1
|
Liu S, Wang Q, Li Z, Ma L, Li T, Li Y, Wang N, Liu C, Xue P, Wang C. TRPV1 Channel Activated by the PGE2/EP4 Pathway Mediates Spinal Hypersensitivity in a Mouse Model of Vertebral Endplate Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965737. [PMID: 34471470 PMCID: PMC8405310 DOI: 10.1155/2021/9965737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Low back pain (LBP) is the primary cause of disability globally. There is a close relationship between Modic changes or endplate defects and LBP. Endplates undergo ossification and become highly porous during intervertebral disc (IVD) degeneration. In our study, we used a mouse model of vertebral endplate degeneration by lumbar spine instability (LSI) surgery. Safranin O and fast green staining and μCT scan showed that LSI surgery led to endplate ossification and porosity, but the endplates in the sham group were cartilaginous and homogenous. Immunofluorescent staining demonstrated the innervation of calcitonin gene-related peptide- (CGRP-) positive nerve fibers in the porous endplate of LSI mice. Behavior test experiments showed an increased spinal hypersensitivity in LSI mice. Moreover, we found an increased cyclooxygenase 2 (COX2) expression and an elevated prostaglandin E2 (PGE2) concentration in the porous endplate of LSI mice. Immunofluorescent staining showed the colocalization of E-prostanoid 4 (EP4)/transient receptor potential vanilloid 1 (TRPV1) and CGRP in the nerve endings in the endplate and in the dorsal root ganglion (DRG) neurons, and western blotting analysis demonstrated that EP4 and TRPV1 expression significantly increased in the LSI group. Our patch clamp study further showed that LSI surgery significantly enhanced the current density of the TRPV1 channel in small-size DRG neurons. A selective EP4 receptor antagonist, L161982, reduced the spinal hypersensitivity of LSI mice by blocking the PGE2/EP4 pathway. In addition, TRPV1 current and neuronal excitability in DRG neurons were also significantly decreased by L161982 treatment. In summary, the PGE2/EP4 pathway in the porous endplate could activate the TRPV1 channel in DRG neurons to cause spinal hypersensitivity in LSI mice. L161982, a selective EP4 receptor antagonist, could turn down the TRPV1 current and decrease the neuronal excitability of DRG neurons to reduce spinal pain.
Collapse
Affiliation(s)
- Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Lei Ma
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
2
|
Fang J, Wang S, Zhou J, Shao X, Sun H, Liang Y, He X, Jiang Y, Liu B, Jin X, Fang J, Du J. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front Neurosci 2021; 15:685715. [PMID: 34354561 PMCID: PMC8329384 DOI: 10.3389/fnins.2021.685715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Zhou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021; 22:7336. [PMID: 34298954 PMCID: PMC8307464 DOI: 10.3390/ijms22147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.
Collapse
Affiliation(s)
- Cécile Dromard Berthézène
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Lise Rabiller
- Alan Edwards Center for Research on Pain, Department of Physiology and Cell Information Systems, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Géraldine Jourdan
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Béatrice Cousin
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Luc Pénicaud
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Louis Casteilla
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Anne Lorsignol
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| |
Collapse
|
4
|
Malik Z, Abbas M, Al Kury LT, Shah FA, Alam M, Khan AU, Nadeem H, Alghamdi S, Sahibzada MUK, Li S. Thiazolidine Derivatives Attenuate Carrageenan-Induced Inflammatory Pain in Mice. Drug Des Devel Ther 2021; 15:369-384. [PMID: 33574656 PMCID: PMC7871178 DOI: 10.2147/dddt.s281559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Peripheral inflammation leads to the development of persistent thermal hyperalgesia and mechanical allodynia associated with increased expression of interleukin-1β (IL-1β) in the spinal cord. The aim of the present study was to investigate the effects of thiazolidine derivatives, 1b ([2-(2-hydroxyphenyl)-1,3-thiazolidin-4-yl](morpholin-4-yl)methanone) and 1d (2-hydroxy-4-{[2-(2-hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]amino}benzoic acid), on thermal hyperalgesia, mechanical allodynia and on IL-1β expression during carrageenan-induced inflammation in the spinal cord in mice. Inflammatory pain was induced by injecting 1% carrageenan into the right hind paw of the mice. METHODS The animals were administered thiazolidine derivatives, 1b and 1d (1 mg/kg, 3 mg/kg, or 10 mg/kg), intraperitoneally 30 minutes before carrageenan administration. The animals' behavior was evaluated by measuring thermal hyperalgesia, mechanical allodynia, and motor coordination. The IL-1β expression was measured by enzyme-linked immunosorbent assay. Acute and sub-acute toxicity studies were conducted to evaluate the toxicity profile of compounds. RESULTS Treatment with the thiazolidine derivative, 1b and 1d, attenuated carrageenan-induced thermal hyperalgesia and mechanical allodynia at doses of 1 mg/kg, 3 mg/kg, and 10 mg/kg. No motor coordination deficits were observed in animals. The compounds also reduced IL-1β expression in the spinal cord of mice. Acute and sub-acute toxicity studies revealed that both compounds were safe. CONCLUSION The compounds exhibit promising activity against inflammatory pain due to their ability to produce anti-hyperalgesic and anti-allodynic effects and to inhibit IL-1β expression in the spinal cord.
Collapse
Affiliation(s)
- Zulkifal Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Muzaffar Abbas
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Mahboob Alam
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17:30. [PMID: 31969159 PMCID: PMC6975075 DOI: 10.1186/s12974-020-1703-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain.
Collapse
Affiliation(s)
- Yongwoo Jang
- Department of Psychiatry and Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Physiology, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
6
|
van Hoogstraten WS, MaassenVanDenBrink A. The need for new acutely acting antimigraine drugs: moving safely outside acute medication overuse. J Headache Pain 2019; 20:54. [PMID: 31096904 PMCID: PMC6734450 DOI: 10.1186/s10194-019-1007-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background The treatment of migraine is impeded by several difficulties, among which insufficient headache relief, side effects, and risk for developing medication overuse headache (MOH). Thus, new acutely acting antimigraine drugs are currently being developed, among which the small molecule CGRP receptor antagonists, gepants, and the 5-HT1F receptor agonist lasmiditan. Whether treatment with these drugs carries the same risk for developing MOH is currently unknown. Main body Pathophysiological studies on MOH in animal models have suggested that decreased 5-hydroxytryptamine (5-HT, serotonin) levels, increased calcitonin-gene related peptide (CGRP) expression and changes in 5-HT receptor expression (lower 5-HT1B/D and higher 5-HT2A expression) may be involved in MOH. The decreased 5-HT may increase cortical spreading depression frequency and induce central sensitization in the cerebral cortex and caudal nucleus of the trigeminal tract. Additionally, low concentrations of 5-HT, a feature often observed in MOH patients, could increase CGRP expression. This provides a possible link between the pathways of 5-HT and CGRP, targets of lasmiditan and gepants, respectively. Since lasmiditan is a 5-HT1F receptor agonist and gepants are CGRP receptor antagonists, they could have different risks for developing MOH because of the different (over) compensation mechanisms following prolonged agonist versus antagonist treatment. Conclusion The acute treatment of migraine will certainly improve with the advent of two novel classes of drugs, i.e., the 5-HT1F receptor agonists (lasmiditan) and the small molecule CGRP receptor antagonists (gepants). Data on the effects of 5-HT1F receptor agonism in relation to MOH, as well as the effects of chronic CGRP receptor blockade, are awaited with interest.
Collapse
Affiliation(s)
| | - Antoinette MaassenVanDenBrink
- Div. of Pharmacology, Dept. of Internal Medicine, Erasmus University Medical Centre, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Idris Z, Abbas M, Nadeem H, Khan AU. The Benzimidazole Derivatives, B1 ( N-[(1 H-Benzimidazol-2-yl)Methyl]-4-Methoxyaniline) and B8 ( N-{4-[(1 H-Benzimidazol-2-yl)Methoxy]Phenyl}Acetamide) Attenuate Morphine-Induced Paradoxical Pain in Mice. Front Neurosci 2019; 13:101. [PMID: 30809119 PMCID: PMC6379466 DOI: 10.3389/fnins.2019.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/28/2019] [Indexed: 01/20/2023] Open
Abstract
Despite being routinely used for pain management, opioid use is limited due to adverse effects such as development of tolerance and paradoxical pain, including thermal hyperalgesia and mechanical allodynia. Evidence indicates that continued morphine administration causes increased expression of proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α). The objectives of the present study were to determine the effects of B1 (N-[(1H-benzimidazol-2-yl)methyl]-4-methoxyaniline) and B8 (N-{4-[(1H-benzimidazol-2-yl)methoxy]phenyl}acetamide), benzimidazole derivatives, on thermal nociception and mechanical allodynia during repeated morphine (intraperitoneal; 5 mg/kg twice daily for 6 days)-induced paradoxical pain and TNF-α expression in the spinal cord in mice. Our data indicate that administration of benzimidazole derivatives attenuated morphine-induced thermal hyperalgesia and mechanical allodynia. Benzimidazole derivatives also reduced TNF-α expression in mice. Taken together, these results suggest that benzimidazole derivatives might be useful for the treatment of neuroinflammatory consequences of continued morphine administration and could be potential drug candidates for the management of opioid-induced paradoxical pain.
Collapse
Affiliation(s)
- Zahida Idris
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
8
|
François A, Scherrer G. Delta Opioid Receptor Expression and Function in Primary Afferent Somatosensory Neurons. Handb Exp Pharmacol 2017; 247:87-114. [PMID: 28993838 DOI: 10.1007/164_2017_58] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The functional diversity of primary afferent neurons of the dorsal root ganglia (DRG) generates a variety of qualitatively and quantitatively distinct somatosensory experiences, from shooting pain to pleasant touch. In recent years, the identification of dozens of genetic markers specifically expressed by subpopulations of DRG neurons has dramatically improved our understanding of this diversity and provided the tools to manipulate their activity and uncover their molecular identity and function. Opioid receptors have long been known to be expressed by discrete populations of DRG neurons, in which they regulate cell excitability and neurotransmitter release. We review recent insights into the identity of the DRG neurons that express the delta opioid receptor (DOR) and the ion channel mechanisms that DOR engages in these cells to regulate sensory input. We highlight recent findings derived from DORGFP reporter mice and from in situ hybridization and RNA sequencing studies in wild-type mice that revealed DOR presence in cutaneous mechanosensory afferents eliciting touch and implicated in tactile allodynia. Mechanistically, we describe how DOR modulates opening of voltage-gated calcium channels (VGCCs) to control glutamatergic neurotransmission between somatosensory neurons and postsynaptic neurons in the spinal cord dorsal horn. We additionally discuss other potential signaling mechanisms, including those involving potassium channels, which DOR may engage to fine tune somatosensation. We conclude by discussing how this knowledge may explain the analgesic properties of DOR agonists against mechanical pain and uncovers an unanticipated specialized function for DOR in cutaneous mechanosensation.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int 2016; 97:91-8. [PMID: 26970395 DOI: 10.1016/j.neuint.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons.
Collapse
|
10
|
Yan H, Yu LC. Expression of calcitonin gene-related peptide receptor subunits in cultured neurons following morphine treatment. Neurosci Lett 2013; 544:52-5. [DOI: 10.1016/j.neulet.2013.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
|
11
|
Deumens R, Steyaert A, Forget P, Schubert M, Lavand’homme P, Hermans E, De Kock M. Prevention of chronic postoperative pain: Cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog Neurobiol 2013; 104:1-37. [DOI: 10.1016/j.pneurobio.2013.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 01/13/2023]
|
12
|
Spahn V, Fischer O, Endres-Becker J, Schäfer M, Stein C, Zöllner C. Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner. Pain 2013; 154:598-608. [PMID: 23398938 DOI: 10.1016/j.pain.2012.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/21/2012] [Accepted: 12/31/2012] [Indexed: 11/30/2022]
Abstract
Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory neurons responding to noxious heat, protons, and chemical stimuli such as capsaicin. TRPV1 can be inhibited via μ-opioid receptor (MOR)-mediated reduced activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate (cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR uncovers AC superactivation and subsequent increases in cAMP and protein kinase A (PKA) activity. Here we investigated (1) whether an increase in cAMP during opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed mutagenesis, and behavioral experiments. Opioid withdrawal significantly increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) neurons. Inhibition of AC and PKA, as well as mutations of the PKA phosphorylation sites threonine 144 and serine 774, prevented the enhanced TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased during opioid withdrawal in vivo. In summary, our results demonstrate an increased activity of TRPV1 in DRG neurons as a new mechanism contributing to opioid withdrawal-induced hyperalgesia.
Collapse
Affiliation(s)
- Viola Spahn
- Charité - Universitätsmedizin Berlin, Klinik für Anaesthesiologie und operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany Universitätsklinikum Hamburg - Eppendorf, Klinik für Anästhesiologie, Hamburg 20251, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Tumati S, Largent-Milnes TM, Keresztes A, Ren J, Roeske WR, Vanderah TW, Varga EV. Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist. J Neuroimmunol 2012; 244:23-31. [PMID: 22285397 DOI: 10.1016/j.jneuroim.2011.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/21/2011] [Accepted: 12/15/2011] [Indexed: 01/07/2023]
Abstract
Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine-mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyperalgesia and tactile allodynia in rats. A CB2 (AM 630) but not a CB1 (AM 251) antagonist mitigated this effect. AM 1241 co-treatment also attenuated spinal astrocyte and microglial marker and pro-inflammatory mediator (IL-1β, TNFα) immunoreactivities in morphine-treated rats, suggesting that CB2 agonists may be useful to prevent the neuroinflammatory consequences of sustained morphine treatment.
Collapse
Affiliation(s)
- Suneeta Tumati
- Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
15
|
Davis MP. Opioid tolerance and hyperalgesia: basic mechanisms and management in review. PROGRESS IN PALLIATIVE CARE 2011. [DOI: 10.1179/174329111x13045147380537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|