1
|
Wang C, Zhou J, Zhang Q, Chen H, Luo X, Liu Z, Ye Z, Zhang Z, Wei G, Liu X. From cause to relief: Vitamin D plays a crucial role in overactive bladder via the RhoA/ROCK signaling pathway. Biochem Biophys Res Commun 2025; 766:151919. [PMID: 40311294 DOI: 10.1016/j.bbrc.2025.151919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Overactive bladder (OAB) is a common urological disorder, characterized by urinary urgency and frequency. However, the etiology and pathogenesis of OAB remain unclear. The objective of this study was to construct a Vitamin D-deficient rat model with the aim of clarifying the relationship between Vitamin D deficiency and the development of OAB, as well as investigating the potential mechanisms involved. The findings revealed that rats with vitamin D deficiency exhibited indications of OAB, including increased urinary frequency and urgency, as evidenced by void spot assay and cystometry. Furthermore, supplementation with vitamin D proved to be an effective intervention in alleviating these symptoms. The activation of RhoA/ROCK pathway was found in the bladder tissues and urine of rats with vitamin D deficiency. Moreover, supplementation with vitamin D led to a significant decrease in the expression levels of RhoA/ROCK pathway in both bladder tissue and urine. In conclusion, our study was the first to demonstrate that vitamin D deficiency is one of the etiological factors of OAB through the activation of the RhoA/ROCK signaling pathway, and that vitamin D supplementation has been shown to effectively alleviate OAB symptoms by inhibiting this pathway. Meanwhile, urinary RhoA may be a biomarker of OAB. Our present work makes a significant contribution to the clarification of the etiology and mechanism of OAB, as well as to the refinement of OAB treatment strategies.
Collapse
Affiliation(s)
- Chong Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Jiaxin Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Qiang Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Hongsong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Xingguo Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Zhenmin Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Zihan Ye
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Zhicheng Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, PR China.
| |
Collapse
|
2
|
Mahapatra C, Thakkar R. In Silico Electrophysiological Investigation of Transient Receptor Potential Melastatin-4 Ion Channel Biophysics to Study Detrusor Overactivity. Int J Mol Sci 2024; 25:6875. [PMID: 38999984 PMCID: PMC11241520 DOI: 10.3390/ijms25136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enhanced electrical activity in detrusor smooth muscle (DSM) cells is a key factor in detrusor overactivity which causes overactive bladder pathological disorders. Transient receptor potential melastatin-4 (TRPM4) channels, which are calcium-activated cation channels, play a role in regulating DSM electrical activities. These channels likely contribute to depolarizing the DSM cell membrane, leading to bladder overactivity. Our research focuses on understanding TRPM4 channel function in the DSM cells of mice, using computational modeling. We aimed to create a detailed computational model of the TRPM4 channel based on existing electrophysiological data. We employed a modified Hodgkin-Huxley model with an incorporated TRP-like current to simulate action potential firing in response to current and synaptic stimulus inputs. Validation against experimental data showed close agreement with our simulations. Our model is the first to analyze the TRPM4 channel's role in DSM electrical activity, potentially revealing insights into bladder overactivity. In conclusion, TRPM4 channels are pivotal in regulating human DSM function, and TRPM4 channel inhibitors could be promising targets for treating overactive bladder.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Gibson S, Ellsworth P. Emerging therapies for overactive bladder: preclinical, phase I and phase II studies. Expert Opin Investig Drugs 2024; 33:601-612. [PMID: 38695250 DOI: 10.1080/13543784.2024.2349285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Overactive bladder syndrome is a common chronic condition with a significant impact on quality of life and economic burden. Persistence with pharmacologic therapy has been limited by efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has led to the initial evaluation of several drugs affecting ion channels, the autonomic nervous system, and enzymes which may provide useful alternatives for the management of overactive bladder. AREAS COVERED A comprehensive review was performed using PubMed and Cochrane databases as well as reviewing clinical trials in the United States. The current standard of care for overactive bladder will be discussed, but this paper focuses on investigational drugs currently in preclinical studies and phase I and II clinical trials. EXPERT OPINION Current therapies for overactive bladder have limitations in efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has identified the role(s) of other pathways in the overactive bladder syndrome. Targeting alternative pathways including ion channels and enzymes may provide alternative therapies of overactive bladder and a more tailored approach to the management of overactive bladder.
Collapse
Affiliation(s)
- Samantha Gibson
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Pamela Ellsworth
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
4
|
Joseph S, Maria SA, Peedicayil J. Drugs Currently Undergoing Preclinical or Clinical Trials for the Treatment of Overactive Bladder: A Review. Curr Ther Res Clin Exp 2022; 96:100669. [PMID: 35494662 PMCID: PMC9052038 DOI: 10.1016/j.curtheres.2022.100669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Overactive bladder (OAB) is a common clinical condition for which current drug treatment comprises drugs blocking the cholinergic nerve supply, or augmenting the adrenergic nerve supply, to the detrusor muscle of the urinary bladder. Current treatments have drawbacks, including lack of efficacy and the development of adverse effects in some patients. Hence, new and better drugs for treating OAB will be clinically useful. Objective This review is meant to provide information on drugs currently undergoing preclinical or clinical trials for the treatment of OAB published in journal articles or elsewhere. Methods The cited articles were retrieved from PubMed and Google Scholar from January 1, 1990, to December 31, 2021. The search terms used were contraction or contractility, detrusor, inhibition, isolated or in vitro, in vivo, overactive bladder, and relaxant effect or relaxation. Results There are 4 classes of new drugs under various stages of development for the treatment of OAB. These are drugs acting on the autonomic nerve supply to the detrusor muscle of the urinary bladder that include the anticholinergics tarafenacin and afacifenacin and the β3 adrenoceptor agonists solabegron and ritobegron; drugs acting on ion channels in the detrusor muscle (eg, potassium channel openers and calcium channel blockers), drugs acting on cellular enzymes like phosphodiesterase-5 inhibitors and Rho kinase inhibitors, and drugs acting on miscellaneous targets (eg, pregabalin and trimetazidine). Conclusions Drugs currently used to treat OAB target only the cholinergic and adrenergic cellular signalling pathways. There are many other drugs under trial targeting other cellular pathways that may be useful for treating OAB. Their approval for clinical use might improve the treatment of patients with OAB. (Curr Ther Res Clin Exp. 2022; 83:XXX–XXX)
Collapse
|
5
|
Hulls CM, Lentle RG, King QM, Chambers JP, Reynolds GW. Pharmacological modulation of the spatiotemporal disposition of micromotions in the intact resting urinary bladder of the rabbit; their pattern is under both myogenic and autonomic control. BJU Int 2019; 123 Suppl 5:54-64. [PMID: 31017744 DOI: 10.1111/bju.14715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To explore and characterize the disposition and dynamics of micromotions in the wall of the intact resting teradotoxinized urinary bladder of the rabbit before and after the administration of adrenergic and cholinergic pharmaceutical agents. METHODS Spatiotemporal maps and related intravesical pressure were used to analyse propagating patches of contractions (PPCs) and their component individual myogenic contractions [propagating individual contractions (PICs)] in the wall of the tetradotoxinized urinary bladder. RESULTS The bladder wall exhibited two contractile states that were of similar frequencies to those of the two types of electrophysiological discharge described in previous studies; the first, in which cyclic PPCs predominated, the second in which small irregular PICs predominated. The addition of carbachol increased the size, frequency, speed and distance of propagation of PPCs, whereas the addition of isoprenaline temporarily halted the incorporation of PICs into PPCs, and reduced patch size and total area undergoing contraction. The RhoA kinase (ROCK) inhibitor Y-27632 reduced both largest patch index and mean patch size. Both carbenoxolone and ROCK inhibition decreased the duration of PPCs. Carbenoxolone also prolonged duration and accelerated PPC propagation velocity. The authors postulate that these differences arise from differing effects of these agents on myocytes and interstitial cells within the stress environment of the bladder, influencing the development, coordination and propagation of PPCs. CONCLUSIONS The timings and structure of spontaneous micromotions in the wall of the isolated bladder change when it is treated with sympathetic/parasympathetic agonists and with myogenically active agents. Correspondingly, disorders of bladder wall contraction may result from disorders of either neurogenic or myogenic signalling and may be amenable to treatment with combinations of agents that influence both.
Collapse
Affiliation(s)
- Corrin Murray Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Roger Graham Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | | - John Paul Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
6
|
Akaihata H, Nomiya M, Matsuoka K, Koguchi T, Hata J, Haga N, Kushida N, Ishibashi K, Aikawa K, Kojima Y. Protective Effect of a Rho-kinase Inhibitor on Bladder Dysfunction in a Rat Model of Chronic Bladder Ischemia. Urology 2017; 111:238.e7-238.e12. [PMID: 29051005 DOI: 10.1016/j.urology.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the effect of fasudil, a Rho-kinase inhibitor, on chronic ischemia-related bladder dysfunction. MATERIALS AND METHODS Male Sprague-Dawley rats (16 weeks old) were divided into control, chronic bladder ischemia (CBI), and CBI with fasudil treatment (CBI-Fa) groups. The CBI and CBI-Fa groups underwent balloon endothelial injury of bilateral iliac arteries and received a 2% cholesterol diet for 8 weeks after the procedure to induce CBI. The CBI-Fa group was given oral fasudil (30 mg/kg/day) using zonde for 8 weeks after the procedure. The control group received a regular diet for 8 weeks. After cystometry in a conscious state, rats from each group were euthanized, and the bladders and common iliac arteries were harvested for pharmacologic and histologic examination. RESULTS Mean wall thickness of the common iliac arteries was significantly greater in the CBI group than in controls. Contractile responses of muscle strips were significantly lower in CBI group rats than in controls. In the CBI group, micturition interval was significantly shorter, and bladder capacity was significantly lower compared with those in controls. In the CBI-Fa group, arterial wall thickening was significantly suppressed compared with the CBI group. Significant improvements in muscle strip contractility and cystometric parameters were seen in the CBI-Fa group compared with the CBI group. CONCLUSION Our results suggest that chronic treatment with fasudil could prevent neointimal formation in arteries and bladder dysfunction in this rat model. Fasudil may be therapeutically useful in protecting bladder function in chronically ischemic bladders.
Collapse
Affiliation(s)
- Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan.
| | - Masanori Nomiya
- Division of Bioengineering and LUTD Research Nihon University School of Engineering, Koriyama City, Japan; National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Kanako Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Tomoyuki Koguchi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima City, Japan
| |
Collapse
|
7
|
Jackson WF, Boerman EM. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles. Am J Physiol Heart Circ Physiol 2017; 313:H667-H675. [PMID: 28667050 DOI: 10.1152/ajpheart.00183.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023]
Abstract
Myogenic tone is an important feature of arterioles and resistance arteries, but the mechanisms responsible for this hallmark characteristic remain unclear. We used pharmacological inhibitors to compare the roles played by phospholipase C (PLC; 10 μM U73122), inositol 1,4,5-trisphosphate receptors (IP3Rs; 100 μM 2-aminoethoxydiphenylborane), protein kinase C (10 μM bisindolylmaleimide I), angiotensin II type 1 receptors (1 μM losartan), Rho kinase (10 nM-30 μM Y27632 or 300 nM H1152), stretch-activated ion channels (10 nM-1 μM Gd3+ or 5 μM spider venom toxin GsMTx-4) and L-type voltage-gated Ca2+ channels (0.3-100 μM diltiazem) in myogenic tone of cannulated, pressurized (80 cmH2O), second-order hamster cremaster or cheek pouch arterioles. Effective inhibition of either PLC or IP3Rs dilated cremaster arterioles, inhibited Ca2+ waves, and reduced global Ca2+ levels. In contrast, cheek pouch arterioles did not display Ca2+ waves and inhibition of PLC or IP3Rs had no effect on myogenic tone or intracellular Ca2+ levels. Inhibition of Rho kinase dilated both cheek pouch and cremaster arterioles with equal efficacy and potency but also reduced intracellular Ca2+ signals in both arterioles. Similarly, inhibition of mechanosensitive ion channels with Gd2+ or GsMTx-4 produced comparable dilation in both arterioles. Inhibition of L-type Ca2+ channels with diltiazem was more effective in dilating cremaster (86 ± 5% dilation, n = 4) than cheek pouch arterioles (54 ± 4% dilation, n = 6, P < 0.05). Thus, there are substantial differences in the mechanisms underlying myogenic tone in hamster cremaster and cheek pouch arterioles. Regional heterogeneity in myogenic mechanisms could provide new targets for drug development to improve regional blood flow in a tissue-specific manner.NEW & NOTEWORTHY Regional heterogeneity in the mechanisms of pressure-induced myogenic tone implies that resistance vessels may be able to alter myogenic signaling pathways to adapt to their environment. A better understanding of the spectrum of myogenic mechanisms could provide new targets to treat diseases that affect resistance artery and arteriolar function.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Erika M Boerman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Hulls CM, Lentle RG, King QM, Reynolds GW, Chambers JP. Spatiotemporal analysis of spontaneous myogenic contractions in the urinary bladder of the rabbit: timing and patterns reflect reported electrophysiology. Am J Physiol Renal Physiol 2017; 313:F687-F698. [PMID: 28539334 DOI: 10.1152/ajprenal.00156.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of propagating myogenic contractions in the wall of the resting ex vivo urinary bladder of the rabbit were characterized by spatiotemporal maps and related to cyclic variation in intravesical pressure (Pves). Patches of propagating contractions (PPCs) enlarged and involuted in near synchrony with peaks in Pves [mean 3.85 ± 0.3 cycles per minute (cpm)] and were preceded by regions of stretch. The maximum area of the bladder undergoing contraction (55.28 ± 2.65%) and the sizes of individual PPCs (42.61 ± 1.65 mm2) coincided with the peak in Pves PPCs originated and propagated within temporary patch domains (TPDs) and comprised groups of nearly synchronous cyclic propagating individual contractions (PICs). The TPDs were located principally along the vertical axis of the anterior surface of the bladder. The sites of origin of PICs within PPCs were inconsistent, consecutive contractions often propagating in opposite directions along linear maps of strain rate. Similar patterns of movement occurred in areas of the anterior bladder wall that had been stripped of mucosa. Pves varied cyclically with area of contraction and with the indices of aggregation of PPCs, indicating that they grew by peripheral enlargement and collision without annihilation. The synchronization of PICs within PPCs was sometimes lost, uncoordinated PICs then occurring irregularly (between 4 and 20 cpm) having little effect on Pves We postulate that the formation and involution of PPCs within a TPD resulted from cyclic variation in excitation that increased the incidence and distance over which component PICs propagated.
Collapse
Affiliation(s)
- C M Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand;
| | - Q M King
- Division of Urology, Palmerston North Hospital, Palmerston North, New Zealand; and
| | - G W Reynolds
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Kushida N, Yamaguchi O, Kawashima Y, Akaihata H, Hata J, Ishibashi K, Aikawa K, Kojima Y. Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells. BMC Urol 2016; 16:9. [PMID: 26928204 PMCID: PMC4772493 DOI: 10.1186/s12894-016-0127-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Background Excessive mechanical overload may be involved in bladder wall remodelling. Since the activity of Rho kinase is known to be upregulated in the obstructed bladder, we investigate the roles of the RhoA/Rho kinase pathway in mechanical overloaded bladder smooth muscle cells. Methods Human bladder smooth muscle cells were stimulated on silicon culture plates by 15 % elongated uni-axial cyclic stretch at 1 Hz. The activity of c-Jun NH2-terminal kinase was measured by western blotting and actin stress fibers were observed by stained with phallotoxin conjugated with Alexa-Fluor 594. Results The activity of c-Jun NH2-terminal kinase 1 peaked at 30 min (4.7-fold increase vs. before stretch) and this activity was partially abrogated by the RhoA inhibitor, C3 exoenzoyme or by the Rho kinase inhibitor, Y-27632. Stretch induced the strong formation of actin stress fibers and these fibers re-orientated in a direction that was perpendicular to the stretch direction. The average angle of the fibers from the perpendicular to the direction of stretch was significantly different between before, and 4 h after, stretch. Actin stress fibers reorganization was also suppressed by the C3 exoenzyme or Y-27632. Conclusions Bladder smooth muscle cells appear to have elaborate mechanisms for sensing mechanical stress and for adapting to mechanical stress overload by cytoskeletal remodeling and by activating cell growth signals such as c-Jun NH2-terminal kinase via RhoA/Rho kinase pathways.
Collapse
Affiliation(s)
- Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Osamu Yamaguchi
- Division of Bioengineering and LUTD Research, Nihon University School of Engineering, Nihon University, 1, Nakagawara, Tokusada, Tamura, Koriyama, 963-8642, Japan.
| | - Yohei Kawashima
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
10
|
Wróbel A, Rechberger T. The influence of Rho-kinase inhibition on acetic acid-induced detrusor overactivity. Neurourol Urodyn 2015; 36:263-270. [PMID: 26546786 DOI: 10.1002/nau.22918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/08/2015] [Indexed: 01/10/2023]
Abstract
AIMS Accumulating evidence has shown that Rho-kinase (ROCK) is involved in the regulation of bladder contraction. Our objective was to examine whether the ROCK inhibitor, GSK 269962, could prevent acetic acid (AA)-induced detrusor overactivity and to assess its influence on urine production (UP) and mean arterial pressure (MAP). METHODS The bladder was catheterized from the external urethral orifice. 0.25 % (AA) solution was infused into the bladder for 5 min. In the same session a catheter was inserted into the apex of the bladder dome. In order to measure the blood pressure, the carotid artery was cannulated. Three days after the intravesical instillation of AA, the ROCK-GSK 269962 inhibitor was administered in a single dose of 10 mg/kg and a cystometry was carried out, along with a 24 hr measurement of UP and MAP. RESULTS GSK 269962 reversed the changes induced by AA causing a drop in basal pressure, threshold pressure, micturition voiding pressure, bladder contraction duration, relaxation time, detrusor overactivity index, amplitude, and frequency of nonvoiding contractions while an increase in voided volume, post-void residual, volume threshold, voiding efficiency, intercontraction interval, bladder compliance, and volume threshold to elicit nonvoiding contractions. ROCK inhibition did not show any significant changes in UP and MAP. DISCUSSION The results obtained indicate that ROCK inhibition may ameliorate AA-induced bladder overactivity. CONCLUSION ROCK inhibitors appear to represent a potentially attractive pharmacological option for the treatment of lower urinary tract disorders associated with changes in detrusor contractility. Neurourol. Urodynam. 36:263-270, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Colhoun AF, Speich JE, Dolat MT, Habibi JR, Guruli G, Ratz PH, Barbee RW, Klausner AP. Acute length adaptation and adjustable preload in the human detrusor. Neurourol Urodyn 2015; 35:792-7. [DOI: 10.1002/nau.22820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew F. Colhoun
- Department of Surgery/Division of Urology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - John E. Speich
- Department of Mechanical and Nuclear Engineering; Virginia Commonwealth University School of Engineering; Richmond Virginia
| | - MaryEllen T. Dolat
- Department of Surgery/Division of Urology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Joseph R. Habibi
- Department of Surgery/Division of Urology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Georgi Guruli
- Department of Surgery/Division of Urology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Paul H. Ratz
- Departments of Biochemistry and Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Robert W. Barbee
- Department of Emergency Medicine; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Adam P. Klausner
- Department of Surgery/Division of Urology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| |
Collapse
|
12
|
Cernecka H, Kersten K, Maarsingh H, Elzinga CR, de Jong IJ, Korstanje C, Michel MC, Schmidt M. β3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and Rho kinase. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:749-59. [PMID: 25956403 PMCID: PMC4475246 DOI: 10.1007/s00210-015-1128-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 12/18/2022]
Abstract
Previous studies suggest that the large-conductance Ca(2+)-activated K(+) (BKCa) channel and Rho-kinase play major roles in the control of urinary bladder tone. Here, we investigated their involvement in β-adrenoceptor (AR)-mediated relaxation of rat and human bladder. Concentration-response curves of isoprenaline and mirabegron-induced bladder relaxation were generated against passive tension and KCl- and carbachol-induced tone, in the absence or presence of the BKCa channel inhibitor iberiotoxin (100 nM) or the Rho-kinase inhibitor Y27,632 (1 μM). Myosin light chain (MLC) phosphorylation was studied by Western blot. In rat, iberiotoxin only slightly altered isoprenaline- and mirabegron-induced relaxation against KCl-induced tone but attenuated relaxation by both agonists against carbachol-induced tone. Y27,632 enhanced isoprenaline- or mirabegron-induced relaxation only against carbachol-induced tone. In humans, iberiotoxin slightly enhanced relaxation by both agonists against carbachol-induced pre-contraction. Y27,632 did not change isoprenaline-induced relaxation but enhanced that by mirabegron. Under passive tension, MLC phosphorylation was markedly reduced by both β-AR agonists, an effect insensitive to Y27,632. In the presence of carbachol, both β-AR agonists increased MLC phosphorylation, an effect reduced by Y27,632 only in the presence of 1 μM carbachol. These results indicate that the extent of BKCa channel and Rho-kinase involvement in relaxation induced by β-AR agonists depends on pre contractile stimulus and species.
Collapse
Affiliation(s)
- Hana Cernecka
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Akaihata H, Nomiya M, Hata J, Yabe M, Takahashi N, Haga N, Kushida N, Ishibashi K, Aikawa K, Yamaguchi O, Kojima Y. Pelvic Arterial Occlusive Disease Affects the RhoA/Rho-Kinase Pathway in Bladder Smooth Muscle. J Urol 2015; 193:706-13. [DOI: 10.1016/j.juro.2014.09.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Masanori Nomiya
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Michihiro Yabe
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Norio Takahashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Osamu Yamaguchi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima and Division of Bioengineering and LUTD Research, Nihon University School of Engineering (MN, OY), Koriyama, Japan
| |
Collapse
|
14
|
|
15
|
Komari SO, Headley PC, Klausner AP, Ratz PH, Speich JE. Evidence for a common mechanism for spontaneous rhythmic contraction and myogenic contraction induced by quick stretch in detrusor smooth muscle. Physiol Rep 2013; 1:e00168. [PMID: 24400167 PMCID: PMC3871480 DOI: 10.1002/phy2.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022] Open
Abstract
Detrusor smooth muscle exhibits myogenic contraction in response to a quick stretch (QS) as well as spontaneous rhythmic contraction (SRC); however, whether the same population of actomyosin crossbridges with a common regulatory mechanism is responsible for these two types of contraction has not been determined. Detrusor strips from New Zealand white rabbit bladders were allowed to develop SRC at a reference muscle length (Lref), or rhythmic contraction (RC) was induced with tetraethylammonium (TEA). Multiple 10-msec stretches of 15% Lref were then imposed at Lref randomly during the rhythm cycle, and the nadir-to-peak (NTP) tension amplitude of the resulting myogenic contraction was measured. The amplitude and period of the rhythm cycle were measured prior to each QS. NTP was larger when a QS was imposed during a portion the cycle when tension was smaller (n = 3 each SRC and TEA-induced RC). These data suggest that when the rhythmic mechanism was mostly inactive and tension was near a minimum, a larger portion of a shared population of crossbridges was available to produce a myogenic response to a QS. Rho kinase, cyclooxygenase-1, and cyclooxygenase-2 inhibitors (H-1152, SC-560, and NS-398) affected SRC amplitude and NTP amplitude following a QS to the same degree (n = 3 each drug), providing additional evidence to support the hypothesis that a common mechanism is responsible for SRC and myogenic contraction due to QS. If a common mechanism exists, then QS is a potential mechanical probe to study SRC regulation and its alteration in overactive bladder.
Collapse
Affiliation(s)
- S Omid Komari
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University Richmond, Virginia, 23284
| | - Patrick C Headley
- Department of Biomedical Engineering, Virginia Commonwealth University Richmond, Virginia, 23284
| | - Adam P Klausner
- Department of Surgery, Virginia Commonwealth University Richmond, Virginia, 23298
| | - Paul H Ratz
- Departments of Biochemistry & Molecular Biology and Pediatrics, Virginia Commonwealth University Richmond, Virginia, 23298
| | - John E Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University Richmond, Virginia, 23284
| |
Collapse
|
16
|
Shiomi H, Takahashi N, Kawashima Y, Ogawa S, Haga N, Kushida N, Nomiya M, Yanagida T, Ishibashi K, Aikawa K, Yamaguchi O. Involvement of stretch-induced Rho-kinase activation in the generation of bladder tone. Neurourol Urodyn 2012; 32:1019-25. [DOI: 10.1002/nau.22360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
|
17
|
Southern JB, Frazier JR, Miner AS, Speich JE, Klausner AP, Ratz PH. Elevated steady-state bladder preload activates myosin phosphorylation: detrusor smooth muscle is a preload tension sensor. Am J Physiol Renal Physiol 2012; 303:F1517-26. [DOI: 10.1152/ajprenal.00278.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rabbit bladder wall (detrusor) muscle, the degree of tone induced during physiological filling (filling tone) is the sum of adjustable preload tension and autonomous contractile tension. The present study was designed to determine whether the level of filling tone is dependent on detrusor muscle length. Maximum active tension induced by KCl was parabolic in relation to length [tension increased from 70% to 100% of a reference length ( Lref) and decreased at longer muscle lengths]. Filling tone, however, increased in a linear fashion from 70% to 120% Lref. In the presence of ibuprofen to abolish autonomous contraction and retain adjustable preload tension, tension was reduced in strength but remained linearly dependent on length from 70% to 120% Lref. In the absence of autonomous contraction, stretching detrusor muscle from 80% to 120% Lref still caused an increase in tone during PGE2-induced rhythmic contraction, suggesting that muscle stretch caused increases in detrusor muscle contractile sensitivity rather than in prostaglandin release. In the absence of autonomous contraction, the degree of adjustable preload tension and myosin phosphorylation increased when detrusor was stretched from 80% to 120% Lref, but also displayed length-hysteresis, indicating that detrusor muscle senses preload rather than muscle length. Together, these data support the hypothesis that detrusor muscle acts as a preload tension sensor. Because detrusor muscle is in-series with neuronal mechanosensors responsible for urinary urgency, a more thorough understanding of detrusor muscle filling tone may reveal unique targets for therapeutic intervention of contractile disorders such as overactive bladder.
Collapse
Affiliation(s)
- Jordan B. Southern
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jasmine R. Frazier
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Amy S. Miner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and
| | - John E. Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Adam P. Klausner
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and
| | - Paul H. Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
18
|
Tsai MH, Kamm KE, Stull JT. Signalling to contractile proteins by muscarinic and purinergic pathways in neurally stimulated bladder smooth muscle. J Physiol 2012; 590:5107-21. [PMID: 22890701 DOI: 10.1113/jphysiol.2012.235424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary bladder smooth muscle contraction is triggered by parasympathetic nerves, which release ATP and acetylcholine (ACh) that bind to purinergic and muscarinic receptors, respectively. Neuronal signalling may thus elicit myosin regulatory light chain (RLC) phosphorylation and contraction through the combined, but distinct contributions of these receptors. Both receptors mediate Ca2+ influx whereas muscarinic receptors may also recruit Ca2+-sensitization mechanisms. Using transgenic mice expressing calmodulin sensor myosin light chain kinase (MLCK) in smooth muscles, the effects of suramin/α,β-methylene ATP (α,β-meATP) (purinergic inhibition) or atropine (muscarinic inhibition) on neurally stimulated elevation of [Ca2+]i, MLCK activation, force and phosphorylation of RLC, myosin light chain phosphatase (MLCP) targeting subunit MYPT1 and MLCP inhibitor protein CPI-17 were examined. Electric field stimulation (EFS) increased [Ca2+]i, MLCK activation and concomitant force in a frequency-dependent manner. The dependence of force on [Ca2+]i and MLCK activation decreased with time suggesting increased Ca2+ sensitization in the late contractile phase. RLC and CPI-17 phosphorylation increased upon stimulation with maximal responses at 20 Hz; both responses were attenuated by atropine, but only RLC phosphorylation was inhibited by suramin/α,β-meATP. Antagonism of purinergic receptors suppressed maximal MLCK activation to a greater extent in the early contractile phase than in the late contractile phase; atropine had the opposite effect. A frequency- and time-dependent increase in MLCK phosphorylation explained the desensitization of MLCK to Ca2+, since MLCK activation declined more rapidly than [Ca2+]i. EFS elicited little or no effect on MYPT1 Thr696 or 850 phosphorylation. Thus, purinergic Ca2+ signals provide the initial activation of MLCK with muscarinic receptors supporting sustained responses. Activation of muscarinic receptors recruits CPI-17, but not MYPT1-mediated Ca2+ sensitization. Furthermore, nerve-released ACh also initiates signalling cascades leading to phosphorylation-dependent desensitization of MLCK.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
19
|
Speich JE, Wilson CW, Almasri AM, Southern JB, Klausner AP, Ratz PH. Carbachol-induced volume adaptation in mouse bladder and length adaptation via rhythmic contraction in rabbit detrusor. Ann Biomed Eng 2012; 40:2266-76. [PMID: 22614640 DOI: 10.1007/s10439-012-0590-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
The length-tension (L-T) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by L-T curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length-active tension (L-T(a)) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure-volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E(2)-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.
Collapse
Affiliation(s)
- John E Speich
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, 23284-3015, USA.
| | | | | | | | | | | |
Collapse
|
20
|
DiPaolo BC, Margulies SS. Rho kinase signaling pathways during stretch in primary alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L992-1002. [PMID: 22287611 DOI: 10.1152/ajplung.00175.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.
Collapse
Affiliation(s)
- Brian C DiPaolo
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA 19104-6321, USA
| | | |
Collapse
|
21
|
Wang T, Kendig DM, Trappanese DM, Smolock EM, Moreland RS. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle. Front Pharmacol 2012; 2:83. [PMID: 22232602 PMCID: PMC3249380 DOI: 10.3389/fphar.2011.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/06/2011] [Indexed: 11/13/2022] Open
Abstract
Contraction of bladder smooth muscle is predominantly initiated by M(3) muscarinic receptor-mediated activation of the G(q/11)-phospholipase C β-protein kinase C (PKC) and the G(12/13)-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850) myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr(696) and Thr(850)-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle.
Collapse
Affiliation(s)
- Tanchun Wang
- Departments of Pharmacology and Physiology, Drexel University College of Medicine Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
22
|
Clelland LJ, Browne BM, Alvarez SM, Miner AS, Ratz PH. Rho-kinase inhibition attenuates calcium-induced contraction in β-escin but not Triton X-100 permeabilized rabbit femoral artery. J Muscle Res Cell Motil 2011; 32:77-88. [PMID: 21706258 PMCID: PMC3177027 DOI: 10.1007/s10974-011-9253-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/31/2011] [Indexed: 01/09/2023]
Abstract
K+-depolarization (KCl) of smooth muscle has long been known to cause Ca2+-dependent contraction, but only recently has this G protein-coupled receptor (GPCR)-independent stimulus been associated with rhoA kinase (ROCK)-dependent myosin light chain (MLC) phosphatase inhibition and Ca2+ sensitization. This study examined effects of ROCK inhibition on the concentration-response curves (CRCs) generated in femoral artery by incrementally adding increasing concentrations of KCl to intact tissues, and Ca2+ to tissues permeabilized with Triton X-100, β-escin and α-toxin. For a comparison, tissue responses were assessed also in the presence of protein kinase C (PKC) and MLC kinase inhibition. The ROCK inhibitor H-1152 induced a strong concentration-dependent inhibition of a KCl CRC. A relatively low GF-109203X concentration (1 μM) sufficient to inhibit conventional PKC isotypes also inhibited the KCl CRC but did not affect the maximum tension. ROCK inhibitors had no effect on the Ca2+ CRC induced in Triton X-100 or α-toxin permeabilized tissues, but depressed the maximum contraction induced in β-escin permeabilized tissue. GF-109203X at 1 μM depressed the maximum Ca2+-dependent contraction induced in α-toxin permeabilized tissue and had no effect on the Ca2+ CRC induced in Triton X-100 permeabilized tissue. The MLC kinase inhibitor wortmannin (1 μM) strongly depression the Ca2+ CRCs in tissues permeabilized with Triton X-100, α-toxin and β-escin. H-1152 inhibited contractions induced by a single exposure to a submaximum [Ca2+] (pCa 6) in both rabbit and mouse femoral arteries. These data indicate that β-escin permeabilized muscle preserves GPCR-independent, Ca2+- and ROCK-dependent, Ca2+ sensitization.
Collapse
Affiliation(s)
- Lyndsay J. Clelland
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA
| | - Brendan M. Browne
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA
| | - Silvina M. Alvarez
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA
| | - Amy S. Miner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, USA
| | - Paul H. Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, USA
| |
Collapse
|
23
|
Alvarez SM, Miner AS, Browne BM, Ratz PH. Failure of Bay K 8644 to induce RhoA kinase-dependent calcium sensitization in rabbit blood vessels. Br J Pharmacol 2010; 160:1326-37. [PMID: 20590624 PMCID: PMC2938805 DOI: 10.1111/j.1476-5381.2010.00751.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE RhoA kinase (ROCK) participates in K(+) depolarization (KCl)-induced Ca(2+) sensitization of contraction. Whether constitutive, depolarization- or Ca(2+)-activated ROCK plays the major role in this signalling system remains to be determined. Here, we determined whether Bay K 8644, a dihydropyridine that promotes Ca(2+) channel clusters to operate in a persistent Ca(2+) influx mode, could cause ROCK-dependent Ca(2+) sensitization. EXPERIMENTAL APPROACH Renal and femoral artery rings from New Zealand white rabbits were contracted with Bay K 8644. Tissues were frozen and processed to measure active RhoA and ROCK substrate (myosin phosphatase targeting subunit, MYPT1) and myosin light chain (MLC) phosphorylation, or loaded with fura-2 to measure intracellular free Ca(2+) ([Ca(2+)](i)). Effects of selective inhibitors of contraction were assessed in resting (basal) tissues and those contracted with Bay K 8644. KEY RESULTS Bay K 8644 produced strong increases in [Ca(2+)](i), MLC phosphorylation and tension, but not in MYPT1 phosphorylation. ROCK inhibition by H-1152 abolished basal MYPT1-pT853, diminished basal MLC phosphorylation and inhibited Bay K 8644-induced increases in MLC phosphorylation and tension. MLC kinase inhibition by wortmannin abolished Bay K 8644-induced contraction and increase in MLC phosphorylation but did not inhibit basal MYPT1-pT853. H-1152 and wortmannin had no effect on MYPT1-pT696, but 1 microM staurosporine inhibited basal MYPT1-pT853, MYPT1-pT696 and MLC phosphorylation. CONCLUSIONS AND IMPLICATIONS These data suggest that the constitutive activities of ROCK and a staurosporine-sensitive kinase regulate basal phosphorylation of MYPT1, which participates along with activation of MLC kinase in determining the strength of contraction induced by the Ca(2+) agonist, Bay K 8644.
Collapse
Affiliation(s)
- S M Alvarez
- Departments of Biochemistry and Molecular Biology and Pediatrics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | | | | |
Collapse
|
24
|
Almasri AM, Ratz PH, Speich JE. Length adaptation of the passive-to-active tension ratio in rabbit detrusor. Ann Biomed Eng 2010; 38:2594-605. [PMID: 20387122 DOI: 10.1007/s10439-010-0021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/19/2010] [Indexed: 02/04/2023]
Abstract
The passive and active length-tension (L-T (p) and L-T (a)) relationships in airway, vascular, and detrusor smooth muscles can adapt with length changes and/or multiple contractions. The present objectives were to (1) determine whether short-term adaptation at one muscle length shifts the entire L-T (a) curve in detrusor smooth muscle (DSM), (2) compare adaptation at shorter versus longer lengths, and (3) determine the effect of adaptation on the T (p)/T (a) ratio. Results showed that multiple KCl-induced contractions on the descending limb of the original L-T (a) curve adapted DSM strips to that length and shifted the L-T (a) curve rightward. Peak T (a) at the new length was not different from the original peak T (a), and the L-T (p) curve shifted rightward with the L-T (a) curve. Multiple contractions on the ascending limb increased both T (a) and T (p). In contrast, multiple contractions on the descending limb increased T (a) but decreased T (p). The T (p)/T (a) ratio on the original descending limb adapted from 0.540 +/- 0.084 to 0.223 +/- 0.033 (mean +/- SE, n = 7), such that it was not different from the ratio of 0.208 +/- 0.033 at the original peak T (a) length, suggesting a role of length adaptation may be to maintain a desirable T (p)/T (a) ratio as the bladder fills and voids over a broad DSM length range.
Collapse
Affiliation(s)
- Atheer M Almasri
- Department of Mechanical Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA 23284-3015, USA
| | | | | |
Collapse
|
25
|
Gutzman JH, Sive H. Epithelial relaxation mediated by the myosin phosphatase regulator Mypt1 is required for brain ventricle lumen expansion and hindbrain morphogenesis. Development 2010; 137:795-804. [PMID: 20147380 DOI: 10.1242/dev.042705] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that in the zebrafish hindbrain, cell shape, rhombomere morphogenesis and, unexpectedly, brain ventricle lumen expansion depend on the contractile state of the neuroepithelium. The hindbrain neural tube opens in a specific sequence, with initial separation along the midline at rhombomere boundaries, subsequent openings within rhombomeres and eventual coalescence of openings into the hindbrain ventricle lumen. A mutation in the myosin phosphatase regulator mypt1 results in a small ventricle due to impaired stretching of the surrounding neuroepithelium. Although initial hindbrain opening remains normal, mypt1 mutant rhombomeres do not undergo normal morphological progression. Three-dimensional reconstruction demonstrates cell shapes within rhombomeres and at rhombomere boundaries are abnormal in mypt1 mutants. Wild-type cell shape requires that surrounding cells are also wild type, whereas mutant cell shape is autonomously regulated. Supporting the requirement for regulation of myosin function during hindbrain morphogenesis, wild-type embryos show dynamic levels of phosphorylated myosin regulatory light chain (pMRLC). By contrast, mutants show continuously high pMRLC levels, with concentration of pMRLC and myosin II at the apical side of the epithelium, and myosin II and actin concentration at rhombomere boundaries. Brain ventricle lumen expansion, rhombomere morphology and cell shape are rescued by inhibition of myosin II function, indicating that each defect is a consequence of overactive myosin. We suggest that the epithelium must ;relax', via activity of myosin phosphatase, to allow for normal hindbrain morphogenesis and expansion of the brain ventricular lumen. Epithelial relaxation might be a widespread strategy to facilitate tube inflation in many organs.
Collapse
Affiliation(s)
- Jennifer H Gutzman
- Whitehead Institute for Biochemical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
26
|
Wang T, Kendig DM, Smolock EM, Moreland RS. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase. Am J Physiol Renal Physiol 2009; 297:F1534-42. [PMID: 19794111 DOI: 10.1152/ajprenal.00095.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates MYPT1 in the basal state, which may account for the high resting levels of MLC phosphorylation measured in rabbit bladder smooth muscle.
Collapse
Affiliation(s)
- Tanchun Wang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
27
|
Collins C, Klausner AP, Herrick B, Koo HP, Miner AS, Henderson SC, Ratz PH. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J Cell Mol Med 2009; 13:3236-50. [PMID: 19243470 PMCID: PMC4516481 DOI: 10.1111/j.1582-4934.2009.00714.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder.
Collapse
Affiliation(s)
- Clinton Collins
- Department of Surgery, Urology Division, Virginia Commonwealth University School of Medicine, VA 23298-0614, USA
| | | | | | | | | | | | | |
Collapse
|