1
|
Liu Y, Chen Y, Fukui K. Oxidative stress induces tau hyperphosphorylation via MARK activation in neuroblastoma N1E-115 cells. J Clin Biochem Nutr 2023; 73:24-33. [PMID: 37534088 PMCID: PMC10390814 DOI: 10.3164/jcbn.22-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023] Open
Abstract
Reactive oxygen species are considered a cause of neuronal cell death in Alzheimer's disease (AD). Abnormal tau phosphorylation is a proven pathological hallmark of AD. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neuronal survival. In this study, we hypothesized that oxidative stress increases the phosphorylation of Ser262 of tau protein through activation of MARKs, which is the main reason for the development of AD. We investigated the relationship between tau hyperphosphorylation on Ser262 and MARKs in N1E-115 cells subjected to oxidative stress by exposure to a low concentration of hydrogen peroxide. This work builds on the observation that hyperphosphorylation of tau is significantly increased by oxidative stress. MARKs activation correlated with tau hyperphosphorylation at Ser262, a site that is essential to maintain microtubule stability and is the initial phosphorylation site in AD. These results indicated that MARKs inhibitors might serve a role as therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Yuhong Liu
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Yunxi Chen
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
2
|
Zambrano K, Barba D, Castillo K, Robayo P, Argueta-Zamora D, Sanon S, Arizaga E, Caicedo A, Gavilanes AWD. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion 2022; 64:125-135. [PMID: 35337984 DOI: 10.1016/j.mito.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-β in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | | | | | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Lahiani-Cohen I, Touloumi O, Lagoudaki R, Grigoriadis N, Rosenmann H. Exposure to 3-Nitropropionic Acid Mitochondrial Toxin Induces Tau Pathology in Tangle-Mouse Model and in Wild Type-Mice. Front Cell Dev Biol 2020; 7:321. [PMID: 32010684 PMCID: PMC6971403 DOI: 10.3389/fcell.2019.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress, particularly of mitochondrial origin, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer’s disease (AD) and other tauopathies. Controversies regarding the responses of tau phosphorylation state to various stimuli causing oxidative stress have been reported. Here we investigated the effect of 3-nitropropionic acid (3NP), a mitochondrial toxin which induces oxidative stress, on the tangle-pathology in our previously generated double mutant (E257T/P301S, DM) -Tau-tg mice and in WT-mice. We detected an increase in tangle pathology in the hippocampus and cortex of the DM-Tau-tg mice following exposure of the mice to the toxin, as well as generation of tangles in WT-mice. This increase was accompanied with alterations in the level of the glycogen synthase kinase 3β (GSK3β), the kinase which phosphorylates the tau protein, and in the phosphorylation state of this kinase. A response of microglial cells was noticed. These results point to the involvement of mitochondrial dysfunction in the development of the tangle-pathology and may suggest that interfering with mitochondrial dysfunction may have an anti-tangle therapeutic potential.
Collapse
Affiliation(s)
- Inbal Lahiani-Cohen
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Vucicevic L, Misirkic-Marjanovic M, Harhaji-Trajkovic L, Maric N, Trajkovic V. Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs. Cell Stress 2018; 2:282-291. [PMID: 31225453 PMCID: PMC6551804 DOI: 10.15698/cst2018.11.161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review we analyze the ability of antipsychotic medications to modulate macroautophagy, a process of controlled lysosomal digestion of cellular macromolecules and organelles. We focus on its molecular mechanisms, consequences for the function/survival of neuronal and other cells, and the contribution to the beneficial and side-effects of antipsychotics in the treatment of schizophrenia, neurodegeneration, and cancer. A wide range of antipsychotics was able to induce neuronal autophagy as a part of the adaptive stress response apparently independent of mammalian target of rapamycin and dopamine receptor blockade. Autophagy induction by antipsychotics could contribute to reducing neuronal dysfunction in schizophrenia, but also to the adverse effects associated with their long-term use, such as brain volume loss and weight gain. In neurodegenerative diseases, antipsychotic-stimulated autophagy might help to increase the clearance and reduce neurotoxicity of aggregated proteotoxins. However, the possibility that some antipsychotics might block autophagic flux and potentially contribute to proteotoxin-mediated neurodegeneration must be considered. Finally, the anticancer effects of autophagy induction by antipsychotics make plausible their repurposing as adjuncts to standard cancer therapy.
Collapse
Affiliation(s)
- Ljubica Vucicevic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | - Nadja Maric
- Clinic of Psychiatry, Clinical Centre of Serbia and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Dasargyri A, Kümin CD, Leroux JC. Targeting Nanocarriers with Anisamide: Fact or Artifact? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603451. [PMID: 27885719 DOI: 10.1002/adma.201603451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Encapsulating chemotherapeutics in nanoparticles can reduce the side effects of intravenous administration and improve their antitumor efficacy. Additionally, surface decoration of the nanocarriers with tumor-targeting ligands may enhance their specificity for cancer cells overexpressing the corresponding ligand-binding counterpart. The focus here is on anisamide, a low-molecular-weight benzamide derivative used as a tumor-directing moiety in functionalized nanosystems, based on its alleged interaction with Sigma receptors. The scintigraphic agents that initially inspired the use of anisamide for tumor targeting are described, and the published anisamide-tethered nanocarrier formulations are reviewed, together with a critical overview of the ligand's tumor-targeting properties. Moreover, anisamide's putative but dubious cellular target, the Sigma-1 receptor, is discussed with regard to its subcellular localization and implications in cancer. Data from in vivo studies reveal that the effect of anisamide on the antitumor efficacy of the decorated nanosystems varies considerably among the published reports. Together with the evidence questioning the interaction of anisamide with the Sigma receptors, the variability of anisamide's effect on the tumor deposition and the antitumor efficacy of the decorated drug carriers calls into question the extent of the ligand's tumor-targeting effect. Further research is necessary to elucidate the ligand's utility in tumor targeting.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Carole D Kümin
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| |
Collapse
|
6
|
Haloperidol inactivates AMPK and reduces tau phosphorylation in a tau mouse model of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:121-130. [PMID: 29067299 PMCID: PMC5644277 DOI: 10.1016/j.trci.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The use of antipsychotic medications in Alzheimer's disease has been associated with an increased risk of mortality in clinical trials. However, an older postmortem literature suggests that those with schizophrenia treated in an era of exclusively conventional antipsychotic medications had a surprisingly low incidence of tau pathology. No previously published studies have investigated the impact of conventional antipsychotic exposure on tau outcomes in a tau mouse model of AD. METHODS In two experiments, transgenic rTg (tauP301L) 4510 tau mice were treated with either haloperidol or vehicle and phosphotau epitopes were quantified using high-sensitivity tau ELISA. RESULTS After treatments of 2 and 6 week's duration, mice treated with haloperidol evidenced a significant reduction in tau phosphorylation associated with an inactivation of the tau kinase AMPK. DISCUSSION The data suggest that D2 receptor blockade reduces tau phosphorylation in vivo. Future studies are necessary to investigate the impact of this reduction on tau neuropathology.
Collapse
|
7
|
Dasargyri A, Hervella P, Christiansen A, Proulx ST, Detmar M, Leroux JC. Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. J Control Release 2016; 224:229-238. [PMID: 26774218 DOI: 10.1016/j.jconrel.2016.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Anisamide is a small benzamide previously suggested as a tumor-targeting ligand for nanocarriers and it has been shown to enhance tumor uptake in vitro as well as in vivo when grafted on the nanoparticle surface. Anisamide has been hypothesized to interact with the Sigma-1 receptor, based on the binding of larger benzamides, which contain anisamide in their structure, to this receptor. However, the interaction between anisamide and Sigma-1 receptor has never been thoroughly studied. We developed fluorescent PEGylated particles decorated with anisamide, which were preferentially taken up in vitro by melanoma cells compared to macrophages. The anisamide-decorated particles were used to study their interaction with the Sigma-1 receptor. The absence of competition of Sigma-1 receptor ligands for the particle uptake was a first indication that the receptor might not be involved in the uptake process. In addition, the extent of particle uptake did not correlate with the levels of cellular expression of Sigma-1 receptor in the cell models tested. Immunostaining of the receptor on melanoma cells revealed intracellular localization, indirectly excluding the possibility of anisamide binding to the receptor when grafted on the particles. All these data question the previously suggested Sigma-1 receptor-mediated uptake of the anisamide-decorated particles, a finding which may have an impact on the use of anisamide as a targeting ligand.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Pablo Hervella
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Ailsa Christiansen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Steven T Proulx
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Michael Detmar
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland.
| |
Collapse
|
8
|
Ogundele OM, Nanakumo ET, Ishola AO, Obende OM, Enye LA, Balogun WG, Cobham AE, Abdulbasit A. -NMDA R/+VDR pharmacological phenotype as a novel therapeutic target in relieving motor-cognitive impairments in Parkinsonism. Drug Chem Toxicol 2015; 38:415-27. [PMID: 25367720 DOI: 10.3109/01480545.2014.975355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinsonism describes Parkinson's disease and other associated degenerative changes in the brain resulting in movement disorders. The motor cortex, extrapyramidal tracts and nigrostriatal tract are brain regions forming part of the motor neural system and are primary targets for drug or chemotoxins induced Parkinsonism. The cause of Parkinsonism has been described as wide and elusive, however, environmental toxins and drugs accounts for large percentage of spontaneous cases in humans. A common mechanism in the cause and progression of drug/chemotoxin induced Parkinsonism involves calcium signalling in; oxidative stress, autophagy, cytoskeletal instability and excitotoxicity . AIM This study sets to investigate the effect of targeting calcium controlling receptors, specifically activation of Vitamin D3 receptor (VDR) and inhibition of N-Methyl-D-Aspartate Receptor (NMDAR) in the motor cortex of mice model of drug induced Parkinsonism. Also we demonstrated how these interventions improved neural activity, cytoskeleton, glia/neuron count and motor-cognitive functions in vivo. METHODS Adult mice were separated into six groups of n = 5 animals each. Body weight (5 mg/kg) of haloperidol was administered intraperitoneally for 7 days to block dopaminergic D2 receptors and induce degeneration in the motor cortex following which an intervention of VDR agonist (VDRA), and (or) NMDAR inhibitor was administered for 7 days. A set of control animals received normal saline while a separate group of control animals received the combined intervention of VDRA and NMDAR inhibitor without prior treatment with haloperidol. Behavioral tests for motor and cognitive functions were carried out at the end of the treatment and intervention periods. Subsequently, neural activity in the motor cortex was recorded in vivo using unilateral wire electrodes. We also employed immunohistochemistry to demonstrate neuron, glia, neurofilament and proliferation in the motor cortex after haloperidol treatment and the intervention. RESULT/DISCUSSION We observed a decline in motor function and memory index in the haloperidol treatment group when compared with the control. Similarly, there was a decline in neural activity in the motor cortex (a reduced depolarization peak frequency). General cell loss (neuron and glia) and depletion of neurofilament were characteristic anatomical changes seen in the motor cortex of this group. However, Vitamin D3 intervention facilitated an improvement in motor-cognitive function, neural activity, glia/neuron survival and neurofilament expression. NMDAR inhibition and the combined intervention improved motor-cognitive functions but not as significant as values observed in VDRA intervention. Interestingly, animals treated with the combined intervention without prior haloperidol treatment showed a decline in motor function and neural activity. CONCLUSION Our findings suggest that calcium mediated toxicity is primary to the cause and progression of Parkinsonism and targeting receptors that primarily modulates calcium reduces the morphological and behavioral deficits in drug induced Parkinsonism. VDR activation was more effective than NMDAR inhibition and a combined intervention. We conclude that targeting VDR is key for controlling calcium toxicity in drug/chemotoxin induced Parkinsonism.
Collapse
Affiliation(s)
- Olalekan Michael Ogundele
- a Department of Anatomy , College of Medicine and Health Sciences, Afe Babalola University , Ekiti State Ado-Ekiti , Nigeria
| | - Ednar Tarebi Nanakumo
- a Department of Anatomy , College of Medicine and Health Sciences, Afe Babalola University , Ekiti State Ado-Ekiti , Nigeria
| | - Azeez Olakunle Ishola
- b Department of Anatomy , College of Health Sciences, University of Ilorin , Ilorin , Kwara State , Nigeria
| | - Oluwafemi Michael Obende
- c Department of Mathematical and Physical Sciences , College of Sciences, Afe Babalola University , Ado-Ekiti , Ekiti State , Nigeria , and
| | - Linus Anderson Enye
- a Department of Anatomy , College of Medicine and Health Sciences, Afe Babalola University , Ekiti State Ado-Ekiti , Nigeria
| | - Wasiu Gbolahan Balogun
- b Department of Anatomy , College of Health Sciences, University of Ilorin , Ilorin , Kwara State , Nigeria
| | - Ansa Emmanuel Cobham
- b Department of Anatomy , College of Health Sciences, University of Ilorin , Ilorin , Kwara State , Nigeria
| | - Amin Abdulbasit
- d Department of Physiology , College of Health Sciences, University of Ilorin , Ilorin , Kwara State , Nigeria
| |
Collapse
|
9
|
The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:352723. [PMID: 26171115 PMCID: PMC4485995 DOI: 10.1155/2015/352723] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation, and autophagy. We also discuss the relationship of these three factors in AD.
Collapse
|
10
|
Kaushal A, Wani WY, Anand R, Gill KD. Spontaneous and induced nontransgenic animal models of AD: modeling AD using combinatorial approach. Am J Alzheimers Dis Other Demen 2013; 28:318-26. [PMID: 23687185 PMCID: PMC10852793 DOI: 10.1177/1533317513488914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative and dementing disorder, is characterized by extracellular amyloid deposition, intracellular neurofibrillary tangle formation, and neuronal loss. We are still behind in AD research in terms of knowledge regarding understanding its pathophysiology and designing therapeutics because of the lack of an accurate animal model for AD. A complete animal model of AD should imitate all the cognitive, behavioral, and neuropathological features of the disease. Partial models are currently in use, which only mimic specific and not all of the components of AD pathology. Currently the transgenic animals are the popular models for AD research, but different genetic backgrounds of these transgenic animals remain a major confounding factor. This review attempts to summarize the current literature on nontransgenic animal models of AD and to highlight the potential of exploiting spontaneous and induced animal models for neuropathological, neurochemical, neurobehavioral, and neuroprotective studies of AD.
Collapse
Affiliation(s)
- Alka Kaushal
- Department of Biochemistry,Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Willayat Yousuf Wani
- Department of Biochemistry,Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - R. Anand
- Department of Biochemistry,Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kiran Dip Gill
- Department of Biochemistry,Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP, Bixby JL. A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Mol Cell Neurosci 2012; 50:125-35. [PMID: 22561309 DOI: 10.1016/j.mcn.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023] Open
Abstract
Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
12
|
Park J, Chung S, An H, Kim J, Seo J, Kim DH, Yoon SY. Haloperidol and clozapine block formation of autophagolysosomes in rat primary neurons. Neuroscience 2012; 209:64-73. [PMID: 22390943 DOI: 10.1016/j.neuroscience.2012.02.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Early intervention and maintenance treatment for schizophrenia patients may prolong the duration of exposure to antipsychotic agents; however, there have been few studies on the neurotoxicity of these agents. Here, we investigated the effects of antipsychotics on cell viability and autophagy in rat primary neurons. Cultured cortical neurons obtained from rat embryos were treated with various concentrations of haloperidol and clozapine, and the neuronal toxicity was assessed by measuring lactate dehydrogenase (LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Autophagosomes were quantitated by measuring the level of microtubule-associated protein 1A/1B-light chain 3 (LC3-II) by Western blot and immunofluorescence staining. Autophagic flux was assayed using bafilomycin A1 and GFP-mCherry-LC3 transfection. Haloperidol and clozapine decreased the viability of neurons in vitro in a concentration- and time-dependent manner. We also observed increased accumulation of autophagosomes after antipsychotic treatment. Using bafilomycin A1 and GFP-mCherry-LC3 transfection, we discovered that haloperidol and clozapine inhibited autophagosome turnover resulting in a dysfunctional autophagic process, including impaired lysosomal fusion. Together, these results suggest that haloperidol and clozapine negatively affect neuronal viability, possibly by blocking autophagolysosome formation.
Collapse
Affiliation(s)
- J Park
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Cary GA, Cuttler AS, Duda KA, Kusema ET, Myers JA, Tilden AR. Melatonin: neuritogenesis and neuroprotective effects in crustacean x-organ cells. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:355-60. [PMID: 22200560 DOI: 10.1016/j.cbpa.2011.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
Abstract
Melatonin has both neuritogenic and neuroprotective effects in mammalian cell lines such as neuroblastoma cells. The mechanisms of action include receptor-coupled processes, direct binding and modulation of calmodulin and protein kinase C, and direct scavenging of free radicals. While melatonin is produced in invertebrates and has influences on their physiology and behavior, little is known about its mechanisms of action. We studied the influence of melatonin on neuritogenesis in well-differentiated, extensively-arborized crustacean x-organ neurosecretory neurons. Melatonin significantly increased neurite area in the first 24h of culture. The more physiological concentrations, 1 nM and 1 pM, increased area at 48 h also, whereas the pharmacological 1 μM concentration appeared to have desensitizing effects by this time. Luzindole, a vertebrate melatonin receptor antagonist, had surprising and significant agonist-like effects in these invertebrate cells. Melatonin receptors have not yet been studied in invertebrates. However, the presence of membrane-bound receptors in this population of crustacean neurons is indicated by this study. Melatonin also has significant neuroprotective effects, reversing the inhibition of neuritogenesis by 200 and 500 μM hydrogen peroxide. Because this is at least in part a direct action not requiring a receptor, melatonin's protection from oxidative stress is not surprisingly phylogenetically-conserved.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mas S, Gassó P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 2011; 26:712-21. [PMID: 21923690 DOI: 10.1111/j.1472-8206.2011.00988.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse reactions to antipsychotic drugs (APs) have been attributed to oxidative stress. Sulforaphane (SF) is a potent antioxidant that protects against dopaminergic cell death. We examined the protective properties of SF against AP-induced oxidative stress in dopaminergic neuroblastoma cells. Human neuroblastoma SK-N-SH cells were treated with SF (0.5-5 μM), and 24 h later, haloperidol, risperidone or paliperidone (100 μM) was administered, either alone or in combination with dopamine (100 μM). To determine the antioxidant properties of SF, quinone oxidoreductase (NQO1) activity, glutathione S-transferase activity, and glutathione (GSH) levels were determined. Oxidative stress was measured by the increase in thiobarbituric acid reactive substances (TBARS) and in protein-bound quinones. Cell viability was also assessed. SF treatment increased GSH levels and induced NQO1 activity in SK-N-SH cells. Haloperidol was the only AP that increased TBARS when administered alone. When cells were cocultured with a drug in combination with dopamine, all three APs increased TBARS and protein-bound quinones and also induced neurotoxicity. In all the experimental conditions, 5 μM SF attenuated the accumulation of TBARS and protein-bound quinones and increased cell survival rates. Our results indicate that SF increases GSH levels and induces NQO1 activity and the removal of electrophilic quinones and radical oxygen species. Furthermore, SF could provide protective effects against AP-induced toxicity in dopaminergic cells.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|