1
|
Hosseini Z, Beheshti F, Hosseini Kakhki FS, Hosseini M, Anaeigoudari A. Sodium nitroprusside restored lipopolysaccharide-induced learning and memory impairment in male rats via attenuating inflammation and oxidative stress. Physiol Rep 2024; 12:e16053. [PMID: 38806440 PMCID: PMC11133007 DOI: 10.14814/phy2.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Inflammation and oxidative stress upset memory. We explored influence of sodium nitroprusside (SNP) on memory deficits resulted from lipopolysaccharide (LPS).Groups include control, LPS, LPS + SNP 1 mg/kg, LPS + SNP 2 mg/kg, and LPS + SNP 3 mg/kg. Morris water maze and passive avoidance tests and biochemical measurements were carried out.In Morris water maze, LPS prolonged time and distance for finding the platform. In probe trial, it diminished time spent and traveled distance in the target zone. Injection of 2 and 3 mg/kg of SNP overturned the effect of LPS. In passive avoidance task, LPS postponed entrance into darkroom and reduced time spent in light room and incremented time spent in darkroom in 3, 24, and 72 h after electrical shock. All three doses of SNP restored the effects of LPS. Biochemical experiments confirmed that LPS elevated interleukin-6 and malondialdehyde concentration and declined total thiol content and superoxide dismutase and catalase activity in the hippocampus and cortex tissues. SNP particularly at a 3 mg/kg dose ameliorated LPS effects on these parameters.SNP attenuated memory disabilities resulting from LPS through modifying inflammation and boosting antioxidant defense.
Collapse
Affiliation(s)
- Zeinab Hosseini
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farimah Beheshti
- Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | | | - Mahmoud Hosseini
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
2
|
Sadeghi MA, Hemmati S, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Targeting neuronal nitric oxide synthase and the nitrergic system in post-traumatic stress disorder. Psychopharmacology (Berl) 2022; 239:3057-3082. [PMID: 36029333 DOI: 10.1007/s00213-022-06212-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
RATIONALE Current pharmacological approaches to treatment of post-traumatic stress disorder (PTSD) lack adequate effectiveness. As a result, identifying new molecular targets for drug development is necessary. Furthermore, fear learning and memory in PTSD can undergo different phases, such as fear acquisition, consolidation, and extinction. Each phase may involve different cellular pathways and brain regions. As a result, effective management of PTSD requires mindfulness of the timing of drug administration. One of the molecular targets currently under intense investigation is the N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR). However, despite the therapeutic efficacy of drugs targeting NMDAR, their translation into clinical use has been challenging due to their various side effects. One possible solution to this problem is to target signaling proteins downstream to NMDAR to improve targeting specificity. One of these proteins is the neuronal nitric oxide synthase (nNOS), which is activated following calcium influx through the NMDAR. OBJECTIVE In this paper, we review the literature on the pharmacological modulation of nNOS in animal models of PTSD to evaluate its therapeutic potential. Furthermore, we attempt to decipher the inconsistencies observed between the findings of these studies based on the specific phase of fear learning which they had targeted. RESULTS Inhibition of nNOS may inhibit fear acquisition and recall, while not having a significant effect on fear consolidation and extinction. However, it may improve extinction consolidation or reconsolidation blockade. CONCLUSIONS Modulation of nNOS has therapeutic potential against PTSD and warrants further development for use in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nelissen E, Possemis N, Van Goethem NP, Schepers M, Mulder-Jongen DAJ, Dietz L, Janssen W, Gerisch M, Hüser J, Sandner P, Vanmierlo T, Prickaerts J. The sGC stimulator BAY-747 and activator runcaciguat can enhance memory in vivo via differential hippocampal plasticity mechanisms. Sci Rep 2022; 12:3589. [PMID: 35246566 PMCID: PMC8897390 DOI: 10.1038/s41598-022-07391-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) requires a heme-group bound in order to produce cGMP, a second messenger involved in memory formation, while heme-free sGC is inactive. Two compound classes can increase sGC activity: sGC stimulators acting on heme-bound sGC, and sGC activators acting on heme-free sGC. In this rodent study, we investigated the potential of the novel brain-penetrant sGC stimulator BAY-747 and sGC activator runcaciguat to enhance long-term memory and attenuate short-term memory deficits induced by the NOS-inhibitor L-NAME. Furthermore, hippocampal plasticity mechanisms were investigated. In vivo, oral administration of BAY-747 and runcaciguat to male Wistar rats enhanced memory acquisition in the object location task (OLT), while only BAY-747 reversed L-NAME induced memory impairments in the OLT. Ex vivo, both BAY-747 and runcaciguat enhanced hippocampal GluA1-containing AMPA receptor (AMPAR) trafficking in a chemical LTP model for memory acquisition using acute mouse hippocampal slices. In vivo only runcaciguat acted on the glutamatergic AMPAR system in hippocampal memory acquisition processes, while for BAY-747 the effects on the neurotrophic system were more pronounced as measured in male mice using western blot. Altogether this study shows that sGC stimulators and activators have potential as cognition enhancers, while the underlying plasticity mechanisms may determine disease-specific effectiveness.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Nick P Van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Melissa Schepers
- Neuro-Immune Connect and Repair Lab, Biomedical Research Institute, Hasselt University, 3500, Hasselt, Belgium
| | - Danielle A J Mulder-Jongen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Lisa Dietz
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Wiebke Janssen
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Michael Gerisch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Jörg Hüser
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
- Hannover Medical School, 30625, Hannover, Germany
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Neuro-Immune Connect and Repair Lab, Biomedical Research Institute, Hasselt University, 3500, Hasselt, Belgium
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Yu KH, Hung HY. Synthetic strategy and structure-activity relationship (SAR) studies of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Adv 2021; 12:251-264. [PMID: 35424505 PMCID: PMC8978903 DOI: 10.1039/d1ra08120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Since 1994, YC-1 (Lificiguat, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of hypoxia-inducible factor-1 (HIF-1) and NF-κB. Recently, Riociguat®, the first soluble guanylate cyclase (sGC) stimulator drug used to treat pulmonary hypertension and pulmonary arterial hypertension, was derived from the YC-1 structure. In this review, we aim to highlight the synthesis and structure–activity relationships in the development of YC-1 analogs and their possible indications. Since 1994, YC-1 (Lificiguat) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of HIF-1 and NF-κB.![]()
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
5
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
6
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
7
|
Yazir Y, Polat S, Utkan T, Aricioglu F. Role of the nitric oxide-soluble guanylyl cyclase pathway in cognitive deficits in streptozotocin-induced diabetic rats. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1471883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Yusufhan Yazir
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Selen Polat
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Tijen Utkan
- Department of Pharmacology and Experimental Medical Research and Application Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Feyza Aricioglu
- Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Marmara University, İstanbul, Turkey
| |
Collapse
|
8
|
Zuccarini M, Giuliani P, Frinchi M, Mudò G, Serio RM, Belluardo N, Buccella S, Carluccio M, Condorelli DF, Caciagli F, Ciccarelli R, Di Iorio P. Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders. Front Pharmacol 2018; 9:110. [PMID: 29515443 PMCID: PMC5826394 DOI: 10.3389/fphar.2018.00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Rosa Maria Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Silvana Buccella
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | | | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| |
Collapse
|
9
|
Shariatpanahi M, Khodagholi F, Ashabi G, Bonakdar Yazdi B, Hassani S, Azami K, Abdollahi M, Noorbakhsh F, Taghizadeh G, Sharifzadeh M. The involvement of protein kinase G inhibitor in regulation of apoptosis and autophagy markers in spatial memory deficit induced by Aβ. Fundam Clin Pharmacol 2016; 30:364-75. [DOI: 10.1111/fcp.12196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Marjan Shariatpanahi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Ghorbangol Ashabi
- Department of Physiology; Physiology Research Center; School of Medicine; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Behnoosh Bonakdar Yazdi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Kian Azami
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Farshid Noorbakhsh
- Department of Immunology; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ghorban Taghizadeh
- Department of Neuroscience; Faculty of Advanced Science and Technology in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Department of Neuroscience; Faculty of Advanced Science and Technology in Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
10
|
Gao Y, Heldt SA. Lack of neuronal nitric oxide synthase results in attention deficit hyperactivity disorder-like behaviors in mice. Behav Neurosci 2015; 129:50-61. [PMID: 25621792 DOI: 10.1037/bne0000031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is an important molecule for the proper development and function of the central nervous system. In this study, we investigated the behavioral alterations in the neuronal NO synthase knockout mice (NOS1 KO) with a deficient NO production mechanism in the brain, characterizing it as a potential rodent model for attention deficit hyperactivity disorder (ADHD). NOS1 KO exhibited higher locomotor activity than their wildtype counterparts in a novel environment, as measured by open field (OF) test. In a 2-way active avoidance paradigm (TWAA), we found sex-dependent effects, where male KO displayed deficits in avoidance and escape behavior, sustained higher incidences of shuttle crossings, and higher incidences of intertrial interval crossings, suggesting learning, and/or performance impairments. On the other hand, female KO demonstrated few deficits in TWAA. Molsidomine (MSD), a NO donor, rescued TWAA deficits in male KO when acutely administered before training. In a passive avoidance paradigm, KO of both sexes displayed significantly shorter step-through latencies after training. Further, abnormal spontaneous motor activity rhythms were found in the KO during the dark phase of the day, indicating dysregulation of rhythmic activities. These data indicate that NOS1 KO mimics certain ADHD-like behaviors and could potentially serve as a novel rodent model for ADHD.
Collapse
|
11
|
Mutlu O, Akar F, Celikyurt IK, Tanyeri P, Ulak G, Erden F. 7-NI and ODQ Disturbs Memory in the Elevated Plus Maze, Morris Water Maze, and Radial Arm Maze Tests in Mice. Drug Target Insights 2015; 9:1-8. [PMID: 25788830 PMCID: PMC4354329 DOI: 10.4137/dti.s23378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is an atypical neurotransmitter that causes changes in cognition. Nitric oxide synthase (NOS) and guanylate cyclase (GC) inhibitors have been shown to exert some effects on cognition in previous studies; however, the findings have been controversial. This study was aimed at understanding the effects of an NOS inhibitor, 7-nitroindazole (7-NI), and a guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on spatial memory in modified elevated plus maze (mEPM), Morris water maze (MWM), and radial arm maze (RAM) tests. Male Balb-c mice were treated via intraperitoneal injections with 7-NI (15 mg/kg), ODQ (3, 10 mg/kg), L-arginine (100 mg/kg) + 7-NI (15 mg/kg), or physiological saline. ODQ (3 mg/kg) and 7-NI (15 mg/kg) significantly increased the second-day latency in the mEPM test. 7-NI (15 mg/kg) and ODQ (10 mg/kg) significantly increased the escape latency in second, third, and fourth sessions, decreased the time spent in the escape platform’s quadrant, and increased the mean distance to the platform in the probe trial of the MWM test. ODQ (3, 10 mg/kg) and 7-NI (15 mg/kg) significantly increased the number of errors, whereas only 7-NI increased the latency in the RAM test. The administration of L-arginine (100 mg/kg) prior to 7-NI inverted the effects of 7-NI, which supports the role of NO on cognition. Our study shows that the NO/cGMP/GS pathway can regulate spatial memory in mice.
Collapse
Affiliation(s)
- Oguz Mutlu
- Department of Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Furuzan Akar
- Department of Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | | | - Pelin Tanyeri
- Department of Pharmacology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Guner Ulak
- Department of Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Faruk Erden
- Department of Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
12
|
Komsuoglu Celikyurt I, Utkan T, Ozer C, Gacar N, Aricioglu F. Effects of YC-1 on learning and memory functions of aged rats. Med Sci Monit Basic Res 2014; 20:130-7. [PMID: 25144469 PMCID: PMC4148360 DOI: 10.12659/msmbr.891064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The aim of this study was to investigate the effects of a potent nitric oxide-guanylate cyclase activator, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), on learning and memory functions in aged rats. Material/Methods Rats were divided into 2 groups as 4-month-old and 24-month-old rats. Rats received YC-1 (1 mg/kg/day) for 2 weeks long-term. Morris water maze (MWM) and passive avoidance (PA) tests were used to determine learning and memory functions. Results In the MWM test, there is a significant increase in the acquisition latency (1–4 days) of 24-month-old rats. There is a significant reduction in the “time spent in the escape platform’s quadrant” in 24-month-old rats compared to 4-month-old rats in the probe trial of the MWM test. YC-1 treatment reversed the reduction of the “time spent in the escape platform’s quadrant” of 24-month-old rats. In the PA test, there was no significant difference in the 1st-day latency of rats in all groups. On the 2nd day, retention latency significantly decreased in the 24-month-old rats compared to 4-month-olds. YC-1 reversed the diminished retention latency in 24-month-old rats. YC-1 treatment and aging did not affect results of the locomotor activity test or the foot-shock sensitivity test, suggesting our results were not due to a change in motor activity or disability of the animals. Conclusions Our findings suggest that activation of the NO-sGC-cGMP pathway plays an important role in spatial and emotional learning and memory functions in aged rats.
Collapse
Affiliation(s)
- Ipek Komsuoglu Celikyurt
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Tijen Utkan
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Cuneyt Ozer
- Medical Faculty and Experimental Medical Research-Application Center, Kocaeli University, Kocaeli, Turkey
| | - Nejat Gacar
- Department of Pharmacology, Medical Faculty and Experimental Medical Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
13
|
Moosavi M, Abbasi L, Zarifkar A, Rastegar K. The role of nitric oxide in spatial memory stages, hippocampal ERK and CaMKII phosphorylation. Pharmacol Biochem Behav 2014; 122:164-72. [PMID: 24704435 DOI: 10.1016/j.pbb.2014.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is an important intercellular messenger in the control of physiologic functions. It is synthesized by 3 different nitric oxide synthase enzymes (NOS). Uses of non-selective NOS inhibitor (L-NAME) have shown that NO is involved in neuronal plasticity and memory. This study aimed to determine the differential role of NO in spatial memory formation steps. In addition, regarding the roles of ERK and CaMKII in hippocampal plasticity, the hippocampal ERK and CaMKII activities were assessed to identify the effect of L-NAME on those proteins during each phase of memory. Adult male Sprague-Dawely rats weighing 220-280 g were trained in a single session consisting of 8 trials. To evaluate the effect of L-NAME on acquisition, L-NAME (3 or 10 mg/kg/i.p.) was administered 30 min before training. To assess its effect on the consolidation phase, L-NAME (3 or 10 mg/kg/i.p.) was injected immediately after training and a probe test was carried out 24 h later to analyse memory retention. To determine its effect on memory retrieval L-NAME (3 or 10 mg/kg/i.p.) was injected 30 min before probe trial which was conducted 24 h after training. The hippocampi were isolated after behavioural studies and western blotting analysis on hippocampal lysates was performed to illustrate the levels of phosphorylated ERK and CaMKII. The results showed that pre-training administration of L-NAME in 10 mg/kg but not 3mg/kg deteriorates acquisition. Post-training and pre-probe administration of L-NAME in 10 mg/kg but not 3 mg/kg impaired animal's performance in probe test. Additionally L-NAME treatment decreased the amount of phosphorylated (activated) ERK and CaMKII in the hippocampus. This study showed that endogenous nitric oxide is involved not only in all stages of memory, but also in ERK and CaMKII activation in the hippocampus during all 3 stages of memory.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Nanotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Leila Abbasi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Karim Rastegar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Akar F, Mutlu O, Komsuoglu Celikyurt I, Bektas E, Tanyeri P, Ulak G, Erden F. Effects of 7-NI and ODQ on memory in the passive avoidance, novel object recognition, and social transmission of food preference tests in mice. Med Sci Monit Basic Res 2014; 20:27-35. [PMID: 24643075 PMCID: PMC3969052 DOI: 10.12659/msmbr.890438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Nitric oxide (NO) is an intercellular messenger that plays a critical role in learning and memory processes. Effects of nitric oxide synthase (NOS) inhibitors and guanylate cyclase (GC) inhibitors on cognitive function remain controversial. Material/Methods The aim of this study was to investigate effects of an NOS inhibitor, 7-nitroindazole (7-NI), and a GC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on different aspects of memory in passive avoidance (PA), novel object recognition (NOR), and social transmission of food preference (STFP) tests. Male Balb-c mice were treated intraperitoneally with 7-NI (15 mg/kg), ODQ (3,10 mg/kg), L-arginine (100 mg/kg) + 7-NI (15 mg/kg), or physiological saline. Results ODQ (10 mg/kg) and 7-NI (15 mg/kg) significantly decreased second-day latency in PA test. 7-NI (15 mg/kg) and ODQ (10 mg/kg) significantly decreased the ratio index in the NOR test. 7-NI and ODQ (10 mg/kg) decreased cued/non-cued food eaten in STFP test. Amount of time spent in center zone significantly increased in ODQ (10 mg/kg) and 7-NI (15 mg/kg) groups in open field test, but there was no effect on total distance moved and speed of animals. ODQ (10 mg/kg) significantly increased number of entries into new compartments in exploratory activity apparatus, while 7-NI had no effect. Administration of L-arginine (100 mg/kg) before 7-NI reversed 7-NI-induced effects, supporting the role of NO in cognition. Conclusions Our results confirm that inhibition of NO/cGMP/GS pathway might disturb emotional, visual, and olfactory memory in mice. Also, 7-NI and ODQ had anxiolytic effects in open field test, and ODQ also enhanced exploratory activity.
Collapse
Affiliation(s)
- Furuzan Akar
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | - Oguz Mutlu
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | | | - Emine Bektas
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | - Pelin Tanyeri
- Department of Pharmacology, Sakarya University, Medical Faculty, Sakarya, Turkey
| | - Guner Ulak
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | - Faruk Erden
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
15
|
Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Future Med Chem 2014; 5:1451-68. [PMID: 23919554 DOI: 10.4155/fmc.13.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer's disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.
Collapse
|
16
|
Paintlia MK, Paintlia AS, Singh AK, Singh I. S-nitrosoglutathione induces ciliary neurotrophic factor expression in astrocytes, which has implications to protect the central nervous system under pathological conditions. J Biol Chem 2012; 288:3831-43. [PMID: 23264628 DOI: 10.1074/jbc.m112.405654] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions.
Collapse
Affiliation(s)
- Manjeet K Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
17
|
Yang MT, Chien WL, Lu DH, Liou HC, Fu WM. Acetazolamide impairs fear memory consolidation in rodents. Neuropharmacology 2012; 67:412-8. [PMID: 23231808 DOI: 10.1016/j.neuropharm.2012.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 10/27/2022]
Abstract
Acetazolamide (AZ) is an carbonic anhydrase inhibitor, which has been used in the treatment of seizures, mountain sickness and glaucoma. Memory impairment by AZ has been reported in patient interviews; however, the related mechanism is unclear. We applied two fear conditioning paradigms, shuttle avoidance and passive avoidance, in both rats and mice to investigate this clinical anecdote. Adult Wistar rats receiving AZ 1 h before the shuttle avoidance test showed decreased avoidance rates, especially at high dosage. Adult ICR mice receiving AZ both before and after acquisition trials showed the decreased step-through latencies during the passive avoidance test. This impairment of fear memory was corroborated with decreased LTP by AZ in the amygdala. AZ only inhibited fear conditioning-induced ERK phosphorylation and had no effect on Akt phosphorylation. In conclusion, our study confirmed the adverse cognitive effect of AZ in animal and electrophysiological studies. In clinical practice, clinicians should be aware of this side effect in patients taking AZ. In addition, this inhibition of fear memory by AZ could potentially be applied to patients with posttraumatic stress disorder.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, No. 21, Section 2, Nanya South Road, Banciao District, New Taipei City 220, Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Shen F, Li YJ, Shou XJ, Cui CL. Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory. Neurobiol Learn Mem 2012; 98:130-8. [DOI: 10.1016/j.nlm.2012.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
19
|
Chin CH, Tsai FC, Chen SP, Wang KC, Chang CC, Pai MH, Fong TH. YC-1, a potent antithrombotic agent, induces lipolysis through the PKA pathway in rat visceral fat cells. Eur J Pharmacol 2012; 689:1-7. [PMID: 22659114 DOI: 10.1016/j.ejphar.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/26/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
This study investigated the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a soluble guanylyl cyclase (sGC) activator and potential antithrombotic agent, on lipolysis in isolated visceral fat cells of the rat. Visceral fat cells were isolated from epididymal fat pads of rats and treated with YC-1 at different doses and times. Glycerol release, and intracellular cAMP and cGMP levels were analyzed by specific kits. Moreover, several inhibitors or drugs were used to examine the signal transduction pathways of YC-1-induced lipolysis in adipocytes. Herein we report that YC-1 stimulated glycerol release in dose- and time-dependent manners. Intracellular cAMP and cGMP levels of adipocytes both increased in time-dependent manners, but elevation of the cGMP level was faster and higher than that of the cAMP level after YC-1 treatment. An sGC inhibitor (ODQ) inhibited YC-1-induced glycerol release, indicating the involvement of sGC in YC-1-induced lipolysis. Administration of insulin, an activator of type-3B phosphodiesterase (PDE-3B), attenuated YC-1-induced lipolysis, indicating that elevation of the cAMP level is an important step in the lipolytic effect of YC-1. In addition, YC-1-induced lipolysis was inhibited by a protein kinase A (PKA) inhibitor (KT5720) but not by a PKG inhibitor (KT5823), indicating that YC-1-induced lipolysis occurs through a PKA-dependent pathway. A Western blot analysis showed that extracellular signal-regulated kinase was not phosphorylated by YC-1 treatment. In conclusion, our results suggest that YC-1 might stimulate lipolysis via activation of sGC/cGMP and then activation of the cAMP/PKA signaling cascade in isolated rat visceral adipocytes.
Collapse
Affiliation(s)
- Chih-Hui Chin
- Institute of Cardiovascular Medicine, Cathay General Hospital, Taipei 10630, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Neurological, Functional, and Biomechanical Characteristics After High-Velocity Behind Armor Blunt Trauma of the Spine. ACTA ACUST UNITED AC 2011; 71:1680-8. [DOI: 10.1097/ta.0b013e318231bce7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Komsuoglu-Celikyurt I, Gocmez SS, Mutlu O, Gacar N, Aricioglu F, Utkan T. Evidence for the involvement of neuronal nitric oxide synthase and soluble guanylate cyclase on cognitive functions in rats. Life Sci 2011; 89:905-10. [DOI: 10.1016/j.lfs.2011.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/17/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
22
|
Ramos-Espiritu LS, Hess KC, Buck J, Levin LR. The soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells. J Pharmacol Exp Ther 2011; 338:925-31. [PMID: 21665942 PMCID: PMC3164349 DOI: 10.1124/jpet.111.184135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022] Open
Abstract
In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independent of its function as a sGC activator and independent of its ability to inhibit phosphodiesterases. This YC-1-induced cAMP increase is dependent upon soluble adenylyl cyclase and not on transmembrane adenylyl cyclase activity. We previously showed that soluble adenylyl cyclase-generated cAMP can lead to extracellular signal-regulated kinase activation and that YC-1-stimulated cAMP production also stimulates extracellular signal-regulated kinase. Although YC-1 has been used as a tool for investigating sGC and cGMP-mediated pathways, this study reveals cGMP-independent pharmacological actions of this compound.
Collapse
|
23
|
An inhibitor of cAMP-dependent protein kinase induces behavioural and neurological antidepressant-like effects in rats. Neurosci Lett 2011; 498:158-61. [DOI: 10.1016/j.neulet.2011.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 11/18/2022]
|
24
|
Yang X, Wang Y, Luo J, Liu S, Yang Z. Protective effects of YC-1 against glutamate induced PC12 cell apoptosis. Cell Mol Neurobiol 2011; 31:303-11. [PMID: 21063768 PMCID: PMC11498540 DOI: 10.1007/s10571-010-9622-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/19/2010] [Indexed: 01/31/2023]
Abstract
Glutamate, one of the major neurotransmitters in the central nervous system, is released into the synaptic spaces and bound to the glutamate receptors which facilitate normal synaptic transmission, synaptic plasticity, and brain development. Past studies have shown that glutamate with high concentration is a potent neurotoxin capable of destroying neurons through many signal pathways. In this research, our main purpose was to determine whether the specific soluble guanylyl cyclase activator YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole) had effect on glutamate-induced apoptosis in cultured PC12 cells. The differentiated PC12 cells impaired by glutamate were used as the cell model of excitability, and were exposed to YC-1 or/and ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) with gradient concentrations for 24 h. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl) assay was used to detect the cellular viability. Radioimmunoassay (RIA) was used to detect the cGMP (cyclic guanosine monophosphate) concentrations in PC12 cells. Hoechst 33258 staining and flow cytometric analysis were used to detect the cell apoptosis. The cellular viability was decreased and the apoptotic rate was increased when PC12 cells were treated with glutamate. Cells treated with YC-1 or/and ODQ showed no significant differences in the cell viability and intracellular cGMP levels compared with those of control group. The specific soluble guanylyl cyclase (sGC) inhibitor ODQ showed an inhibitory effect on cGMP level and aggravated the apoptosis of PC12 cells induced by glutamate. YC-1 elevated cGMP level thus decreased PC12 cell apoptosis induced by glutamate, but this effect could be reversed by ODQ. These results revealed that YC-1 might attenuate glutamate-induced PC12 cell apoptosis via a sGC-cGMP involved pathway.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Yucheng Wang
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Jia Luo
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Shichang Liu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| |
Collapse
|
25
|
Radwanska K, Nikolaev E, Kaczmarek L. Central noradrenergic lesion induced by DSP-4 impairs the acquisition of avoidance reactions and prevents molecular changes in the amygdala. Neurobiol Learn Mem 2010; 94:303-11. [PMID: 20650329 DOI: 10.1016/j.nlm.2010.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/06/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The noradrenergic system plays and an important modulatory role in memory consolidation of emotionally arousing tasks. However, the molecular cascades regulated in the brain by norepinephrine and involved in memory formation are still largely unknown. The purpose of the present study was to evaluate the role of the noradrenergic system on the acquisition of a highly emotionally arousing task-two-way active avoidance training-and its molecular and cellular substrates. The selective norepinephrine neurotoxin N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP-4, 50mg/kg) was used. DSP-4-treated rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus. Immunohistochemical mapping of the neuronal plasticity-related molecules c-Fos protein and the activated form of extracellular signal-regulated kinase (phosphorylated ERK [pERK]) was then employed. We found that DSP-4 treatment depleted the expression of the norepinephrine marker dopamine -hydroxylase (DBH) in the locus coeruleus and its projection area, the basolateral nucleus of the amygdala, confirming locus coeruleus noradrenergic lesion in the experimental animals. Furthermore, DSP-4 treatment impaired the acquisition of the avoidance reaction. We also found that acquisition of the active avoidance reaction induced c-Fos expression and ERK activation in the amygdala and piriform cortex. This upregulation was prevented by DSP-4 treatment. Thus, our data suggest that the noradrenergic system is involved in the acquisition of the active avoidance reaction by regulating ERK pathway activity and c-Fos expression in the amygdala and piriform cortex.
Collapse
Affiliation(s)
- Kasia Radwanska
- Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw, Poland.
| | | | | |
Collapse
|
26
|
Liebenberg N, Wegener G, Harvey BH, Brink CB. Investigating the role of protein kinase-G in the antidepressant-like response of sildenafil in combination with muscarinic acetylcholine receptor antagonism. Behav Brain Res 2010; 209:137-41. [PMID: 20117144 DOI: 10.1016/j.bbr.2010.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
The cGMP/PK-G pathway plays a crucial role in neuroprotection and neurotrophin support, and is possibly involved in antidepressant action. Recently we reported on a novel antidepressant-like response following simultaneous administration of sildenafil (phosphodiesterase 5 (PDE5) inhibitor, thereby increasing cGMP levels), and atropine (muscarinic acetylcholine receptor antagonist) in the rat forced swim test (FST). However, it is unclear whether the antidepressant-like activity of sildenafil+atropine is mediated via the activation of PK-G, an important down-stream effector for cGMP, and whether this may target known pathways in antidepressant action. We investigated whether the antidepressant-like response of sildenafil+/-atropine could be reversed by Rp-8-Br-PET-cGMP, a PK-G inhibitor, and also whether a combination of 8-Br-cGMP (PK-G activator)+/-atropine would likewise be active in the FST, and whether this combination could be attenuated by a PK-G inhibitor. 8-Br-cGMP alone, but not sildenafil alone, reduced immobility and selectively increased swimming in the FST. The antidepressant-like action of sildenafil was only evident following co-administration of atropine, and selectively increased climbing behaviour. Importantly, PK-G inhibition prevented the antidepressant-like effects of both 8-Br-cGMP and the sildenafil/atropine combination. These results confirm cholinergic-cGMP-PK-G interactions in the antidepressant-like effects of sildenafil, putatively acting via noradrenergic mechanisms, whereas direct PK-G activation induces antidepressant-like effects that are associated with enhancement of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Nico Liebenberg
- School of Pharmacy, North-West University, Potchefstroom, South Africa
| | | | | | | |
Collapse
|