1
|
Xu X, Fan Y, Yang X, Liu Y, Wang Y, Zhang J, Hou X, Fan Y, Zhang M. Anji white tea relaxes precontracted arteries, represses voltage-gated Ca 2+ channels and voltage-gated K + channels in the arterial smooth muscle cells: Comparison with green tea main component (-)-epigallocatechin gallate. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117855. [PMID: 38346524 DOI: 10.1016/j.jep.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
2
|
Liu Z, Xiao M, Du Z, Li M, Guo H, Yao M, Wan X, Xie Z. Dietary supplementation of Huangshan Maofeng green tea preventing hypertension of older C57BL/6 mice induced by desoxycorticosterone acetate and salt. J Nutr Biochem 2021; 88:108530. [PMID: 33080347 DOI: 10.1016/j.jnutbio.2020.108530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 01/12/2023]
Abstract
Senile hypertension affects the life quality of aged population. Dietary intervention plays a pivotal role in the prevention of hypertension. There are few reports concerning the effects and mechanisms of green tea supplementation preventing age related hypertension. The current study investigated the effect and mechanism of dietary supplement of Huangshan Maofeng green tea (HSMF) on prevention of hypertension induced by deoxycorticosterone acetate (DOCA) and salt in old C57BL/6 mice. Our results showed that HSMF dose-dependently prevented the increase of systolic blood pressure and diastolic blood pressure induced by DOCA plus salt (DS) at 51-week-old mice. And HSMF significantly reduced the agonists' stimulated contraction of mesenteric arteries isolated from the old mice. The expression of vasoconstrictor genes and inflammatory cytokines in aorta were suppressed observably by HSMF supplementation compared with DS group. The protein expression of PKCα in the aorta was dose-dependently decreased by HSMF compared to DS group. The phosphorylation level of MYPT1, CPI-17and MLC20 was also restrained by HSMF in the aorta. Furthermore, HSMF protected kidney by maintaining integrity of glomeruli and tubules and remarkably decreased the NGAL level in plasma. HSMF also suppressed the kidney inflammation by decreasing inflammatory cytokines expression and the macrophage infiltration. Our results proved that dietary supplement of HSMF remarkably improved the vascular functions and protected kidney injury, and thus prevented hypertension induced by DS in older C57BL/6 mice. Our data indicated that the dietary supplement of HSMF may potentially be used as a food additive for preventing hypertension for aged people.
Collapse
Affiliation(s)
- Zenghui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; Anhui Academy of Medical Science, Hefei, China
| | - Mengchao Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Mengwan Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Hefei, China
| | - Min Yao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
3
|
Xie L, Chiang ET, Wu X, Kelly GT, Kanteti P, Singleton PA, Camp SM, Zhou T, Dudek SM, Natarajan V, Wang T, Black SM, Garcia JGN, Jacobson JR. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 2016; 11:e0158865. [PMID: 27442243 PMCID: PMC4956111 DOI: 10.1371/journal.pone.0158865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Protein Kinase C (PKC) plays a significant role in thrombin-induced loss of endothelial cell (EC) barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin), dominant negative PKCδ construct and PKCδ silencing (siRNA). In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ) and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.
Collapse
Affiliation(s)
- Lishi Xie
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Xiaomin Wu
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel T Kelly
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Patrick A Singleton
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Tingting Zhou
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Steven M Dudek
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ting Wang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Steven M Black
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Joe G N Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R Jacobson
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Blesson CS, Chinnathambi V, Hankins GD, Yallampalli C, Sathishkumar K. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism. Hypertension 2014; 65:683-690. [PMID: 25489059 DOI: 10.1161/hypertensionaha.114.04521] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prenatal exposure to excess testosterone induces hyperandrogenism in adult females and predisposes them to hypertension. We tested whether androgens induce hypertension through transcriptional regulation and signaling of protein kinase C (PKC) in the mesenteric arteries. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate (0.5 mg/kg per day from gestation days 15 to 19, SC) and their 6-month-old adult female offspring were examined. Plasma testosterone levels (0.84±0.04 versus 0.42±0.09 ng/mL) and blood pressures (111.6±1.3 versus 104.5±2.4 mm Hg) were significantly higher in prenatal testosterone-exposed rats compared with controls. This was accompanied with enhanced expression of PKCδ mRNA (1.5-fold) and protein (1.7-fold) in the mesenteric arteries of prenatal testosterone-exposed rats. In addition, mesenteric artery contractile responses to PKC activator, phorbol-12,13-dibutyrate, was significantly greater in prenatal testosterone-exposed rats. Treatment with androgen receptor antagonist flutamide (10 mg/kg, SC, BID for 10 days) significantly attenuated hypertension, PKCδ expression, and the exaggerated vasoconstriction in prenatal testosterone-exposed rats. In vitro exposure of testosterone to cultured mesenteric artery smooth muscle cells dose dependently upregulated PKCδ expression. Analysis of PKCδ gene revealed a putative androgen responsive element in the promoter upstream to the transcription start site and an enhancer element in intron-1. Chromatin immunoprecipitation assays showed that androgen receptors bind to these elements in response to testosterone stimulation. Furthermore, luciferase reporter assays showed that the enhancer element is highly responsive to androgens and treatment with flutamide reverses reporter activity. Our studies identified a novel androgen-mediated mechanism for the control of PKCδ expression via transcriptional regulation that controls vasoconstriction and blood pressure.
Collapse
Affiliation(s)
- Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030
| | - Vijayakumar Chinnathambi
- Division of Reproductive Endocrinology Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555
| | - Gary D Hankins
- Division of Reproductive Endocrinology Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030
| | - Kunju Sathishkumar
- Division of Reproductive Endocrinology Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
5
|
In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:983801. [PMID: 23365604 PMCID: PMC3541707 DOI: 10.1155/2012/983801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/16/2023]
Abstract
Fagopyrum cymosum (Trev.) Meisn (Fag) is a herb rhizome which has been widely used to treat diseases. To investigate the effects and mechanisms of the Fag on irritable bowel syndrome (IBS), in vivo neonatal pups maternal separation (NMS) combined with intracolonic infusion of acetic acid (AA) was employed to establish IBS rat models. Fag reduced their visceral hyperalgesia and the whole gut permeability, ameliorated colonic mucosa inflammation and injury, and upregulated the expression of decreased tight junction proteins (TJs) of claudin-1, occludin, and ZO-1 (except ZO-2) in colonic epithelium. Caco-2 monolayer cells were incubated with TNF-α and IFN-γ
in vitro to establish an epithelial barrier dysfunction model whose transepithelial electrical resistance (TER) depended more on dose of Fag than that of the controls, and whose TJs levels were lower than those of the controls. Fag upregulated the NP-40 insoluble and soluble components of the four TJs markedly in a dose-dependent manner. These data suggest that Fag alleviated the hyperalgesia of IBS rats by reducing intestinal inflammation and enhancing mucosal epithelial function after regulating the structure and function of TJs.
Collapse
|
6
|
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther 2012; 26:121-31. [PMID: 22750270 DOI: 10.1016/j.pupt.2012.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discussed at the 7th International Young Investigators' Symposium on Smooth Muscle (2011, Winnipeg, Manitoba, Canada) and will in particular focus on processes driving Ca(2+)-mobilization and -sensitization.
Collapse
Affiliation(s)
- D B Wright
- Department of Asthma, Allergy, and Lung Biology, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|