1
|
Yousefzadehfard Y, Wechsler B, DeLorenzo C. Human circadian rhythm studies: Practical guidelines for inclusion/exclusion criteria and protocol. Neurobiol Sleep Circadian Rhythms 2022; 13:100080. [PMID: 35989718 PMCID: PMC9382328 DOI: 10.1016/j.nbscr.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
As interest in circadian rhythms and their effects continues to grow, there is an increasing need to perform circadian studies in humans. Although the constant routine is the gold standard for these studies, there are advantages to performing more naturalistic studies. Here, a review of protocols for such studies is provided along with sample inclusion and exclusion criteria. Sleep routines, drug use, shift work, and menstrual cycle are addressed as screening considerations. Regarding protocol, best practices for measuring melatonin, including light settings, posture, exercise, and dietary habits are described. The inclusion/exclusion recommendations and protocol guidelines are intended to reduce confounding variables in studies that do not involve the constant routine. Given practical limitations, a range of recommendations is provided from stringent to lenient. The scientific rationale behind these recommendations is discussed. However, where the science is equivocal, recommendations are based on empirical decisions made in previous studies. While not all of the recommendations listed may be practical in all research settings and with limited potential participants, the goal is to allow investigators to make well informed decisions about their screening procedures and protocol techniques and to improve rigor and reproducibility, in line with the objectives of the National Institutes of Health.
Collapse
Affiliation(s)
- Yashar Yousefzadehfard
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA.,Department of Psychiatry, Texas Tech University Health Science Center, Midland, TX, USA
| | - Bennett Wechsler
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christine DeLorenzo
- Center for Understanding Biology Using Imaging Technology, Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Laghouaouta H, Fraile L, Suárez-Mesa R, Ros-Freixedes R, Estany J, Pena RN. A genome-wide screen for resilient responses in growing pigs. Genet Sel Evol 2022; 54:50. [PMID: 35787790 PMCID: PMC9251948 DOI: 10.1186/s12711-022-00739-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background There is a growing interest to decipher the genetic background of resilience and its possible improvement through selective breeding. The objective of the present study was to provide new insights into the genetic make-up of resilience in growing pigs by identifying genomic regions and candidate genes associated with resilience indicators. Commercial Duroc pigs were challenged with an attenuated Aujeszky vaccine at 12 weeks of age. Two resilience indicators were used: deviation from the expected body weight at 16 weeks of age given the growth curve of non-vaccinated pigs (∆BW) and the increase in acute-phase protein haptoglobin at four days post-vaccination (∆HP). Genome-wide association analyses were carried out on 445 pigs, using genotypes at 41,165 single nucleotide polymorphisms (SNPs) and single-marker and Bayesian multiple-marker regression approaches. Results Genomic regions on pig chromosomes 2, 8, 9, 11 (∆BW) and 8, 9, 13 (∆HP) were found to be associated with the resilience indicators and explained high proportions of their genetic variance. The genomic regions that were associated explained 27 and 5% of the genetic variance of ∆BW and ∆HP, respectively. These genomic regions harbour promising candidate genes that are involved in pathways related to immune response, response to stress, or signal transduction (CD6, PTGDR2, IKZF1, RNASEL and MYD88), and growth (GRB10 and LCORL). Conclusions Our study identified novel genomic regions that are associated with two resilience indicators (∆BW and ∆HP) in pigs. These associated genomic regions harbour potential candidate genes involved in immune response and growth pathways, which emphasise the strong relationship between resilience and immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00739-1.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Lorenzo Fraile
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Ramona Natacha Pena
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
3
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
4
|
Yao X, Dai Y, Johnson A, Hass MA, Feleder C. Determination of prostaglandin profiles in lipopolysaccharide-challenged guinea pig spleen. Biomed Chromatogr 2012; 27:284-91. [DOI: 10.1002/bmc.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/15/2012] [Accepted: 06/25/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Y. Dai
- Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; 24 Tongjia Xiang; Nanjing; 210038; China
| | - A. Johnson
- Albany College of Pharmacy and Health Sciences; Departments of Pharmaceutical Sciences and Arts and Sciences; 106 New Scotland Avenue; Albany; NY; 12208; USA
| | - M. A. Hass
- Albany College of Pharmacy and Health Sciences; Departments of Pharmaceutical Sciences and Arts and Sciences; 106 New Scotland Avenue; Albany; NY; 12208; USA
| | - C. Feleder
- Albany College of Pharmacy and Health Sciences; Departments of Pharmaceutical Sciences and Arts and Sciences; 106 New Scotland Avenue; Albany; NY; 12208; USA
| |
Collapse
|
5
|
Rörsch F, Buscató E, Deckmann K, Schneider G, Schubert-Zsilavecz M, Geisslinger G, Proschak E, Grösch S. Structure-activity relationship of nonacidic quinazolinone inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1). J Med Chem 2012; 55:3792-803. [PMID: 22449023 DOI: 10.1021/jm201687d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microsomal prostaglandin E synthase 1 (mPGES-1) is a key enzyme of the arachidonic acid cascade. Its product PGE(2) plays an important role in various inflammatory processes, pain, fever, and cancer. Selective inhibition of mPGES-1 might be a promising step to avoid cyclooxygenase-related effects of NSAIDs. We studied a class of quinazolinone derivatives of the lead structure FR20 for their effects on the isolated human and murine enzymes, human HeLa cells, and in various settings of the whole blood assay. Novel compounds with direct enzyme inhibiting activity in the submicromolar range (IC(50): 0.13-0.37 μM) were designed using a bioisosteric replacement strategy and proved to be effective in both cells and human whole blood. Furthermore, pharmacological profiling of toxicity and eicosanoid screening with LC/MS-MS was applied to characterize this new class of mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Florian Rörsch
- Johann Wolfgang Goethe-University, Institute of Clinical Pharmacology, pharmazentrum frankfurt, LiFF/ZAFES, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Farhat A, Philibert P, Sultan C, Poulat F, Boizet-Bonhoure B. Hematopoietic-Prostaglandin D2 synthase through PGD2 production is involved in the adult ovarian physiology. J Ovarian Res 2011; 4:3. [PMID: 21352547 PMCID: PMC3050850 DOI: 10.1186/1757-2215-4-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/25/2011] [Indexed: 02/01/2023] Open
Abstract
Background The prostaglandin D2 (PGD2) pathway is involved in numerous biological processes and while it has been identified as a partner of the embryonic sex determining male cascade, the roles it plays in ovarian function remain largely unknown. PGD2 is secreted by two prostaglandin D synthases (Pgds); the male-specific lipocalin (L)-Pgds and the hematopoietic (H)-Pgds. Methods To study the expression of the Pgds in the adult ovary, in situ hybridization were performed. Then, to evaluate the role of H-Pgds produced PGD2 in the ovarian physiology, adult female mice were treated with HQL-79, a specific inhibitor of H-Pgds enzymatic activity. The effects on expression of the gonadotrophin receptors FshR and LhR, steroidogenic genes Cyp11A1, StAR and on circulating progesterone and estradiol, were observed. Results We report the localization of H-Pgds mRNA in the granulosa cells from the primary to pre-ovulatory follicles. We provide evidence of the role of H-Pgds-produced PGD2 signaling in the FSH signaling through increased FshR and LhR receptor expression. This leads to the activation of steroidogenic Cyp11A1 and StAR gene expression leading to progesterone secretion, independently on other prostanoid-synthetizing mechanisms. We also identify a role whereby H-Pgds-produced PGD2 is involved in the regulation of follicular growth through inhibition of granulosa cell proliferation in the growing follicles. Conclusions Together, these results show PGD2 signaling to interfere with FSH action within granulosa cells, thus identifying an important and unappreciated role for PGD2 signaling in modulating the balance of proliferation, differentiation and steroidogenic activity of granulosa cells.
Collapse
Affiliation(s)
- Andalib Farhat
- Institut de Génétique Humaine, Department of Genetic and Development, CNRS UPR1142, 141, rue de la Cardonille, 34396 Montpellier CEDEX5, France.
| | | | | | | | | |
Collapse
|
8
|
Romanovsky AA, Garami A. Prostaglandin riddles in energy metabolism: E is for excess, D is for depletion. Focus on "Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2". Am J Physiol Regul Integr Comp Physiol 2010; 298:R1509-11. [PMID: 20410482 DOI: 10.1152/ajpregu.00253.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Krall CM, Yao X, Hass MA, Feleder C, Steiner AA. Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D2. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1512-21. [PMID: 20393159 DOI: 10.1152/ajpregu.00158.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We tested the hypothesis that food deprivation alters body temperature (T(b)) responses to bacterial LPS by enhancing inflammatory signaling that decreases T(b) (cryogenic signaling) rather than by suppressing inflammatory signaling that increases T(b) (febrigenic signaling). Free-feeding or food-deprived (24 h) rats received LPS at doses (500 and 2,500 microg/kg iv) that are high enough to activate both febrigenic and cryogenic signaling. At these doses, LPS caused fever in rats at an ambient temperature of 30 degrees C, but produced hypothermia at an ambient temperature of 22 degrees C. Whereas food deprivation had little effect on LPS fever, it enhanced LPS hypothermia, an effect that was particularly pronounced in rats injected with the higher LPS dose. Enhancement of hypothermia was not due to thermogenic incapacity, since food-deprived rats were fully capable of raising T(b) in response to the thermogenic drug CL316,243 (1 mg/kg iv). Neither was enhancement of hypothermia associated with altered plasma levels of cytokines (TNF-alpha, IL-1beta, and IL-6) or with reduced levels of an anti-inflammatory hormone (corticosterone). The levels of PGD(2) and PGE(2) during LPS hypothermia were augmented by food deprivation, although the ratio between them remained unchanged. Food deprivation, however, selectively enhanced the responsiveness of rats to the cryogenic action of PGD(2) (100 ng icv) without altering the responsiveness to febrigenic PGE(2) (100 ng icv). These findings support our hypothesis and indicate that cryogenic signaling via PGD(2) underlies enhancement of LPS hypothermia by food deprivation.
Collapse
Affiliation(s)
- Catherine M Krall
- Department of Pharmaceutical Sciences, Albany College of Pharmacy & Health Sciences, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
10
|
Steiner AA, Hunter JC, Phipps SM, Nucci TB, Oliveira DL, Roberts JL, Scheck AC, Simmons DL, Romanovsky AA. Cyclooxygenase-1 or -2--which one mediates lipopolysaccharide-induced hypothermia? Am J Physiol Regul Integr Comp Physiol 2009; 297:R485-94. [PMID: 19515980 DOI: 10.1152/ajpregu.91026.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic inflammation is associated with either fever or hypothermia. Fever, a response to mild systemic inflammation, is mediated by cyclooxygenase (COX)-2 and not by COX-1. However, it is still disputed whether COX-2, COX-1, neither, or both mediate(s) responses to severe systemic inflammation, and, in particular, the hypothermic response. We compared the effects of SC-236 (COX-2 inhibitor) and SC-560 (COX-1 inhibitor) on the deep body temperature (T(b)) of rats injected with a lower (10 microg/kg i.v.) or higher (1,000 microg/kg i.v.) dose of LPS at different ambient temperatures (T(a)s). At a neutral T(a) (30 degrees C), the rats responded to LPS with a polyphasic fever (lower dose) or a brief hypothermia followed by fever (higher dose). SC-236 (2.5 mg/kg i.v.) blocked the fever induced by either LPS dose, whereas SC-560 (5 mg/kg i.v.) altered neither the febrile response to the lower LPS dose nor the fever component of the response to the higher dose. However, SC-560 blocked the initial hypothermia caused by the higher LPS dose. At a subneutral T(a) (22 degrees C), the rats responded to LPS with early (70-90 min, nadir) dose-dependent hypothermia. The hypothermic response to either dose was enhanced by SC-236 but blocked by SC-560. The hypothermic response to the higher LPS dose was associated with a fall in arterial blood pressure. This hypotensive response was attenuated by either SC-236 or SC-560. At the onset of LPS-induced hypothermia and hypotension, the functional activity of the COX-1 pathway (COX-1-mediated PGE(2) synthesis ex vivo) increased in the spleen but not liver, lung, kidney, or brain. The expression of splenic COX-1 was unaffected by LPS. We conclude that COX-1, but not COX-2, mediates LPS hypothermia, and that both COX isoforms are required for LPS hypotension.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|