
- Department of Biology, School of Basic Sciences, University of Zabol, Zabol, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences
| | - Nafiseh Faraji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences
| |
Collapse
|
5
|
Abstract
Previous studies show how time perception can be altered by cannabis consumption, but it is not clear yet whether cannabis produces temporal underproductions or overproductions after acute cannabis intoxication. The present study aimed to analyze a sample of 50 regular cannabis users controlling for cannabis strain (sativa, indica, and hybrid) and to compare their scores in a temporal production task before and after consuming cannabis with a control group of 49 nonusers. Results showed that cannabis intake leads to overproductions, suggesting that regular users' internal tempo slows down after acute intoxication. However, the analyses of main effects showed that indica users, both at baseline levels and after consuming, reported significant underproductions compared to controls, sativa, and hybrid users, and the cannabis-induced effects had a higher magnitude after smoking in the indica-strain group. Results highlight the relevance of including the type of strain consumed in cannabis studies, and they are discussed in terms of short- and long-term alterations in temporal perception under the light of the self-medication theory and the therapeutic uses of cannabis.
Collapse
Affiliation(s)
- Anna Muro
- Department of Basic, Developmental and Educational Psychology, Universitat Autònoma de Barcelona, Spain
| | - Ramon Cladellas
- Department of Basic, Developmental and Educational Psychology, Universitat Autònoma de Barcelona, Spain
| | - Judit Castellà
- Department of Basic, Developmental and Educational Psychology, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
6
|
Manyaapelo T, Ruiter RA, Sifunda S, Nyembezi A, van den Borne B, Reddy P. The psychosocial determinants of the intention to test for HIV among young men in KwaZulu-Natal province, South Africa. AJAR-AFRICAN JOURNAL OF AIDS RESEARCH 2021; 20:42-52. [PMID: 33632066 DOI: 10.2989/16085906.2020.1861034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Voluntary counselling and testing is one of the effective prevention strategies against the HIV/AIDS epidemic. This study investigated the psychosocial determinants of the intention to be tested for HIV among young men in South Africa's KwaZulu-Natal province using the theory of planned behaviour as the guiding framework.Method: A facilitator-administered questionnaire was used to collect data among 350 isiZulu-speaking men between the ages of 18 and 35.Results: Results show that 24% reported ever having tested. Intention to test showed strong positive correlations with subjective norm to test (r = 0.67), intention to use condoms (r = 0.65), intention to reduce alcohol use (r = 0.60), subjective norm to reduce alcohol use (r = 0.54), and subjective norm to use condoms (r = 0.51). For multiple regression, attitude, subjective norm and perceived behavioural control explained 43% of the variance in intention to test, with subjective norm and perceived behavioural control making significant unique contributions. An additional 12% of the variance was explained by intention to reduce alcohol and drug use, and use condoms.Conclusion: Behavioural interventions to encourage HIV testing among men should target normative and control beliefs but also other risky behaviours (e.g. alcohol abuse and condom use) as reductions in these behaviours appear to be positively associated with motivation to undergo HIV testing.
Collapse
Affiliation(s)
- Thabang Manyaapelo
- Human and Social Capabilities Programme, Human Sciences Research Council, Pretoria, South Africa
| | - Robert Ac Ruiter
- Department of Work & Social Psychology, Maastricht University, Maastricht, The Netherlands
| | - Sibusiso Sifunda
- Human and Social Capabilities Programme, Human Sciences Research Council, Pretoria, South Africa
| | - Anam Nyembezi
- School of Public Health, University of the Western Cape, Bellville, South Africa
| | - Bart van den Borne
- Department of Health Education and Health Promotion, Maastricht University, Maastricht, The Netherlands
| | - Priscilla Reddy
- Human and Social Capabilities Programme, Human Sciences Research Council, Pretoria, South Africa
| |
Collapse
|
7
|
Napoletano F, Schifano F, Corkery JM, Guirguis A, Arillotta D, Zangani C, Vento A. The Psychonauts' World of Cognitive Enhancers. Front Psychiatry 2020; 11:546796. [PMID: 33024436 PMCID: PMC7516264 DOI: 10.3389/fpsyt.2020.546796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There is growing availability of novel psychoactive substances (NPS), including cognitive enhancers (CEs) which can be used in the treatment of certain mental health disorders. While treating cognitive deficit symptoms in neuropsychiatric or neurodegenerative disorders using CEs might have significant benefits for patients, the increasing recreational use of these substances by healthy individuals raises many clinical, medico-legal, and ethical issues. Moreover, it has become very challenging for clinicians to keep up-to-date with CEs currently available as comprehensive official lists do not exist. METHODS Using a web crawler (NPSfinder®), the present study aimed at assessing psychonaut fora/platforms to better understand the online situation regarding CEs. We compared NPSfinder® entries with those from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and from the United Nations Office on Drugs and Crime (UNODC) NPS databases up to spring 2019. Any substance that was identified by NPSfinder® was considered a CE if it was either described as having nootropic abilities by psychonauts or if it was listed among the known CEs by Froestl and colleagues. RESULTS A total of 142 unique CEs were identified by NPSfinder®. They were divided into 10 categories, including plants/herbs/products (29%), prescribed drugs (17%), image and performance enhancing drugs (IPEDs) (15%), psychostimulants (15%), miscellaneous (8%), Phenethylamines (6%), GABAergic drugs (5%), cannabimimetic (4%), tryptamines derivatives (0.5%), and piperazine derivatives (0.5%). A total of 105 chemically different substances were uniquely identified by NPSfinder®. Only one CE was uniquely identified by the EMCDDA; no CE was uniquely identified by the UNODC. CONCLUSIONS These results show that NPSfinder® is helpful as part of an Early Warning System, which could update clinicians with the growing numbers and types of nootropics in the increasingly difficult-to-follow internet world. Improving clinicians' knowledge of NPS could promote more effective prevention and harm reduction measures in clinical settings.
Collapse
Affiliation(s)
- Flavia Napoletano
- Department of Mental Health, Homerton University Hospital, East London Foundation Trust, London, United Kingdom
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Amira Guirguis
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea, United Kingdom
| | - Davide Arillotta
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caroline Zangani
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandro Vento
- Department of Mental Health, Addictions’ Observatory (ODDPSS), Rome, Italy
- Department of Mental Health, Guglielmo Marconi” University, Rome, Italy
- Department of Mental Health, ASL Roma 2, Rome, Italy
| |
Collapse
|
8
|
Millie LA, Boehm SL, Grahame NJ. Attentional set shifting in HAP3, LAP3, and cHAP mice is unaffected by either genetic differences in alcohol preference or an alcohol drinking history. Exp Clin Psychopharmacol 2020; 28:379-387. [PMID: 32150428 PMCID: PMC7390659 DOI: 10.1037/pha0000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alcohol consumption may precede, or result from, behavioral inflexibility and contribute to individuals' difficulties ceasing drinking. Attentional set shifting tasks are an animal analog to a human behavioral flexibility task requiring recognition of a previous strategy as inappropriate, and the formation and maintenance of a novel strategy (Floresco, Block, & Tse, 2008). Abstinent individuals with alcohol use disorder, nonalcoholic individuals with a family history of alcoholism, and mice exposed to chronic-intermittent alcohol vapor show impaired behavioral flexibility (Gierski et al., 2013; Hu, Morris, Carrasco, & Kroener, 2015; Oscar-Berman et al., 2009). Behavioral flexibility deficits can be linked to frontal cortical regions connected to the striatum (Ragozzino, 2007), and alterations to the endocannabinoid system, implicated in drug seeking and consumption (Economidou et al., 2006; Serrano & Parsons, 2011), may affect these behaviors. Alcohol-preferring and nonpreferring rodents exhibit differences in CB1 receptor expression (CB1R; Hansson et al., 2007; Hungund & Basavarajappa, 2000), but whether dorsal striatal CB1Rs are important for other alcohol-related behaviors such as attentional set shifting tasks remains unclear. This study assesses whether selectively bred high (HAP) versus low alcohol-preferring mice differ in an operant attentional set shifting task or CB1R levels in the dorsal striatum and whether a history of voluntary alcohol consumption in crossed HAP mice exacerbates inflexibility. Contrary to our hypothesis, neither genetic differences in alcohol preference nor drinking affected set shifting. However, high alcohol-preferring mice-3 mice showed reduced levels of dorsal striatal CB1R compared with low alcohol-preferring-3 mice, suggesting that genetic differences in alcohol consumption may be mediated in part by striatal CB1R. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren A Millie
- Department of Psychology, Indiana University-Purdue University Indianapolis
| | - Stephen L Boehm
- Department of Psychology, Indiana University-Purdue University Indianapolis
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis
| |
Collapse
|
9
|
Cohen K, Mama Y, Rosca P, Pinhasov A, Weinstein A. Chronic Use of Synthetic Cannabinoids Is Associated With Impairment in Working Memory and Mental Flexibility. Front Psychiatry 2020; 11:602. [PMID: 32695029 PMCID: PMC7339911 DOI: 10.3389/fpsyt.2020.00602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We have recently shown that chronic use of Synthetic Cannabinoids (SCs) has been associated with mood disorders and impairments in executive functions. There is also evidence indicating that chronic SC users have higher rates of comorbidity with depression and psychotic symptoms. Here, we investigate performance on executive function and emotional processing tasks in regular SC users and a measure of schizotypal traits. METHOD Thirty chronic SC users, 32 recreational cannabis users, and 32 non-using control participants, without history of mental disorder, or current substance abuse diagnosis (mean age 26 ± 4.27 years; 85 males, 9 females), were tested in addiction treatment centers in Israel. Computerized neurocognitive function tests; the N-back task, Go/No-Go task, Wisconsin Sorting Card-like Task (WSCT), and emotional face recognition task and questionnaires of depression, anxiety and schizotypal traits and symptoms were used. RESULTS SC users have performed worse than recreational cannabis users and non-cannabis users on the N-back working-memory task (lower accuracy) and the WSCT cognitive flexibility task. SC users showed greater schizotypal traits and symptoms compared with recreational cannabis users and non-user control participants. A positive association was found in cannabinoid-user groups between schizotypal traits and symptoms and cognitive and emotional processing measures. Finally, SC users have scored higher on depression and state-trait anxiety measures than recreational cannabis users or healthy control participants. CONCLUSIONS Repeated use of SCs is associated with impairment in executive functions and emotional processing. These alterations are associated with depression and schizotypal traits and symptoms. This adds to existing evidence on the long-term consequences of SC drugs and their risks for mental health.
Collapse
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science, Ariel University, Ariel, Israel
| | - Yaniv Mama
- Department of Behavioral Science, Ariel University, Ariel, Israel
| | - Paola Rosca
- Ministry of Health (Israel), Jerusalem, Israel
| | - Albert Pinhasov
- Adelson School of Medicine, Ariel University, Ariel, Israel.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Aviv Weinstein
- Department of Behavioral Science, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Wyrofsky RR, Reyes BAS, Yu D, Kirby LG, Van Bockstaele EJ. Sex differences in the effect of cannabinoid type 1 receptor deletion on locus coeruleus-norepinephrine neurons and corticotropin releasing factor-mediated responses. Eur J Neurosci 2019; 48:2118-2138. [PMID: 30103253 DOI: 10.1111/ejn.14103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
Cannabinoids are capable of modulating mood, arousal, cognition and behavior, in part via their effects on the noradrenergic nucleus locus coeruleus (LC). Dysregulation of LC signaling and norepinephrine (NE) efflux in the medial prefrontal cortex (mPFC) can lead to the development of psychiatric disorders, and CB1r deletion results in alterations of α2- and β1-adrenoceptors in the mPFC, suggestive of increased LC activity. To determine how CB1r deletion alters LC signaling, whole-cell patch-clamp electrophysiology was conducted in LC-NE neurons of male and female wild type (WT) and CB1r-knock out (KO) mice. CB1r deletion caused a significant increase in LC-NE excitability and input resistance in male but not female mice when compared to WT. CB1r deletion also caused adaptations in several indices of noradrenergic function. CB1r/CB2r-KO male mice had a significant increase in cortical NE levels and tyrosine hydroxylase and CRF levels in the LC compared to WT males. CB1r/CB2r-KO female mice showed a significant increase in LC α2-AR levels compared to WT females. To further probe actions of the endocannabinoid system as an anti-stress neuromediator, the effect of CB1r deletion on CRF-induced responses in the LC was investigated. The increase in LC-NE excitability observed in male and female WT mice following CRF (300 nM) bath application was not observed in CB1r-KO mice. These results indicate that cellular adaptations following CB1r deletion cause a disruption in LC-NE signaling in males but not females, suggesting underlying sex differences in compensatory mechanisms in KO mice as well as basal endocannabinoid regulation of LC-NE activity.
Collapse
Affiliation(s)
- Ryan R Wyrofsky
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daohai Yu
- Department of Clinical Sciences, Temple Clinical Research Institute, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Lynn G Kirby
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Frontal Alpha Asymmetry and Inhibitory Control among Individuals with Cannabis Use Disorders. Brain Sci 2019; 9:brainsci9090219. [PMID: 31470590 PMCID: PMC6770848 DOI: 10.3390/brainsci9090219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
To better understand the biopsychosocial mechanisms associated with development and maintenance of cannabis use disorder (CUD), we examined frontal alpha asymmetry (FAA) as a measure of approach bias and inhibitory control in cannabis users versus healthy nonusers. We investigated: (1) whether FAA could distinguish cannabis users from healthy controls; (2) whether there are cue-specific FAA effects in cannabis users versus controls; and (3) the time course of cue-specific approach motivation and inhibitory control processes. EEG data were analyzed from forty participants (CUD (n = 20) and controls (n = 20)) who completed a modified visual attention task. Results showed controls exhibited greater relative right hemisphere activation (indicating avoidance/withdrawal motivation) when exposed to cannabis cues during the filtering task. By contrast, cannabis users exhibited greater relative left activation (approach) to all cues (cannabis, positive, negative, and neutral), reflecting a generalized approach motivational tendency, particularly during later stages of inhibitory control processes. The difference between cannabis users and controls in FAA was largest during mid- to late processing stages of all cues, indicating greater approach motivation during later stages of information processing among cannabis users. Findings suggest FAA may distinguish cannabis users from healthy controls and shows promise as a measure of inhibitory control processes in cannabis users.
Collapse
|
12
|
Contarini G, Ferretti V, Papaleo F. Acute Administration of URB597 Fatty Acid Amide Hydrolase Inhibitor Prevents Attentional Impairments by Distractors in Adolescent Mice. Front Pharmacol 2019; 10:787. [PMID: 31379568 PMCID: PMC6658611 DOI: 10.3389/fphar.2019.00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The maturation of attentional control during adolescence might influence later functional outcome or predisposition to psychiatric disorders. During adolescence, the cannabinoid system is particularly sensitive to pharmacological challenges, with potential impact on cognitive functions. Here, we used a recently validated five-choice serial reaction time task protocol to test adolescent C57BL/6J mice. We showed that the pharmacological inhibition (by URB597) of the fatty acid amide hydrolase (FAAH), the major enzyme implicated in anandamide degradation, prevented cognitive disruptions induced by distracting cues in adolescent mice. In particular, these protective effects were indicated by increased accuracy and correct responses and decreased premature responses selectively in the distractor trials. Notably, at the relatively low dose used, we detected no effects in other cognitive, motor, or incentive measures nor long-lasting or rebound effects of FAAH inhibition in cognitive functions. Overall, these data provide initial evidence of selective procognitive effects of FAAH inhibition in measures of attentional control in adolescent mice.
Collapse
Affiliation(s)
- Gabriella Contarini
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Valentina Ferretti
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
13
|
Urquhart MA, Ross JA, Reyes BAS, Nitikman M, Thomas SA, Mackie K, Van Bockstaele EJ. Noradrenergic depletion causes sex specific alterations in the endocannabinoid system in the Murine prefrontal cortex. Neurobiol Stress 2019; 10:100164. [PMID: 31193575 PMCID: PMC6535650 DOI: 10.1016/j.ynstr.2019.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 04/06/2019] [Indexed: 01/27/2023] Open
Abstract
Brain endocannabinoids (eCB), acting primarily via the cannabinoid type 1 receptor (CB1r), are involved in the regulation of many physiological processes, including behavioral responses to stress. A significant neural target of eCB action is the stress-responsive norepinephrine (NE) system, whose dysregulation is implicated in myriad psychiatric and neurodegenerative disorders. Using Western blot analysis, the protein expression levels of a key enzyme in the biosynthesis of the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol lipase-α (DGL-α), and two eCB degrading enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) were examined in a mouse model that lacks the NE-synthesizing enzyme, dopamine β-hydroxylase (DβH-knockout, KO) and in rats treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4). In the prefrontal cortex (PFC), DGL-α protein expression was significantly increased in male and female DβH-KO mice (P < 0.05) compared to wild-type (WT) mice. DβH-KO male mice showed significant decreases in FAAH protein expression compared to WT male mice. Consistent with the DβH-KO results, DGL-α protein expression was significantly increased in male DSP-4-treated rats (P < 0.05) when compared to saline-treated controls. MGL and FAAH protein expression levels were significantly increased in male DSP-4 treated rats compared to male saline controls. Finally, we investigated the anatomical distribution of MGL and FAAH in the NE containing axon terminals of the PFC using immunoelectron microscopy. MGL was predominantly within presynaptic terminals while FAAH was localized to postsynaptic sites. These results suggest that the eCB system may be more responsive in males than females under conditions of NE perturbation, thus having potential implications for sex-specific treatment strategies of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- M A Urquhart
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - J A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - M Nitikman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - S A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405-2204, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| |
Collapse
|
14
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Camchong J, Collins PF, Becker MP, Lim KO, Luciana M. Longitudinal Alterations in Prefrontal Resting Brain Connectivity in Non-Treatment-Seeking Young Adults With Cannabis Use Disorder. Front Psychiatry 2019; 10:514. [PMID: 31404267 PMCID: PMC6670783 DOI: 10.3389/fpsyt.2019.00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Cannabis is increasingly perceived as a harmless drug by recreational users, yet chronic use may impact brain changes into adulthood. Repeated cannabis exposure has been associated with enduring synaptic changes in executive control and reward networks. It is important to determine whether there are brain functional alterations within these networks in individuals that do not seek treatment for chronic cannabis abuse. Methods: This longitudinal study compared resting-state functional connectivity changes in executive control and reward networks between 23 non-treatment-seeking young adults with cannabis use disorder (6 females; baseline age M = 19.3 ± 1.18) and 21 age-matched controls (10 females; baseline age M = 19.4 ± 0.65) to determine group differences in the temporal trajectories of resting-state functional connectivity across a 2-year span. Results: Results showed i) significant increases in resting-state functional connectivity between the caudal anterior cingulate cortex and precentral and parietal regions over time in the control group, but not in the cannabis use disorder group, and ii) sustained lower resting-state functional connectivity of anterior cingulate cortex seeds with frontal and thalamic regions in the cannabis use disorder group vs. the age-matched controls. Resting-state functional connectivity strength was correlated with cannabis use patterns in the cannabis use disorder sample. Conclusion: Longitudinal alterations in intrinsic functional organization of executive control networks found in non-treatment-seeking young adults with cannabis use disorder (when compared to age-matched controls) may impact regulatory control over substance use behavior. Current findings were limited to examining executive control and reward networks seeded in ACC and NAcc, respectively. Future studies with larger sample sizes and enough power are needed to conduct exploratory analyses examining rsFC of other networks beyond those within the scope of the current study.
Collapse
Affiliation(s)
- Jazmin Camchong
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Paul F Collins
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Mary P Becker
- Department of Psychiatry, Hennepin Healthcare, Richfield, MN, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
|
17
|
The effects of synthetic cannabinoids (SCs) on brain structure and function. Eur Neuropsychopharmacol 2018; 28:1047-1057. [PMID: 30082140 DOI: 10.1016/j.euroneuro.2018.07.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/15/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
There is an increasing use of "Novel Psychoactive Substances" containing synthetic cannabinoids worldwide. Synthetic cannabinoids (SC) are highly addictive and cause severe adverse effects. The purpose of our study was to assess whether chronic use of SC alters brain volume and function. Fifteen SC chronic users and 15 healthy control participants undertook an MRI scan to assess brain volume and function while performing a working memory N-back task and a response-inhibition Go-No-Go task. SC users showed impaired performance on the N-back task but not on the Go-No-Go task. They also showed reduced total gray matter volume compared with control participants, as well as reduced gray matter volume in several cortical regions including the middle frontal gyrus, frontal orbital gyrus, inferior frontal gyrus, insula, anterior cingulate cortex and the precuneus. Moreover, SC users showed diminished brain activations in the precuneus, cuneus, lingual gyrus, hippocampus and cerebellum while performing the N-back task. No differences were found in brain activation while performing the response-inhibition task. This is the first study showing overall reduced grey matter volume and specific reduced grey matter volumes in chronic SC users. Furthermore, this study showed for the first time impairment in the neural brain mechanisms responsible for working memory in SC users. Our results of reduced grey matter density and diminished activation during a working memory task in SC users, may suggest vulnerability of the frontal-parietal network in chronic SC users.
Collapse
|
18
|
Ma L, Steinberg JL, Bjork JM, Keyser-Marcus L, Vassileva J, Zhu M, Ganapathy V, Wang Q, Boone EL, Ferré S, Bickel WK, Gerard Moeller F. Fronto-striatal effective connectivity of working memory in adults with cannabis use disorder. Psychiatry Res Neuroimaging 2018; 278:21-34. [PMID: 29957349 PMCID: PMC6953485 DOI: 10.1016/j.pscychresns.2018.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Previous working memory (WM) studies found that relative to controls, subjects with cannabis use disorder (CUD) showed greater brain activation in some regions (e.g., left [L] and right [R] ventrolateral prefrontal cortex [VLPFC], and L dorsolateral prefrontal cortex [L-DLPFC]), and lower activation in other regions (e.g., R-DLPFC). In this study, effective connectivity (EC) analysis was applied to functional magnetic resonance imaging data acquired from 23 CUD subjects and 23 controls (two groups matched for sociodemographic factors and substance use history) while performing an n-back WM task with interleaved 2-back and 0-back periods. A 2-back minus 0-back modulator was defined to measure the modulatory changes of EC corresponding to the 2-back relative to 0-back conditions. Compared to the controls, the CUD group showed smaller modulatory change in the R-DLPFC to L-caudate pathway, and greater modulatory changes in L-DLPFC to L-caudate, R-DLPFC to R-caudate, and R-VLPFC to L-caudate pathways. Based on previous fMRI studies consistently suggesting that greater brain activations are related to a compensatory mechanism for cannabis neural effects (less regional brain activations), the smaller modulatory change in the R-DLPFC to L-caudate EC may be compensated by the larger modulatory changes in the other prefrontal-striatal ECs in the CUD individuals.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Radiology, Virginia Commonwealth University (VCU), Richmond, VA, USA.
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Lori Keyser-Marcus
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Jasmin Vassileva
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Min Zhu
- Radiology Department, Mu Dang Jiang Medical University, Mu Dang Jiang, Hei Long Jiang, China
| | - Venkatesh Ganapathy
- Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Qin Wang
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Edward L Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Pharmacology & Toxicology, VCU, Richmond, VA, USA; Department of Neurology, VCU, Richmond, VA, USA
| |
Collapse
|
19
|
Cohen K, Weinstein A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids-A Systematic Review. Brain Sci 2018; 8:brainsci8030040. [PMID: 29495540 PMCID: PMC5870358 DOI: 10.3390/brainsci8030040] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background—Cannabis is the most popular illicit drug in the Western world. Repeated cannabis use has been associated with short and long-term range of adverse effects. Recently, new types of designer-drugs containing synthetic cannabinoids have been widespread. These synthetic cannabinoid drugs are associated with undesired adverse effects similar to those seen with cannabis use, yet, in more severe and long-lasting forms. Method—A literature search was conducted using electronic bibliographic databases up to 31 December 2017. Specific search strategies were employed using multiple keywords (e.g., “synthetic cannabinoids AND cognition,” “cannabis AND cognition” and “cannabinoids AND cognition”). Results—The search has yielded 160 eligible studies including 37 preclinical studies (5 attention, 25 short-term memory, 7 cognitive flexibility) and 44 human studies (16 attention, 15 working memory, 13 cognitive flexibility). Both pre-clinical and clinical studies demonstrated an association between synthetic cannabinoids and executive-function impairment either after acute or repeated consumptions. These deficits differ in severity depending on several factors including the type of drug, dose of use, quantity, age of onset and duration of use. Conclusions—Understanding the nature of the impaired executive function following consumption of synthetic cannabinoids is crucial in view of the increasing use of these drugs.
Collapse
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| | - Aviv Weinstein
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
20
|
Nusbaum AT, Whitney P, Cuttler C, Spradlin A, Hinson JM, McLaughlin RJ. Altered attentional control strategies but spared executive functioning in chronic cannabis users. Drug Alcohol Depend 2017; 181:116-123. [PMID: 29045919 DOI: 10.1016/j.drugalcdep.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cannabis use has increased rapidly in recent decades. The increase in cannabis use makes it important to understand the potential influence of chronic use on attentional control and other executive functions (EFs). Because cannabis is often used to reduce stress, and because stress can constrain attentional control and EFs, the primary goal of this study was to determine the joint effect of acute stress and chronic cannabis use on specific EFs. METHODS Thirty-nine cannabis users and 40 non-users were assigned to either a stress or no stress version of the Maastricht Acute Stress Test. Participants then completed two cognitive tasks that involve EFs: (1) task switching, and (2) a novel Flexible Attentional Control Task. These two tasks provided assessments of vigilant attention, inhibitory control, top-down attentional control, and cognitive flexibility. Salivary cortisol was assessed throughout the study. RESULTS Reaction time indices showed an interaction between stress and cannabis use on top-down attentional control (p=0.036, np2=0.059). Follow-up tests showed that cannabis users relied less on top-down attentional control than did non-users in the no stress version. Despite not relying on top-down control, the cannabis users showed no overall performance deficits on the tasks. CONCLUSIONS Chronic cannabis users performed cognitive tasks involving EFs as well as non-users while not employing cognitive control processes that are typical for such tasks. These results indicate alterations in cognitive processing in cannabis users, but such alterations do not necessarily lead to global performance deficits.
Collapse
Affiliation(s)
- Amy T Nusbaum
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA.
| | - Paul Whitney
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA.
| | - Carrie Cuttler
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA; Translational Addiction Research Center, Washington State University, USA.
| | - Alexander Spradlin
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA.
| | - John M Hinson
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA.
| | - Ryan J McLaughlin
- Washington State University, Department of Psychology, PO Box 644820, Pullman, WA, 99164-4820, USA; Translational Addiction Research Center, Washington State University, USA; Washington State University, Department of Integrative Physiology and Neuroscience, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
21
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
22
|
Reyes BAS, Carvalho AF, Szot P, Kalamarides DJ, Wang Q, Kirby LG, Van Bockstaele EJ. Cortical adrenoceptor expression, function and adaptation under conditions of cannabinoid receptor deletion. Exp Neurol 2017; 292:179-192. [PMID: 28341460 PMCID: PMC5454488 DOI: 10.1016/j.expneurol.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Abstract
A neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. Acute and repeated administration of a cannabinoid receptor synthetic agonist is capable of increasing multiple indices of noradrenergic activity. This includes cannabinoid-induced 1) increases in norepinephrine (NE) release in the medial prefrontal cortex (mPFC); 2) desensitization of cortical α2-adrenoceptor-mediated effects; 3) activation of c-Fos in brainstem locus coeruleus (LC) noradrenergic neurons; and 4) increases in anxiety-like behaviors. In the present study, we sought to examine adaptations in adrenoceptor expression and function under conditions of cannabinoid receptor type 1 (CB1r) deletion using knockout (KO) mice and compare these to wild type (WT) controls. Electrophysiological analysis of α2-adrenoceptor-mediated responses in mPFC slices in WT mice showed a clonidine-induced α2-adrenoceptor-mediated increase in mPFC cell excitability coupled with an increase in input resistance. In contrast, CB1r KO mice showed an α2-adrenoceptor-mediated decrease in mPFC cell excitability. We then examined protein expression levels of α2- and β1-adrenoceptor subtypes in the mPFC as well as TH expression in the locus coeruleus (LC) of mice deficient in CB1r. Both α2- and β1-adrenoceptors exhibited a significant decrease in expression levels in CB1r KO mice when compared to WT in the mPFC, while a significant increase in TH was observed in the LC. To better define whether the same cortical neurons express α2A-adrenoceptor and CB1r in mPFC, we utilized high-resolution immunoelectron microscopy. We localized α2A-adrenoceptors in a knock-in mouse that expressed a hemoagglutinin (HA) tag downstream of the α2A-adrenoceptor promoter. Although the α2A-adrenoceptor was often identified pre-synaptically, we observed co-localization of CB1r with α2-adrenoceptors post-synaptically in the same mPFC neurons. Finally, using receptor binding, we confirmed prior results showing that α2A-adrenoceptor is unchanged in mPFC following acute or chronic exposure to the synthetic cannabinoid receptor agonist, WIN 55,212-2, but is increased, following chronic treatment followed by a period of abstinence. Taken together, these data provide convergent lines of evidence indicating cannabinoid regulation of the cortical adrenergic system.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University Philadelphia, PA 19102, United States.
| | - A F Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98108, United States
| | - D J Kalamarides
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Q Wang
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - L G Kirby
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University Philadelphia, PA 19102, United States
| |
Collapse
|
23
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Shiri M, Komaki A, Oryan S, Taheri M, Komaki H, Etaee F. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats. Can J Physiol Pharmacol 2017; 95:382-387. [DOI: 10.1139/cjpp-2016-0274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212–2, (3) capsaicin, and (4) WIN55,212–2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212–2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212–2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212–2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats’ cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212–2 on learning and memory.
Collapse
Affiliation(s)
- Mariam Shiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
The effects of synthetic cannabinoids on executive function. Psychopharmacology (Berl) 2017; 234:1121-1134. [PMID: 28160034 DOI: 10.1007/s00213-017-4546-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users. METHODS A total of 38 synthetic cannabinoids users, 43 recreational cannabis users, and 41 non-user subjects were studied in two centers in Hungary and Israel. Computerized cognitive function tests, the classical Stroop word-color task, n-back task, and a free-recall memory task were used. RESULTS Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups. DISCUSSION This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.
Collapse
|
26
|
Manyaapelo T, Nyembezi A, Ruiter RAC, Borne BVD, Sifunda S, Reddy P. Understanding the Psychosocial Correlates of the Intention to Use Condoms among Young Men in KwaZulu-Natal, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E339. [PMID: 28333100 PMCID: PMC5409540 DOI: 10.3390/ijerph14040339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/21/2023]
Abstract
South Africa leads the world with the number of people infected with HIV. Even with all attempts that have been made to curb HIV, it is still evident that new infections are on the rise. Condom use remains one of the best tools against this challenge yet a small number of sexually active men use them. This study investigates the psychosocial correlates of the intention to use condoms among young men in KwaZulu-Natal province. Using the Theory of Planned Behaviour as a framework, hierarchical linear regression models were used to determine the unique contribution of the study measures in explaining the overall variance of intention to consistently use condoms. Subjective norms and perceived behavioural control towards consistent condom use explained 46% of the variance in the intention to use a condom, suggesting that health behaviour interventions should focus on targeting the normative beliefs as well as control beliefs of the target population. Furthermore, subjective norms and intentions towards reducing alcohol and marijuana use explained an additional 7% to the final model in intentions to condom use, implying that substance use and condom usage may influence each other. No significant contributions were found for beliefs underlying cultural aspects of responsible manhood.
Collapse
Affiliation(s)
- Thabang Manyaapelo
- Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X41, Pretoria 0001, South Africa.
| | - Anam Nyembezi
- Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X9182, Cape Town 8000, South Africa.
| | - Robert A C Ruiter
- Department of Work & Social Psychology, Maastricht University, P.O. Box 616, 6200 Maastricht, The Netherlands.
| | - Bart van den Borne
- Department of Health Education & Health Promotion, Maastricht University, P.O. Box 616, 6200 Maastricht, The Netherlands.
| | - Sibusiso Sifunda
- Human Sciences Research Council, HIV/AIDS, STIs and TB, Private Bag X41, Pretoria 0001, South Africa.
| | - Priscilla Reddy
- Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X9182, Cape Town 8000, South Africa.
| |
Collapse
|
27
|
Gueye AB, Trigo JM, Vemuri KV, Makriyannis A, Le Foll B. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling. Behav Pharmacol 2016; 27:258-69. [PMID: 26905189 PMCID: PMC4803149 DOI: 10.1097/fbp.0000000000000222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is estimated that 0.6-1% of the population in the USA and Canada fulfil the Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5) criteria for gambling disorders (GD). To date, there are no approved pharmacological treatments for GD. The rat gambling task (rGT) is a recently developed rodent analogue of the Iowa gambling task in which rats are trained to associate four response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. Similar to healthy human volunteers, most rats adopt the optimal strategies (optimal group). However, a subset of animals show preference for the disadvantageous options (suboptimal group), mimicking the choice pattern of patients with GD. Here, we explored for the first time the effects of various cannabinoid ligands (WIN 55,212-2, AM 4113, AM 630 and URB 597) on the rGT. Administration of the cannabinoid agonist CB1/CB2 WIN 55,212-2 improved choice strategy and increased choice latency in the suboptimal group, but only increased perseverative behaviour, when punished, in the optimal group. Blockade of CB1 or CB2 receptors or inhibition of fatty-acid amide hydrolase did not affect rGT performance. These results suggest that stimulation of cannabinoid receptors could affect gambling choice behaviours differentially in some subgroups of subjects.
Collapse
Affiliation(s)
- Aliou B Gueye
- aTranslational Addiction Research Laboratory bAlcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments cCampbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Departments of dFamily and Community Medicine ePharmacology fDepartment of Psychiatry, Division of Brain and Therapeutics gInstitute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada hDepartment of Pharmaceutical Sciences and Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
28
|
Perry CJ, Lawrence AJ. Addiction, cognitive decline and therapy: seeking ways to escape a vicious cycle. GENES BRAIN AND BEHAVIOR 2016; 16:205-218. [DOI: 10.1111/gbb.12325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Affiliation(s)
- C. J. Perry
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| | - A. J. Lawrence
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| |
Collapse
|
29
|
Manyaapelo T, Ruiter RAC, Nyembezi A, van den Borne B, Sifunda S, Reddy P. The psychosocial determinants of the intention to avoid sexual engagement when intoxicated among young men in KwaZulu-Natal, South Africa. BMC Public Health 2016; 16:562. [PMID: 27411913 PMCID: PMC4944248 DOI: 10.1186/s12889-016-3219-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/23/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND A cross sectional study was conducted among 350 sexually active, mainly unemployed men between the ages of 18 and 35 in KwaZulu-Natal. This study examined the psychosocial determinants of the intention to be sexually active after having used marijuana or alcohol personally or in instances when the sexual partner is intoxicated. The theory of planned behaviour and cultural notions of responsible manhood were used in developing the measures. METHODS Correlation and hierarchical stepwise linear regression analyses tested determinants of the intention to avoid having sex when personally intoxicated and the intention to avoid sex when the sexual partner is intoxicated. RESULTS About 78 % of the participants reported regular use of alcohol and 39 % indicated ever-using marijuana. A total of 36.3 % used both alcohol and marijuana, and 73 % said that they engaged in multiple sexual partner behaviour. The intention to avoid sex when personally intoxicated as well as the intention to avoid sex when the sexual partner is intoxicated were significantly associated with subjective norms and perceptions of perceived behavioural control towards the respective behaviours, and less with attitudes towards the respective behaviours. CONCLUSIONS These findings imply that health education interventions should focus on changing the normative beliefs as well as control beliefs of the target population either directly through education and training or indirectly by creating physical and social environments that facilitate safe sexual practices, for example by organizing positive peer support for risk prevention and by making condoms freely available in community alcohol serving establishments.
Collapse
Affiliation(s)
- Thabang Manyaapelo
- />Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X41, Pretoria, 0001 South Africa
| | - Robert A. C. Ruiter
- />Department of Work & Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Anam Nyembezi
- />Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X9182, Cape Town, 8000 South Africa
| | - Bart van den Borne
- />Department of Health Education & Health Promotion, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sibusiso Sifunda
- />Human Sciences Research Council, HIV/AIDS, STIs and TB, Private Bag X41, Pretoria, 0001 South Africa
| | - Priscilla Reddy
- />Human Sciences Research Council, Population Health, Health Systems and Innovation, Private Bag X9182, Cape Town, 8000 South Africa
| |
Collapse
|
30
|
Ruiz-Contreras AE, Román-López TV, Caballero-Sánchez U, Rosas-Escobar CB, Ortega-Mora EI, Barrera-Tlapa MA, Romero-Hidalgo S, Carrillo-Sánchez K, Hernández-Morales S, Vadillo-Ortega F, González-Barrios JA, Méndez-Díaz M, Prospéro-García O. Because difficulty is not the same for everyone: the impact of complexity in working memory is associated with cannabinoid 1 receptor genetic variation in young adults. Memory 2016; 25:335-343. [PMID: 27108777 DOI: 10.1080/09658211.2016.1172642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Individual differences in working memory ability are mainly revealed when a demanding challenge is imposed. Here, we have associated cannabinoid 1 (CB1) receptor genetic variation rs2180619 (AA, AG, GG), which is located in a potential CNR1 regulatory sequence, with performance in working memory. Two-hundred and nine Mexican-mestizo healthy young participants (89 women, 120 men, mean age: 23.26 years, SD = 2.85) were challenged to solve a medium (2-back) vs. a high (3-back) difficulty N-back tasks. All subjects responded as expected, performance was better with the medium than the high demand task version, but no differences were found among genotypes while performing each working memory (WM) task. However, the cost of the level of complexity in N-back paradigm was double for GG subjects than for AA subjects. It is noteworthy that an additive-dosage allele relation was found for G allele in terms of cost of level of complexity. These genetic variation results support that the endocannabinoid system, evaluated by rs2180619 polymorphism, is involved in WM ability in humans.
Collapse
Affiliation(s)
- Alejandra E Ruiz-Contreras
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico.,b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| | - Talía V Román-López
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Ulises Caballero-Sánchez
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Cintia B Rosas-Escobar
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - E Ivett Ortega-Mora
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Miguel A Barrera-Tlapa
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Sandra Romero-Hidalgo
- c Departamento de Genómica Computacional , Instituto Nacional de Medicina Genómica (INMEGEN) , Cd. Mexico, Mexico
| | | | | | - Felipe Vadillo-Ortega
- f Unidad de Vinculación Científica Facultad de Medicina , UNAM, INMEGEN , Cd. Mexico, Mexico
| | - Juan Antonio González-Barrios
- g Lab. Medicina Genómica, Hospital Regional "Primero de Octubre" , Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) , Cd. Mexico, Mexico
| | - Mónica Méndez-Díaz
- b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| | - Oscar Prospéro-García
- b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| |
Collapse
|
31
|
Nicholls C, Bruno R, Matthews A. Chronic cannabis use and ERP correlates of visual selective attention during the performance of a flanker go/nogo task. Biol Psychol 2015; 110:115-25. [PMID: 26232619 DOI: 10.1016/j.biopsycho.2015.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/09/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022]
Abstract
The aim of the study was to investigate the relationship between chronic cannabis use and visual selective attention by examining event-related potentials (ERPs) during the performance of a flanker go/nogo task. Male participants were 15 chronic cannabis users (minimum two years use, at least once per week) and 15 drug naive controls. Cannabis users showed longer reaction times compared to controls with equivalent accuracy. Cannabis users also showed a reduction in the N2 'nogo effect' at frontal sites, particularly for incongruent stimuli, and particularly in the right hemisphere. This suggests differences between chronic cannabis users and controls in terms of inhibitory processing within the executive control network, and may implicate the right inferior frontal cortex. There was also preliminary evidence for differences in early selective attention, with controls but not cannabis users showing modulation of N1 amplitude by flanker congruency. Further investigation is required to examine the potential reversibility of these residual effects after long-term abstinence and to examine the role of early selective attention mechanisms in more detail.
Collapse
Affiliation(s)
- Clare Nicholls
- School of Medicine (Psychology), University of Tasmania, Private Bag 30, Hobart, Tasmania 7000, Australia
| | - Raimondo Bruno
- School of Medicine (Psychology), University of Tasmania, Private Bag 30, Hobart, Tasmania 7000, Australia
| | - Allison Matthews
- School of Medicine (Psychology), University of Tasmania, Private Bag 30, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
32
|
Reske M, Stewart JL, Flagan TM, Paulus MP. Attenuated Neural Processing of Risk in Young Adults at Risk for Stimulant Dependence. PLoS One 2015; 10:e0127010. [PMID: 26076493 PMCID: PMC4468216 DOI: 10.1371/journal.pone.0127010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/09/2015] [Indexed: 12/04/2022] Open
Abstract
Objective Approximately 10% of young adults report non-medical use of stimulants (cocaine, amphetamine, methylphenidate), which puts them at risk for the development of dependence. This fMRI study investigates whether subjects at early stages of stimulant use show altered decision making processing. Methods 158 occasional stimulants users (OSU) and 50 comparison subjects (CS) performed a “risky gains” decision making task during which they could select safe options (cash in 20 cents) or gamble them for double or nothing in two consecutive gambles (win or lose 40 or 80 cents, “risky decisions”). The primary analysis focused on risky versus safe decisions. Three secondary analyses were conducted: First, a robust regression examined the effect of lifetime exposure to stimulants and marijuana; second, subgroups of OSU with >1000 (n = 42), or <50 lifetime marijuana uses (n = 32), were compared to CS with <50 lifetime uses (n = 46) to examine potential marijuana effects; third, brain activation associated with behavioral adjustment following monetary losses was probed. Results There were no behavioral differences between groups. OSU showed attenuated activation across risky and safe decisions in prefrontal cortex, insula, and dorsal striatum, exhibited lower anterior cingulate cortex (ACC) and dorsal striatum activation for risky decisions and greater inferior frontal gyrus activation for safe decisions. Those OSU with relatively more stimulant use showed greater dorsal ACC and posterior insula attenuation. In comparison, greater lifetime marijuana use was associated with less neural differentiation between risky and safe decisions. OSU who chose more safe responses after losses exhibited similarities with CS relative to those preferring risky options. Discussion Individuals at risk for the development of stimulant use disorders presented less differentiated neural processing of risky and safe options. Specifically, OSU show attenuated brain response in regions critical for performance monitoring, reward processing and interoceptive awareness. Marijuana had additive effects by diminishing neural risk differentiation.
Collapse
Affiliation(s)
- Martina Reske
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience and Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA BRAIN Institute I, Jülich, Germany
| | - Jennifer L. Stewart
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- CUNY Queens College, Queens, New York, United States of America
| | - Taru M. Flagan
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- University of Texas, Austin, Texas, United States of America
| | - Martin P. Paulus
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Psychiatry Service, VA San Diego Healthcare System, La Jolla, California, United States of America
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
33
|
Barzegar S, Komaki A, Shahidi S, Sarihi A, Mirazi N, Salehi I. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats. Pharmacol Biochem Behav 2015; 131:87-90. [PMID: 25684318 DOI: 10.1016/j.pbb.2015.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. MATERIALS AND METHODS On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. RESULTS Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. CONCLUSIONS These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory.
Collapse
Affiliation(s)
- Somayeh Barzegar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Mirazi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Schwitzer T, Schwan R, Angioi-Duprez K, Ingster-Moati I, Lalanne L, Giersch A, Laprevote V. The cannabinoid system and visual processing: a review on experimental findings and clinical presumptions. Eur Neuropsychopharmacol 2015; 25:100-12. [PMID: 25482685 DOI: 10.1016/j.euroneuro.2014.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 01/27/2023]
Abstract
Cannabis is one of the most prevalent drugs used worldwide. Regular cannabis use is associated with impairments in highly integrative cognitive functions such as memory, attention and executive functions. To date, the cerebral mechanisms of these deficits are still poorly understood. Studying the processing of visual information may offer an innovative and relevant approach to evaluate the cerebral impact of exogenous cannabinoids on the human brain. Furthermore, this knowledge is required to understand the impact of cannabis intake in everyday life, and especially in car drivers. Here we review the role of the endocannabinoids in the functioning of the visual system and the potential involvement of cannabis use in visual dysfunctions. This review describes the presence of the endocannabinoids in the critical stages of visual information processing, and their role in the modulation of visual neurotransmission and visual synaptic plasticity, thereby enabling them to alter the transmission of the visual signal. We also review several induced visual changes, together with experimental dysfunctions reported in cannabis users. In the discussion, we consider these results in relation to the existing literature. We argue for more involvement of public health research in the study of visual function in cannabis users, especially because cannabis use is implicated in driving impairments.
Collapse
Affiliation(s)
- Thomas Schwitzer
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg F-67000, France
| | - Raymund Schwan
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre d׳Investigation Clinique CIC-INSERM 9501, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France
| | | | | | - Laurence Lalanne
- Clinique Psychiatrique, CHRU Strasbourg, FTMS, Strasbourg, F-67000, France; INSERM U1114, Physiopathologie et Psychopathologie Cognitive de la Schizophrénie, Hôpitaux Universitaires de Strasbourg, Strasbourg F-67000, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg F-67000, France
| | - Vincent Laprevote
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre d׳Investigation Clinique CIC-INSERM 9501, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France.
| |
Collapse
|
35
|
Cathel AM, Reyes BAS, Wang Q, Palma J, Mackie K, Bockstaele EJV, Kirby LG. Cannabinoid modulation of alpha2 adrenergic receptor function in rodent medial prefrontal cortex. Eur J Neurosci 2014; 40:3202-14. [PMID: 25131562 PMCID: PMC4205194 DOI: 10.1111/ejn.12690] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
Abstract
Endocannabinoids acting at the cannabinoid type 1 receptor (CB1R) are known to regulate attention, cognition and mood. Previous studies have shown that, in the rat medial prefrontal cortex (mPFC), CB1R agonists increase norepinephrine release, an effect that may be attributed, in part, to CB1Rs localised to noradrenergic axon terminals. The present study was aimed at further characterising functional interactions between CB1R and adrenergic receptor (AR) systems in the mPFC using in vitro intracellular electrophysiology and high-resolution neuroanatomical techniques. Whole-cell patch-clamp recordings of layer V/VI cortical pyramidal neurons in rats revealed that both acute and chronic treatment with the synthetic CB1R agonist WIN 55,212-2 blocked elevations in cortical pyramidal cell excitability and increases in input resistance evoked by the α2-adrenergic receptor (α2-AR) agonist clonidine, suggesting a desensitisation of α2-ARs. These CB1R-α2-AR interactions were further shown to be both action potential- and gamma-aminobutyric acid-independent. To better define sites of cannabinoid-AR interactions, we localised α2A-adrenergic receptors (α2A-ARs) in a genetically modified mouse that expressed a hemoagglutinin (HA) tag downstream of the α2A-AR promoter. Light and electron microscopy indicated that HA-α2A-AR was distributed in axon terminals and somatodendritic processes especially in layer V of the mPFC. Triple-labeling immunocytochemistry revealed that α2A-AR and CB1R were localised to processes that contained dopamine-β-hydroxylase, a marker of norepinephrine. Furthermore, HA-α2A-AR was localised to processes that were directly apposed to CB1R. These findings suggest multiple sites of interaction between cortical cannabinoid-adrenergic systems that may contribute to understanding the effect of cannabinoids on executive functions and mood.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Animals
- Benzoxazines/pharmacology
- Clonidine/pharmacology
- Gene Knock-In Techniques
- Male
- Mice
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/physiology
- Prefrontal Cortex/ultrastructure
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Pyramidal Cells/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/physiology
Collapse
Affiliation(s)
- Alessandra M. Cathel
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Beverly A. S. Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Palma
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Kenneth Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Lynn G. Kirby
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
36
|
Association between interleukin-6 and neurocognitive performance as a function of self-reported lifetime marijuana use in a community based sample of African American adults. J Int Neuropsychol Soc 2014; 20:773-83. [PMID: 25241622 DOI: 10.1017/s1355617714000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of the current study was to determine if self-reported lifetime marijuana use moderates the relationship between interleukin-6 (IL-6) and neurocognitive performance. Participants included 161 African American adults (50.3% women), with a mean age of 45.24 (SD=11.34). Serum was drawn upon entry into the study and participants completed a demographic questionnaire, which included drug use history, and a battery of neuropsychological tests. Using multiple regression analyses and adjusting for demographic covariates, the interaction term comprised of IL-6 and self-reported lifetime marijuana use was significantly associated with poorer performance on the Written (β=-.116; SE=.059; p=.049) and Oral trials (β=-.143; SE=.062; p=.022) of the Symbol Digit Modalities Test, as well as the Trail Making Test trial A (β=.157; SE=.071; p=.028). Current findings support previous literature, which presents the inverse relationship between IL-6 and neurocognitive dysfunction. The potential protective properties of marijuana use in African Americans, who are at increased risk for inflammatory diseases, are discussed.
Collapse
|
37
|
WIN55,212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol Biochem Behav 2014; 124:58-66. [DOI: 10.1016/j.pbb.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/19/2014] [Accepted: 05/17/2014] [Indexed: 11/18/2022]
|
38
|
Oleson EB, Cachope R, Fitoussi A, Tsutsui K, Wu S, Gallegos JA, Cheer JF. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release. Neuropsychopharmacology 2014; 39:1441-52. [PMID: 24345819 PMCID: PMC3988547 DOI: 10.1038/npp.2013.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/11/2013] [Accepted: 12/08/2013] [Indexed: 11/09/2022]
Abstract
The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2.
Collapse
Affiliation(s)
- Erik B Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,University of Colorado Denver, Denver, CO, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aurelie Fitoussi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kimberly Tsutsui
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon Wu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 706 0112, Fax: +1 410 706 2512, E-mail:
| |
Collapse
|
39
|
Abstract
Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies.
Collapse
|
40
|
den Boon FS, Chameau P, Houthuijs K, Bolijn S, Mastrangelo N, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflugers Arch 2014; 466:2257-68. [PMID: 24671573 DOI: 10.1007/s00424-014-1502-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation. This AP-evoked synthesis of eCBs is dependent on the Ca(2+) influx through N-type voltage-gated calcium channels. Our results indicate that 2-AG is the main eCB involved in this process. Finally, we demonstrate that under physiologically relevant intracellular Cl(-) conditions, 20-Hz AP firing leads to a CB2R-dependent reduction in neuronal excitability. Altogether, our data indicate that eCBs released upon action potential firing can modulate, through CB2R activation, neuronal activity in the mPFC. We discuss how this may be a mechanism to prevent excessive neuronal firing.
Collapse
Affiliation(s)
- Femke S den Boon
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014; 5:118. [PMID: 25225488 PMCID: PMC4150350 DOI: 10.3389/fpsyt.2014.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
Collapse
Affiliation(s)
- Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Psychiatry, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
42
|
Tamm L, Epstein JN, Lisdahl KM, Tapert S, Hinshaw SP, Arnold LE, Velanova K, Abikoff H, Swanson JM, MTA Neuroimaging Group. Impact of ADHD and cannabis use on executive functioning in young adults. Drug Alcohol Depend 2013; 133:607-14. [PMID: 23992650 PMCID: PMC3820098 DOI: 10.1016/j.drugalcdep.2013.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and cannabis use are each associated with specific cognitive deficits. Few studies have investigated the neurocognitive profile of individuals with both an ADHD history and regular cannabis use. The greatest cognitive impairment is expected among ADHD Cannabis Users compared to those with ADHD-only, Cannabis use-only, or neither. METHODS Young adults (24.2 ± 1.2 years) with a childhood ADHD diagnosis who did (n=42) and did not (n=45) report past year ≥ monthly cannabis use were compared on neuropsychological measures to a local normative comparison group (LNCG) who did (n=20) and did not (n=21) report past year regular cannabis use. Age, gender, IQ, socioeconomic status, and past year alcohol and smoking were statistical covariates. RESULTS The ADHD group performed worse than LNCG on verbal memory, processing speed, cognitive interference, decision-making, working memory, and response inhibition. No significant effects for cannabis use emerged. Interactions between ADHD and cannabis were non-significant. Exploratory analyses revealed that individuals who began using cannabis regularly before age 16 (n=27) may have poorer executive functioning (i.e., decision-making, working memory, and response inhibition), than users who began later (n=32); replication is warranted with a larger sample. CONCLUSIONS A childhood diagnosis of ADHD, but not cannabis use in adulthood, was associated with executive dysfunction. Earlier initiation of cannabis use may be linked to poor cognitive outcomes and a significantly greater proportion of the ADHD group began using cannabis before age 16. Regular cannabis use starting after age 16 may not be sufficient to aggravate longstanding cognitive deficits characteristic of ADHD.
Collapse
Affiliation(s)
- Leanne Tamm
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 10006, Cincinnati, OH 45229, United States.
| | - Jeffery N. Epstein
- Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave. ML 10006, Cincinnati, OH 45229
| | - Krista M. Lisdahl
- University of Wisconsin-Milwaukee, Psychology Department, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211. Brooke MolinaUniversity of Pittsburgh, 3811 O’Hara St., Pittsburgh, PA 15213
| | - Susan Tapert
- University of California, San Diego, 3350 La Jolla Village Drive (116B), San Diego, CA 92161
| | - Stephen P. Hinshaw
- Department of Psychology, Tolman Hall #1650, University of California Berkeley, CA 94720-1650
| | | | - Katerina Velanova
- Western Psychiatric Institute and Clinic University of Pittsburgh Loeffler Building - Room 120, 121 Meyran Avenue, Pittsburgh, PA 15213
| | - Howard Abikoff
- NYU Child Study Center / Dept. of Child and Adolescent Psychiatry, One Park Avenue, 7 Fl. / New York, NY 10016
| | - James M. Swanson
- University of California, Irvine Child Development Center, 19722 MacArthur Blvd, Irvine, CA 92612
| | | | | |
Collapse
|
43
|
Verdejo-García A, Fagundo AB, Cuenca A, Rodriguez J, Cuyás E, Langohr K, de Sola Llopis S, Civit E, Farré M, Peña-Casanova J, de la Torre R. COMT val158met and 5-HTTLPR genetic polymorphisms moderate executive control in cannabis users. Neuropsychopharmacology 2013; 38:1598-606. [PMID: 23449176 PMCID: PMC3682154 DOI: 10.1038/npp.2013.59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 11/09/2022]
Abstract
The adverse effects of cannabis use on executive functions are still controversial, fostering the need for novel biomarkers able to unveil individual differences in the cognitive impact of cannabis consumption. Two common genetic polymorphisms have been linked to the neuroadaptive impact of Δ9-tetrahydrocannabinol (THC) exposure and to executive functions in animals: the catechol-O-methyltransferase (COMT) gene val158met polymorphism and the SLC6A4 gene 5-HTTLPR polymorphism. We aimed to test if these polymorphisms moderate the harmful effects of cannabis use on executive function in young cannabis users. We recruited 144 participants: 86 cannabis users and 58 non-drug user controls. Both groups were genotyped and matched for genetic makeup, sex, age, education, and IQ. We used a computerized neuropsychological battery to assess different aspects of executive functions: sustained attention (CANTAB Rapid Visual Information Processing Test, RVIP), working memory (N-back), monitoring/shifting (CANTAB ID/ED set shifting), planning (CANTAB Stockings of Cambridge, SOC), and decision-making (Iowa Gambling Task, IGT). We used general linear model-based analyses to test performance differences between cannabis users and controls as a function of genotypes. We found that: (i) daily cannabis use is not associated with executive function deficits; and (ii) COMT val158met and 5-HTTLPR polymorphisms moderate the link between cannabis use and executive performance. Cannabis users carrying the COMT val/val genotype exhibited lower accuracy of sustained attention, associated with a more strict response bias, than val/val non-users. Cannabis users carrying the COMT val allele also committed more monitoring/shifting errors than cannabis users carrying the met/met genotype. Finally, cannabis users carrying the 5-HTTLPR s/s genotype had worse IGT performance than s/s non-users. COMT and SLC6A4 genes moderate the impact of cannabis use on executive functions.
Collapse
|
44
|
Fridberg DJ, Skosnik PD, Hetrick WP, O’Donnell BF. Neural correlates of performance monitoring in chronic cannabis users and cannabis-naive controls. J Psychopharmacol 2013; 27:515-25. [PMID: 23427191 PMCID: PMC3923357 DOI: 10.1177/0269881113477745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic cannabis use is associated with residual negative effects on measures of executive functioning. However, little previous work has focused specifically on executive processes involved in performance monitoring in frequent cannabis users. The present study investigated event-related potential (ERP) correlates of performance monitoring in chronic cannabis users. The error-related negativity (ERN) and error positivity (Pe), ERPs sensitive to performance monitoring, were recorded from 30 frequent cannabis users (mean usage=5.52 days/week) and 32 cannabis-naïve control participants during a speeded stimulus discrimination task. The "oddball" P3 ERP was recorded as well. Users and controls did not differ on the amplitude or latency of the ERN; however, Pe amplitude was larger among users. Users also showed increased amplitude and reduced latency of the P3 in response to infrequent stimuli presented during the task. Among users, urinary cannabinoid metabolite levels at testing were unrelated to ERP outcomes. However, total years of cannabis use correlated negatively with P3 latency and positively with P3 amplitude, and age of first cannabis use correlated negatively with P3 amplitude. The results of this study suggest that chronic cannabis use is associated with alterations in neural activity related to the processing of motivationally-relevant stimuli (P3) and errors (Pe).
Collapse
Affiliation(s)
- Daniel J Fridberg
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | - Brian F O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
45
|
Campolongo P, Morena M, Scaccianoce S, Trezza V, Chiarotti F, Schelling G, Cuomo V, Roozendaal B. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity. Neuropsychopharmacology 2013; 38:1276-86. [PMID: 23340520 PMCID: PMC3656371 DOI: 10.1038/npp.2013.26] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long-term retention of object recognition memory.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy.
| | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Viviana Trezza
- Department of Biology, University of Roma Tre, Viale Marconi 446, Rome, Italy
| | - Flavia Chiarotti
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neuroscience, Instituto Superiore di Sanità, Rome, Italy
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians University, Munich, Germany
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Ortega JE, Gonzalez-Lira V, Horrillo I, Herrera-Marschitz M, Callado LF, Meana JJ. Additive effect of rimonabant and citalopram on extracellular serotonin levels monitored with in vivo microdialysis in rat brain. Eur J Pharmacol 2013; 709:13-9. [PMID: 23562616 DOI: 10.1016/j.ejphar.2013.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/24/2013] [Indexed: 12/22/2022]
Abstract
Current pharmacological therapies for depression, including selective serotonin reuptake inhibitors (SSRI), are far from ideal. The cannabinoid system has been implicated in control of mood and neural processing of emotional information, and the modulation of serotonin (5-HT) release in the synaptic clefts. The aim of the present study was to evaluate whether the combination of a selective SSRI (citalopram) with a selective cannabinoid CB1 receptor antagonist (rimonabant) represents a more effective strategy than the antidepressant alone to enhance serotonergic transmission. For this purpose extracellular 5-HT levels were monitored with microdialysis in forebrain (prefrontal cortex, PFC) and mesencephalic (locus coeruleus, LC) serotonergic terminal areas in freely awake rats. Rimonabant at 10 mg/kg, i.p., but not at 3mg/kg i.p. increased 5-HT in both areas. Citalopram at 3, 5 and 10 mg/kg i.p. increased 5-HT both in PFC and LC in a dose-dependent manner. The effect of citalopram (5mg/kg, i.p.) on 5-HT levels was significantly enhanced by rimonabant at 10 mg/kg, i.p. but not at 3 mg/kg i.p. in both areas. The present results demonstrate that the cannabinoid CB1 receptor antagonist rimonabant is able to enhance in an additive manner the citalopram-induced increase of 5-HT concentrations in serotonergic terminal areas. The combination of a cannabinoid antagonist and a SSRI may provide a novel strategy to increase 5-HT availability, reducing the dose of SSRIs, and potentially decreasing the time lag for the clinical onset of the antidepressant effect.
Collapse
Affiliation(s)
- Jorge Emilio Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Investigating the effects of cannabis use on memory function appears challenging. While early observational investigations aimed to elucidate the longer-term effects of cannabis use on memory function in humans, findings remained equivocal and pointed to a pattern of interacting factors impacting on the relationship between cannabis use and memory function, rather than a simple direct effect of cannabis. Only recently, a clearer picture of the chronic and acute effects of cannabis use on memory function has emerged once studies have controlled for potential confounding factors and started to investigate the acute effects of delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the main ingredients in the extract of the cannabis plant in pharmacological challenge experiments. Relatively consistent findings have been reported regarding the acute impairments induced by a single dose of Δ9-THC on verbal and working memory. It is unclear whether they may persist beyond the intoxication state. In the long-term, these impairments seem particularly likely to manifest and may also persist following abstinence if regular and heavy use of cannabis strains high in Δ9-THC is started at an early age. Although still at an early stage, studies that employed advanced neuroimaging techniques have started to model the neural underpinnings of the effects of cannabis use and implicate a network of functional and morphological alterations that may moderate the effects of cannabis on memory function. Future experimental and epidemiological studies that take into consideration individual differences, particularly previous cannabis history and demographic characteristics, but also the precise mixture of the ingredients of the consumed cannabis are necessary to clarify the magnitude and the mechanisms by which cannabis-induced memory impairments occur and to elucidate underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Tabea Schoeler
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
48
|
Giné E, Echeverry-Alzate V, López-Moreno JA, López-Jimenez A, Torres-Romero D, Perez-Castillo A, Santos A. Developmentally-induced hypothyroidism alters the expression of Egr-1 and Arc genes and the sensitivity to cannabinoid agonists in the hippocampus. Possible implications for memory and learning. Mol Cell Endocrinol 2013; 365:119-28. [PMID: 23079472 DOI: 10.1016/j.mce.2012.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 12/15/2022]
Abstract
We analyzed the role of the cannabinoid system in the cognitive deficits caused by developmentally-induced hypothyroidism. We studied in control and hypothyroid rats the effect of a cannabinoid agonist on spatial memory, hippocampal phosphorylation of CREB and expression of early genes. Our results show that, 1-basal hippocampal expression of early genes and spatial learning are decreased in hypothyroid rats; 2-hypothyroid rats are very sensitive to cannabinoid agonists. Low dose of cannabinoid agonist ineffective in controls altered spatial memory, CREB's phosphorylation and early gene expression in hypothyroids. These effects are not due a change in CB1 receptor (CB1R) content. 3-Treatment of hypothyroid rats with thyroid hormones normalized the biochemical and behavioral responses to cannabinoid agonists but did not correct the low basal levels of early gene transcripts and the deficits in spatial learning. All these data suggest that the hippocampal deregulation of early genes expression could play an important role in the basal cognitive deficits of hypothyroid rats.
Collapse
Affiliation(s)
- Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee AM, Oleson EB, Diergaarde L, Cheer JF, Pattij T. Cannabinoids and value-based decision making: implications for neurodegenerative disorders. ACTA ACUST UNITED AC 2012; 2:131-138. [PMID: 23162787 DOI: 10.1016/j.baga.2012.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, disturbances in cognitive function have been increasingly recognized as important symptomatic phenomena in neurodegenerative diseases, including Parkinson's Disease (PD). Value-based decision making in particular is an important executive cognitive function that is not only impaired in patients with PD, but also shares neural substrates with PD in basal ganglia structures and the dopamine system. Interestingly, the endogenous cannabinoid system modulates dopamine function and subsequently value-based decision making. This review will provide an overview of the interdisciplinary research that has influenced our understanding of value-based decision making and the role of dopamine, particularly in the context of reinforcement learning theories, as well as recent animal and human studies that demonstrate the modulatory role of activation of cannabinoid receptors by exogenous agonists or their naturally occurring ligands. The implications of this research for the symptomatology of and potential treatments for PD are also discussed.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU university medical center, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
50
|
Wiskerke J, Irimia C, Cravatt BF, De Vries TJ, Schoffelmeer ANM, Pattij T, Parsons LH. Characterization of the effects of reuptake and hydrolysis inhibition on interstitial endocannabinoid levels in the brain: an in vivo microdialysis study. ACS Chem Neurosci 2012; 3:407-17. [PMID: 22860210 DOI: 10.1021/cn300036b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/21/2012] [Indexed: 11/29/2022] Open
Abstract
The present experiments employed in vivo microdialysis to characterize the effects of commonly used endocannabinoid clearance inhibitors on basal and depolarization-induced alterations in interstitial endocannabinoid levels in the nucleus accumbens of rat brain. Compounds targeting the putative endocannabinoid transporter and hydrolytic enzymes (FAAH and MAGL) were compared. The transporter inhibitor AM404 modestly enhanced depolarization-induced increases in 2-arachidonoyl glycerol (2-AG) levels but did not alter levels of N-arachidonoyl-ethanolamide (anandamide, AEA). The transport inhibitor UCM707 did not alter dialysate levels of either endocannabinoid. The FAAH inhibitors URB597 and PF-3845 robustly increased AEA levels during depolarization without altering 2-AG levels. The MAGL inhibitor URB602 significantly enhanced depolarization-induced increases in 2-AG, but did not alter AEA levels. In contrast, the MAGL inhibitor JZL184 did not alter 2-AG or AEA levels under any condition tested. Finally, the dual FAAH/MAGL inhibitor JZL195 significantly enhanced depolarization-induced increases in both AEA and 2-AG levels. In contrast to the present observations in rats, prior work in mice has demonstrated a robust JZL184-induced enhancement of depolarization-induced increases in dialysate 2-AG. Thus, to further investigate species differences, additional tests with JZL184, PF-3845, and JZL195 were performed in mice. Consistent with prior reports, JZL184 significantly enhanced depolarization-induced increases in 2-AG without altering AEA levels. PF-3845 and JZL195 produced profiles in mouse dialysates comparable to those observed in rats. These findings confirm that interstitial endocannabinoid levels in the brain can be selectively manipulated by endocannabinoid clearance inhibitors. While PF-3845 and JZL195 produce similar effects in both rats and mice, substantial species differences in JZL184 efficacy are evident, which is consistent with previous studies.
Collapse
Affiliation(s)
- Joost Wiskerke
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-2120, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-2120, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Taco J. De Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-2120, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|