1
|
Karabulut D, Sonmez MF. Effects of diabetes on nitric oxide synthase in rat uterus. Biotech Histochem 2020; 96:331-338. [DOI: 10.1080/10520295.2020.1788161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Fatih Sonmez
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Changes in nitric oxide synthase levels are associated with impaired cardiac function and tolerance to ischemia-reperfusion injury in male rats with transient congenital hypothyroidism. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1103-1111. [PMID: 31940052 DOI: 10.1007/s00210-020-01812-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
Transient congenital hypothyroidism (TCH) has long-lasting consequences on the cardiovascular system during adulthood. The aim of this study was to determine whether nitric oxide (NO) and NO-producing enzymes are involved in impaired cardiac function as well as decreased tolerance to ischemia-reperfusion (IR) injury in adult male rats with TCH. Pregnant rats were divided into control and hypothyroid groups. Male offspring rats were categorized in control and hypothyroid (TCH) groups at week 16. Levels of NOx (nitrate+nitrite) and neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) were measured in hearts of rats and isolated perfused hearts from both groups were subjected to IR. Levels of NOx and NOSs were also measured in both groups after ischemia. Compared with controls, heart NOx levels were higher at baseline (48.0 ± 4.9 vs. 35.0 ± 2.6 μmol/L; P = 0.034) and following IR (103.6 ± 4.2 vs. 70.2 ± 2.7 μmol/L; P < 0.001) in rat with TCH. At baseline, compared with controls, heart iNOS and nNOS levels were significantly higher in rats with TCH (6.12 ± 0.34 vs. 4.78 ± 0.27 ng/mg protein; P = 0.008 for iNOS and 4.87 ± 0.28 vs. 3.55 ± 0.23 ng/mg protein; P = 0.003 for nNOS). Following IR, in rats with TCH, heart iNOS levels increased (11.75 ± 2.02 vs. 6.12 ± 0.34, ng/mg protein; P = 0.015) whereas nNOS level decreased (4.10 ± 0.25 vs. 4.87 ± 0.28 ng/mg protein; P = 0.063). Adverse effects of TCH on cardiac function are associated with increased ratio of iNOS/eNOS; in addition, increased heart nNOS levels are involved in impaired cardiac function while its decrease is associated with decreased tolerance to IR injury.
Collapse
|
3
|
Enhanced Oxidative Damage and Nrf2 Downregulation Contribute to the Aggravation of Periodontitis by Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9421019. [PMID: 30622677 PMCID: PMC6304894 DOI: 10.1155/2018/9421019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/29/2018] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus is a well-recognized risk factor for periodontitis. The goal of the present study was to elucidate whether oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2) participate in the aggravation of periodontitis by diabetes. For this purpose, we assigned Wistar rats to control, periodontitis, diabetes, and diabetic periodontitis groups. Two weeks after induction of diabetes by streptozotocin, periodontitis was induced by ligation. Two weeks later, periodontal tissues and blood were harvested and analyzed by stereomicroscopy, immunohistochemistry, and real-time polymerase chain reaction. We found that ligation induced more severe bone loss and periodontal cell apoptosis in diabetic rats than in normal rats (p < 0.05). Compared with the control group, periodontitis significantly enhanced local oxidative damage (elevated expression of 3-nitrotyrosine, 4-hydroxy-2-nonenal, and 8-hydroxy-deoxyguanosine), whereas diabetes significantly increased systemic oxidative damage and suppressed antioxidant capacity (increased malondialdehyde expression and decreased superoxide dismutase activity) (p < 0.05). Simultaneous periodontitis and diabetes synergistically aggravated both local and systemic oxidative damage (p < 0.05); this finding was strongly correlated with the more severe periodontal destruction in diabetic periodontitis. Furthermore, gene and protein expression of Nrf2 was significantly downregulated in diabetic periodontitis (p < 0.05). Multiple regression analysis indicated that the reduced Nrf2 expression was strongly correlated with the aggravated periodontal destruction and oxidative damage in diabetic periodontitis. We conclude that enhanced local and systemic oxidative damage and Nrf2 downregulation contribute to the development and progression of diabetic periodontitis.
Collapse
|
4
|
Sartoretto SM, Santos FF, Costa BP, Ceravolo GS, Santos-Eichler R, Carvalho MHC, Fortes ZB, Akamine EH. Involvement of inducible nitric oxide synthase and estrogen receptor ESR2 (ERβ) in the vascular dysfunction in female type 1 diabetic rats. Life Sci 2018; 216:279-286. [PMID: 30447304 DOI: 10.1016/j.lfs.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/25/2022]
Abstract
AIMS Inflammation is involved in diabetes-related vascular dysfunction. Estrogen receptor ESR2/ERβ induces the expression of inducible nitric oxide (NO) synthase (iNOS) and inflammation. The present study investigated the effect of alloxan-induced type 1 diabetes on the iNOS and ESR2 expression and the effect of the chronic iNOS inhibition on the vascular smooth muscle dysfunction in diabetic female rats. In addition, we evaluated the involvement of ESR2 in iNOS expression. MAIN METHODS Alloxan-induced diabetic female rats were treated or not with iNOS inhibitor (L-NIL). iNOS and ESR2 immunostaining, S-nitrosylated proteins and IL-1β protein expression in aorta and plasmatic NO levels were analyzed. Contractile response to noradrenaline was analyzed in endothelium-denuded aorta. iNOS mRNA expression was analyzed in isolated aortic smooth muscle cells (ASMCs) of female rats, incubated with 22 mM glucose and an ESR2 antagonist. KEY FINDINGS Aortic iNOS and ESR2 immunostaining, S-nitrosylated proteins, IL-1β protein expression and plasmatic NO levels were all increased, whereas noradrenaline-induced contraction was reduced in aorta of diabetic female rats. With the exception of iNOS and ESR2 immunostaining, all these parameters were corrected by L-NIL treatment. High glucose increased iNOS mRNA expression in ASMCs, which was reduced by an ESR2 antagonist. SIGNIFICANCE We demonstrated that increased iNOS-NO contributed to the impairment of the contractile response of aortic smooth muscle cells in female type 1 diabetic rats and that increased expression of iNOS may involve the participation of ESR2/ERβ.
Collapse
Affiliation(s)
- Simone Marcieli Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Paraná, Brazil
| | - Rosângela Santos-Eichler
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Zuleica Bruno Fortes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Atta MS, El-Far AH, Farrag FA, Abdel-Daim MM, Al Jaouni SK, Mousa SA. Thymoquinone Attenuates Cardiomyopathy in Streptozotocin-Treated Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7845681. [PMID: 30510626 PMCID: PMC6232805 DOI: 10.1155/2018/7845681] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy is a diabetic complication due to oxidative stress injuries. This study examined the protecting influence of thymoquinone (TQ) on diabetes-caused cardiac complications. The intracellular means by which TQ works against diabetes-caused cardiac myopathy in rats is not completely understood. In this study, Wistar male rats (n = 60) were assigned into four groups: control, diabetic (diabetes induced by IP infusion of streptozotocin, 65 mg/kg), diabetic + TQ (diabetic rats given TQ (50 mg/kg) administered once per day by stomach gavage), and TQ (50 mg/kg) for 12 weeks. TQ supplementation appreciably recovered the cardiac parameters alongside significant declines in plasma nitric oxide concentrations and total superoxide dismutase (T.SOD) activities. Importantly, TQ downgraded expression of cardiac-inducible nitric oxide synthase in addition to significantly upregulating vascular endothelial growth factor and erythropoietin genes and nuclear factor-erythroid-2-related factor 2 (Nrf2) protein. TQ normalized plasma triacylglycerol and low-density lipoprotein-cholesterol and significantly improved the high-density lipoprotein-cholesterol levels. Additionally, TQ administration improved the antioxidant ability of cardiac tissue via significantly increased cardiac T.SOD and decreased cardiac malondialdehyde levels. Oral supplementation with TQ prevented diabetic-induced cardiomyopathy via its inhibitory effect on the E-selectin level, C-reactive protein, and interleukin-6. The TQ protecting effect on the heart tissue was shown by normalization of the plasma cardiac markers troponin I and creatine kinase. This experiment shows the aptitude of TQ to protect cardiac muscles against diabetic oxidative stress, mainly through upregulation of Nrf2, which defeated oxidative damage by improvement of the antioxidant power of cardiac muscle that consequently protected the cardiac muscles and alleviated the inflammatory process.
Collapse
Affiliation(s)
- Mustafa S. Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Foad A. Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, King Abdulaziz University Hospital and Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jaddah 21589, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
6
|
Jeddi S, Khalifi S, Ghanbari M, Bageripour F, Ghasemi A. Effects of Nitrate Intake on Myocardial Ischemia-Reperfusion Injury in Diabetic Rats. Arq Bras Cardiol 2017; 107:339-347. [PMID: 27849257 PMCID: PMC5102480 DOI: 10.5935/abc.20160137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
Background Coronary artery disease is 2-3 times more common in diabetic individuals.
Dietary nitrate/nitrite has beneficial effects in both diabetes and
cardiovascular disease. It also has protective effects against myocardial
ischemia-reperfusion (IR) injury in healthy animals. However, the effects of
nitrate on myocardial IR injury in diabetic rats have not yet been
investigated. Objective We examined the effects of dietary nitrate on myocardial IR injury in
streptozotocin-nicotinamide-induced diabetic rats. Method Rats were divided into four groups (n=7 in each group): control,
control+nitrate, diabetes, and diabetes+nitrate. Type 2 diabetes was induced
by injection of streptozotocin and nicotinamide. Nitrate (sodium nitrate)
was added to drinking water (100 mg/L) for 2 months. The hearts were
perfused in a Langendorff apparatus at 2 months and assessed before
(baseline) and after myocardial IR for the following parameters: left
ventricular developed pressure (LVDP), minimum and maximum rates of pressure
change in the left ventricle (±dP/dt), endothelial nitric oxide (NO)
synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression, and levels
of malondialdehyde (MDA) and NO metabolites (NOx). Results Recovery of LVDP and ±dP/dt was lower in diabetic rats versus
controls, but almost normalized after nitrate intake. Diabetic rats had
lower eNOS and higher iNOS expression both at baseline and after IR, and
dietary nitrate restored these parameters to normal values after IR.
Compared with controls, heart NOx level was lower in diabetic rats at
baseline but was higher after IR. Diabetic rats had higher MDA levels both
at baseline and after IR, which along with heart NOx levels decreased
following nitrate intake. Conclusion Dietary nitrate in diabetic rats provides cardioprotection against IR injury
by regulating eNOS and iNOS expression and inhibiting lipid peroxidation in
the heart.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Khalifi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bageripour
- Endocrine Physiology Research Center and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Moreira JD, Pernomian L, Gomes MS, Moreira RP, do Prado AF, da Silva CHTP, de Oliveira AM. Enhanced nitric oxide generation from nitric oxide synthases as the cause of increased peroxynitrite formation during acute restraint stress: Effects on carotid responsiveness to angiotensinergic stimuli in type-1 diabetic rats. Eur J Pharmacol 2016; 783:11-22. [PMID: 27118175 DOI: 10.1016/j.ejphar.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II.
Collapse
Affiliation(s)
- Josimar D Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University from Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Larissa Pernomian
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara S Gomes
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael P Moreira
- Department of Internalization - Binational Campus, Federal University from Amapá, Oiapoque, AP, Brazil
| | - Alejandro F do Prado
- Institutional Capacity Building Program, Coordination of Earth Science and Ecology, Museum Paraense Emílio Goeldi (MPEG), Belém, PA, Brazil
| | - Carlos H T P da Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana M de Oliveira
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Nassi A, Malorgio F, Tedesco S, Cignarella A, Gaion RM. Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes. Cardiovasc Diabetol 2016; 15:32. [PMID: 26879172 PMCID: PMC4754884 DOI: 10.1186/s12933-016-0349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
Background Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. Methods Male Sprague–Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. Results Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological inhibition of NOS abolished adenosine-induced vasorelaxation in aortic tissues from diabetic but not nondiabetic animals. Conclusions Endogenous adenosine prevented cytokine- and LPS-induced iNOS activation in VSMCs. By contrast, supplementation with adenosine and its precursors or analogues enhanced iNOS levels in diabetic VSMCs. This effect was associated with alterations in exogenous adenosine turnover. Thus, overactivation of the adenosine system may foster iNOS-mediated diabetic vascular dysfunction.
Collapse
Affiliation(s)
- Alberto Nassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. .,Transplant Immunology Unit, Padua University Hospital, Padova, Italy.
| | - Francesca Malorgio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Serena Tedesco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | | | - Rosa Maria Gaion
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 2016; 580:169-176. [PMID: 26774797 DOI: 10.1016/j.gene.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia.
Collapse
|
10
|
Karabulut D, Ulusoy HB, Kaymak E, Sönmez MF. Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS. Anatol J Cardiol 2015; 16:310-5. [PMID: 26488377 PMCID: PMC5336777 DOI: 10.5152/akd.2015.6252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Diabetes mellitus causes a decrease in cardiac output, arterial blood pressure, and heart rate. In this study, we aimed to investigate, at the molecular level, the effect of nitric oxide synthase (NOS) on heart pathology in type 1 diabetes and look at the therapeutic effect of pentoxifylline on this pathology. Methods: In this experimental study, 50 Wistar albino male rats were used. The rats were divided into 5 groups: group C, control; group D, only diabetes; group D+PI and D+PII, diabetes + pentoxifylline; group P, only pentoxifylline. Group D+PI rats received 50 mg/kg/day pentoxifylline over two months. However, group D+PII rats received saline in the first month and 50 mg/kg/day of pentoxifylline over the following month. At the end of two months, NOS expressions in heart tissue were assessed through immunohistochemistry analysis. The data were compared by one-way ANOVA. Results: At the end of the experiments, there was increased cytoplasmic vacuolization, myofibrillar loss, cytoplasmic eosinophilia, and degeneration of cardiomyocytes; nNOS and iNOS expressions in group D decreased compared with that in group C. In group D+PI and group D+PII, nNOS and iNOS expressions improved compared with group D. Conclusion: As a result, we found that diabetes, a known chronic disease, causes serious damage in heart tissue. NOS plays a role in this damage, and pentoxifylline aided in improving nNOS and iNOS expression in this damage.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University; Kayseri-Turkey.
| | | | | | | |
Collapse
|
11
|
Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:232-242. [PMID: 24997452 PMCID: PMC4277896 DOI: 10.1016/j.bbadis.2014.06.030] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Abstract
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center 1011 LAUSANNE Switzerland
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers NJ Medical School, USA
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Pál Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
12
|
Long-term atorvastatin improves age-related endothelial dysfunction by ameliorating oxidative stress and normalizing eNOS/iNOS imbalance in rat aorta. Exp Gerontol 2014; 52:9-17. [DOI: 10.1016/j.exger.2014.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
13
|
Jung HY, Kim YG, Park JW, Suh JY, Lee JM. The expression of a nitric oxide derivative, tissue inhibitors of metalloproteinase-3, and tissue inhibitors of metalloproteinase-4 in chronic periodontitis with type 2 diabetes mellitus. J Periodontal Implant Sci 2013; 43:87-95. [PMID: 23678392 PMCID: PMC3651942 DOI: 10.5051/jpis.2013.43.2.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/10/2013] [Indexed: 12/25/2022] Open
Abstract
Purpose The purpose of this study was to analyze the expression of inducible nitric oxide synthases (iNOS), tissue inhibitors of metalloproteinase (TIMP)-3, and TIMP-4 in the gingival tissues of periodontal patients with or without type 2 diabetes mellitus (DM). Methods Depending on the patient's systemic condition and clinical criteria of the gingiva, each gingival sample was classified into one of three groups. Sixteen clinically, systemically healthy patients (group 1), 16 periodontal patients (group 2), and 16 periodontal patients with DM (group 3) were included. Tissue samples in each group were collected, prepared, and analyzed by western blotting. Quantification of the relative amount of TIMP-3, TIMP-4, and iNOS was performed. Results The expression levels of iNOS and TIMP-3 both increased in group 1, group 2, and group 3 in increasing order, and were significantly higher in both group 2 and group 3 as compared to group 1 (P<0.05). The expression levels of TIMP-4 increased in the same order, but significantly increased in group 2 as compared to group 1, in group 3 as compared to group 1, and group 3 as compared to group 2 (P<0.05). Conclusions This study demonstrated that iNOS, TIMP-3, and TIMP-4 might be involved in the progression of periodontal inflammation associated with type 2 DM. It is thought that further study of these factors can be applied practically for the diagnosis and control of periodontitis in diabetics.
Collapse
Affiliation(s)
- Hyun-Yub Jung
- Department of Periodontology, Kyungpook National University School of Dentistry, Daegu, Korea
| | | | | | | | | |
Collapse
|
14
|
Tie L, An Y, Han J, Xiao Y, Xiaokaiti Y, Fan S, Liu S, Chen AF, Li X. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J Nutr Biochem 2013; 24:88-96. [DOI: 10.1016/j.jnutbio.2012.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/02/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
15
|
Nishikawa T, Naruse K, Kobayashi Y, Miyajima S, Mizutani M, Kikuchi T, Soboku K, Nakamura N, Sokabe A, Tosaki T, Hata M, Ohno N, Noguchi T, Matsubara T. Involvement of nitrosative stress in experimental periodontitis in diabetic rats. J Clin Periodontol 2012; 39:342-9. [PMID: 22276937 DOI: 10.1111/j.1600-051x.2011.01848.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
Abstract
AIM Periodontal disease is highly prevalent and severe in diabetic patients, and is considered one of the diabetic complications. To elucidate how periodontitis progresses in diabetes, we examined an animal model of periodontitis in diabetic rats. MATERIALS AND METHODS Two weeks after the induction of diabetes by streptozotocin, surgical nylon thread was ligated around the cervical portion of the unilateral maxillary second molar to induce periodontitis. Periodontitis was evaluated 2 weeks after the ligation by gingival blood flow, mRNA expressions, Western blot analysis, histological examination and micro CT. RESULTS Ligation-induced severe periodontitis in the diabetic rats, which was apparently shown by the increase of TNF-α and iNOS mRNA expressions and inflammatory cell infiltration in the gingiva and alveolar bone loss. The number of nitrotyrosine, a footprint of nitrosative stress, -positive cells was significantly higher in the periodontitis of the diabetic rats compared with that in the normal rats. Western blot analysis confirmed that the nitrotyrosine was increased in the periodontitis of the diabetic rats. CONCLUSIONS This is the first study to confirm increased nitrosative stress due to periodontitis in diabetic rats. Nitrosative stress may play a crucial role in the exacerbation of periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Toru Nishikawa
- Department of Periodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Roe ND, Ren J. Akt2 knockout mitigates chronic iNOS inhibition-induced cardiomyocyte atrophy and contractile dysfunction despite persistent insulin resistance. Toxicol Lett 2011; 207:222-31. [PMID: 21964073 DOI: 10.1016/j.toxlet.2011.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
Increased levels of inducible nitric oxide synthase (iNOS) during cardiac stress such as ischemia-reperfusion, sepsis and hypertension may display both beneficial and detrimental roles in cardiac contractile performance. However, the precise role of iNOS in the maintenance of cardiac contractile function remains elusive. This study was designed to determine the impact of chronic iNOS inhibition on cardiac contractile function and the underlying mechanism involved with a special focus on the NO downstream signaling molecule Akt. Male C57 or Akt2 knockout [Akt2(-/-)] mice were injected with the specific iNOS inhibitor 1400W (2 mg/kg/d) or saline for 7 days. Both 1400W and Akt2 knockout dampened glucose and insulin tolerance without additive effects. Treatment of 1400W decreased heart and liver weights as well as cardiomyocyte cross-sectional area in C57 but not Akt2 knockout mice. 1400W but not Akt2 knockout compromised cardiomyocyte mechanical properties including decreased peak shortening and maximal velocity of shortening/relengthening, prolonged relengthening duration, reduced intracellular Ca(2+) release and decay rate, the effects of which were ablated or attenuated by Akt2 knockout. Akt2 knockout but not 1400W increased the levels of intracellular Ca(2+) regulatory proteins including SERCA2a and phospholamban phosphorylation. 1400W reduced the level of anti-apoptotic protein Bcl-2, the effect of which was unaffected by Akt2 knockout. Neither 1400W nor Akt2 knockout significantly affected ER stress, autophagy, the post-insulin receptor signaling Akt, GSK3β and AMPK, as well as the stress signaling IκB, JNK, ERK and p38 with the exception of elevated IκB phosphorylation with jointed effect of 1400W and Akt2 knockout. Taken together, these data indicated that an essential role of iNOS in the maintenance of cardiac morphology and function possibly through an Akt2-dependent mechanism.
Collapse
Affiliation(s)
- Nathan D Roe
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | |
Collapse
|
17
|
Khullar M, Al-Shudiefat AARS, Ludke A, Binepal G, Singal PK. Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 2011; 88:233-40. [PMID: 20393588 DOI: 10.1139/y10-016] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diabetes and its associated complications are major known health disorders. Diabetes mellitus increases the risk of cardiovascular morbidity and mortality by promoting cardiomyopathy. It appears to arise as a result of the diabetic state, at times independent of vascular or valvular pathology. It manifests initially as asymptomatic diastolic dysfunction, which progresses to symptomatic heart failure. The compliance of the heart wall is decreased and contractile function is impaired. The pathophysiology of diabetic cardiomyopathy is incompletely understood but appears to be multifactorial in origin. Several hypotheses have been proposed, including oxidative stress, inflammation, endothelial dysfunction, metabolic derangements, abnormalities in ion homeostasis, alterations in structural proteins, and interstitial fibrosis. Amongst these various mechanisms, an increase in reactive oxygen species, leading to oxidative stress, has received significant experimental support. This review focuses on the role of oxidative stress in the pathogenesis of diabetic cardiomyopathy and the potential of antioxidant therapy.
Collapse
Affiliation(s)
- Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
18
|
He Y, Fan Z, Zhang J, Zhang Q, Zheng M, Li Y, Zhang D, Gu S, Yang H. Polymorphisms of eNOS gene are associated with diabetic nephropathy: a meta-analysis. Mutagenesis 2010; 26:339-49. [PMID: 21084433 DOI: 10.1093/mutage/geq100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of the current study is to assess the association between the alleles of endothelial nitric oxide synthases (eNOS) gene 4b/a, G894T, T786C polymorphisms and diabetic nephropathy (DN) through meta-analyses. We also performed a subgroup analysis based on ethnicity (Caucasians, East-Asian and other populations). A total of 3793 patients (DN) and 3161 controls (diabetes without nephropathy) for 4b/a, 2654 patients and 1993 controls for G894T and 1348 patients and 1175 controls for T786C were included in our analysis. Overall, allele contrast (4a versus 4b) of 4b/a polymorphism produced significant results in the global population [random effects model (RE) odds ratio (OR) = 1.33; 95% confidence interval (CI) = 1.10-1.61, P = 0.003] and East-Asian population (RE OR = 1.68; 95% CI = 1.23-2.30, P = 0.001), but not in the Caucasian population. In allele contrast of G894T, an obvious significant result was observed in the East-Asian population [fixed effects model OR = 1.69; 95% CI = 1.37-2.08, P < 0.0001], but not in the Caucasian population. Sensitivity analyses generated similar results to those of the primary analyses. The evidence accumulated suggested that 4b/a and G894T polymorphisms in the eNOS gene were associated with susceptibility to DN in Asian populations, but not in Caucasian populations.
Collapse
Affiliation(s)
- Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagareddy PR, Soliman H, Lin G, Rajput PS, Kumar U, McNeill JH, MacLeod KM. Selective inhibition of protein kinase C beta(2) attenuates inducible nitric oxide synthase-mediated cardiovascular abnormalities in streptozotocin-induced diabetic rats. Diabetes 2009; 58:2355-64. [PMID: 19587355 PMCID: PMC2750218 DOI: 10.2337/db09-0432] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Impaired cardiovascular function in diabetes is partially attributed to pathological overexpression of inducible nitric oxide synthase (iNOS) in cardiovascular tissues. We examined whether the hyperglycemia-induced increased expression of iNOS is protein kinase C-beta(2) (PKCbeta(2)) dependent and whether selective inhibition of PKCbeta reduces iNOS expression and corrects abnormal hemodynamic function in streptozotocin (STZ)-induced diabetic rats. RESEARCH DESIGN AND METHODS Cardiomyocytes and aortic vascular smooth muscle cells (VSMC) from nondiabetic rats were cultured in low (5.5 mmol/l) or high (25 mmol/l) glucose or mannitol (19.5 mmol/l mannitol + 5.5 mmol/l glucose) conditions in the presence of a selective PKCbeta inhibitor, LY333531 (20 nmol/l). Further, the in vivo effects of PKCbeta inhibition on iNOS-mediated cardiovascular abnormalities were tested in STZ-induced diabetic rats. RESULTS Exposure of cardiomyocytes to high glucose activated PKCbeta(2) and increased iNOS expression that was prevented by LY333531. Similarly, treatment of VSMC with LY333531 prevented high glucose-induced activation of nuclear factor kappaB, extracellular signal-related kinase, and iNOS overexpression. Suppression of PKCbeta(2) expression by small interference RNA decreased high-glucose-induced nuclear factor kappaB and extracellular signal-related kinase activation and iNOS expression in VSMC. Administration of LY333531 (1 mg/kg/day) decreased iNOS expression and formation of peroxynitrite in the heart and superior mesenteric arteries and corrected the cardiovascular abnormalities in STZ-induced diabetic rats, an action that was also observed with a selective iNOS inhibitor, L-NIL. CONCLUSIONS Collectively, these results suggest that inhibition of PKCbeta(2) may be a useful approach for correcting abnormal hemodynamics in diabetes by preventing iNOS mediated nitrosative stress.
Collapse
Affiliation(s)
- Prabhakara Reddy Nagareddy
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Guorong Lin
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmesh S. Rajput
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ujendra Kumar
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John H. McNeill
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen M. MacLeod
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Kathleen M. MacLeod,
| |
Collapse
|
20
|
|