1
|
Retunski M, Hussein OM. Paradoxical Post-Tadalafil Cerebral Vasoconstriction Causing Transient Ischemic Attack. Stroke 2025; 56:e102-e103. [PMID: 39851059 DOI: 10.1161/strokeaha.124.049338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- Maria Retunski
- Department of Neurology, University of New Mexico, Albuquerque
| | - Omar M Hussein
- Department of Neurology, University of New Mexico, Albuquerque
| |
Collapse
|
2
|
Xiong Y, Wintermark P. The Role of Sildenafil in Treating Brain Injuries in Adults and Neonates. Front Cell Neurosci 2022; 16:879649. [PMID: 35620219 PMCID: PMC9127063 DOI: 10.3389/fncel.2022.879649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Sildenafil is a recognized treatment for patients suffering from erectile dysfunction and pulmonary hypertension. However, new evidence suggests that it may have a neuroprotective and a neurorestorative role in the central nervous system of both adults and neonates. Phosphodiesterase type 5-the target of sildenafil-is distributed in many cells throughout the body, including neurons and glial cells. This study is a comprehensive review of the demonstrated effects of sildenafil on the brain with respect to its function, extent of injury, neurons, neuroinflammation, myelination, and cerebral vessels.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| |
Collapse
|
3
|
Wiggers A, Ashina H, Hadjikhani N, Sagare A, Zlokovic BV, Lauritzen M, Ashina M. Brain barriers and their potential role in migraine pathophysiology. J Headache Pain 2022; 23:16. [PMID: 35081902 PMCID: PMC8903554 DOI: 10.1186/s10194-021-01365-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Migraine is a ubiquitous neurologic disease that afflicts people of all ages. Its molecular pathogenesis involves peptides that promote intracranial vasodilation and modulate nociceptive transmission upon release from sensory afferents of cells in the trigeminal ganglion and parasympathetic efferents of cells in the sphenopalatine ganglion. Experimental data have confirmed that intravenous infusion of these vasoactive peptides induce migraine attacks in people with migraine, but it remains a point of scientific contention whether their site of action lies outside or within the central nervous system. In this context, it has been hypothesized that transient dysfunction of brain barriers before or during migraine attacks might facilitate the passage of migraine-inducing peptides into the central nervous system. Here, we review evidence suggestive of brain barrier dysfunction in migraine pathogenesis and conclude with lessons learned in order to provide directions for future research efforts.
Collapse
|
4
|
Quelhas P, Baltazar G, Cairrao E. Characterization of culture from smooth muscle cells isolated from rat middle cerebral arteries. Tissue Cell 2020; 66:101400. [PMID: 32933705 DOI: 10.1016/j.tice.2020.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Although human brain represents only 2% of the body mass, it uses around 20 % of the organism energy. Due to the brain's limited energy storage, the oxygen and glucose necessary to support brain functions depends on the correct blood supply. The main components of the arteries are smooth muscle cells, which are considered the main regulators of vascular tone and blood flow distribution. The information currently available on the functioning of the cerebral arteries and their cell constituents is extremely scarce. Thus, the aim of this work was to develop an in vitro model of smooth muscle cells derived from rat middle cerebral artery. Explants were collected from rat middle cerebral artery and adhered to collagen-coated culture dishes. Immunocytochemical analysis showed that the cells present in the culture expressed α-actin, a protein characteristic of the contractile phenotype of these cells. In addition, these cells did not express the endothelial marker, vWF. To evaluate the functionality of these cells the response to contractile agents, serotonin and noradrenaline, and to relaxing agent, sodium nitroprusside was determine by Planar Cell Surface Area analysis. Together the data obtained show that the cell culture obtained through the procedure described resulted in cells presenting the markers characteristic of smooth muscle cells and maintaining the usual contractile response, indicating that the cells obtained through this may be used as a model for characterization and study of functional behavior of the middle cerebral artery, as well as interaction studies between vascular and neuronal system.
Collapse
Affiliation(s)
- Patricia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
5
|
Inocencio IM, Polglase GR, Miller SL, Sehgal A, Sutherland A, Mihelakis J, Li A, Allison BJ. Effects of Maternal Sildenafil Treatment on Vascular Function in Growth-Restricted Fetal Sheep. Arterioscler Thromb Vasc Biol 2020; 39:731-740. [PMID: 30841708 DOI: 10.1161/atvbaha.119.312366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- The objective of this study was to investigate the effect of intravenous maternal sildenafil citrate (SC) administration on vascular function in growth-restricted fetal sheep. Approach and Results- Fetal growth restriction (FGR) results in cardiovascular adaptations that redistribute cardiac output to optimize suboptimal intrauterine conditions. These adaptations result in structural and functional cardiovascular changes, which may underlie postnatal neurological and cardiovascular sequelae. Evidence suggests SC, a potent vasodilator, may improve FGR. In contrast, recent clinical evidence suggests potential for adverse fetal consequence. Currently, there is limited data on SC effects in the developing fetus. We hypothesized that SC in utero would improve vascular development and function in an ovine model of FGR. Preterm lambs (0.6 gestation) underwent sterile surgery for single umbilical artery ligation or sham (control, appropriately grown) surgery to replicate FGR. Ewes received continuous intravenous SC (36 mg/24 h) or saline from surgery until 0.83 gestation. Fetuses were delivered and immediately euthanized for collection of femoral and middle cerebral artery vessels. Vessel function was assessed via in vitro wire myography. SC exacerbated growth restriction in growth-restricted fetuses and resulted in endothelial dysfunction in the cerebral and femoral vasculature, irrespective of growth status. Dysfunction in the cerebral circulation is endothelial, whereas smooth muscle in the periphery is the origin of the deficit. Conclusions- SC crosses the placenta and alters key fetal vascular development. Extensive studies are required to investigate the effects of SC on fetal development to address safety before additional use of SC as a treatment.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Graeme R Polglase
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Suzanne L Miller
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Arvind Sehgal
- Monash Children's Hospital (A. Sehgal), Monash University, Melbourne, Australia
| | - Amy Sutherland
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Jamie Mihelakis
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Anqi Li
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| | - Beth J Allison
- From the Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology (I.M.I., G.R.P., S.L.M., A. Sutherland, J.M., A.L., B.J.A.), Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Liu L, Xu H, Ding S, Wang D, Song G, Huang X. Phosphodiesterase 5 inhibitors as novel agents for the treatment of Alzheimer's disease. Brain Res Bull 2019; 153:223-231. [PMID: 31493542 DOI: 10.1016/j.brainresbull.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), characterized by a progressive impairment of memory and cognition, is a major health problem in both developing and developed countries. Currently, no drugs can reverse the progression of AD. Phosphodiesterase 5 (PDE5) is a critical component of the cyclic guanosine monophosphate/protein kinase G (cGMP/PKG) signaling pathway in neurons, the inhibition of which has produced neuroprotective effects, and PDE5 inhibitors have recently been thought to be potential therapeutic agents for AD. In this paper, we summarized the outstanding progress that has been made in PDE5 inhibitors as anti-AD agents with encouraging results in animal studies, clinical trials and the investigations on the underlying mechanisms. The novel PDE5 inhibitors reported recently in the treatment of AD were also reviewed and discussed.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Huang Xu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shumin Ding
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dongyan Wang
- Department of Medicine, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Guoqiang Song
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xianfeng Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
7
|
Zahavi A, Weiss S, Vieyra M, Nicholson JD, Muhsinoglu O, Barinfeld O, Zadok D, Goldenberg-Cohen N. Ocular Effects of Sildenafil in Naïve Mice and a Mouse Model of Optic Nerve Crush. ACTA ACUST UNITED AC 2019; 60:1987-1995. [DOI: 10.1167/iovs.18-26333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alon Zahavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Shirel Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Mark Vieyra
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James D. Nicholson
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orkun Muhsinoglu
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - David Zadok
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Nitza Goldenberg-Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Vasita E, Yasmeen S, Andoh J, Bridges LR, Kruuse C, Pauls MMH, Pereira AC, Hainsworth AH. The cGMP-Degrading Enzyme Phosphodiesterase-5 (PDE5) in Cerebral Small Arteries of Older People. J Neuropathol Exp Neurol 2019; 78:191-194. [PMID: 30590671 DOI: 10.1093/jnen/nly117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Cerebral small vessel disease in deep penetrating arteries is a major cause of lacunar infarcts, white matter lesions and vascular cognitive impairment. Local cerebral blood flow in these small vessels is controlled by endothelial-derived nitric oxide, which exerts a primary vasodilator stimulus on vascular myocytes, via cytoplasmic cyclic GMP. Here, we investigated whether the cGMP-degrading enzyme phosphodiesterase-5 (PDE5) is present in small penetrating arteries in the deep subcortical white matter of older people. Frontal cortical tissue blocks were examined from donated brains of older people (n = 42, 24 male: 18 female, median age 81, range: 59-100 years). PDE5, detected by immunohistochemical labeling, was graded as absent, sparse, or abundant in vascular cells within small arteries in subcortical white matter (vessel outer diameter: 20-100 µm). PDE5 labeling within arterial myocytes was detected in all cases. Degree of PDE5 expression (absent, sparse, or abundant) was not associated with age or with neuropathological diagnosis of small vessel disease. In conclusion, PDE5 is present in vascular myocytes within small penetrating arteries in older people. This is a potential molecular target for pharmacological interventions.
Collapse
Affiliation(s)
- Ekta Vasita
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Saiqa Yasmeen
- Department of Neurology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Joycelyn Andoh
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Leslie R Bridges
- Department of Cellular Pathology, St. George's University Hospitals NHS Foundation Trust, Blackshaw Road, SW17 0QT, London, United Kingdom
| | - Christina Kruuse
- Department of Neurology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Mathilde M H Pauls
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Anthony C Pereira
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, Blackshaw Road, SW17 0QT, United Kingdom
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| |
Collapse
|
9
|
Christensen CE, Amin FM, Younis S, Lindberg U, de Koning P, Petersen ET, Paulson OB, Larsson HBW, Ashina M. Sildenafil and calcitonin gene-related peptide dilate intradural arteries: A 3T MR angiography study in healthy volunteers. Cephalalgia 2018; 39:264-273. [DOI: 10.1177/0333102418787336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Sildenafil and calcitonin gene-related peptide are vasoactive substances that induce migraine attacks in patients. The intradural arteries are thought to be involved, but these have never been examined in vivo. Sildenafil is the only migraine-inducing compound for which cephalic, extracranial artery dilation is not reported. Here, we investigate the effects of sildenafil and calcitonin gene-related peptide on the extracranial and intradural parts of the middle meningeal artery. Methods In a double-blind, randomized, three-way crossover, placebo-controlled head-to-head comparison study, MR-angiography was recorded in healthy volunteers at baseline and twice after study drug (sildenafil/ calcitonin gene-related peptide/saline) administration. Circumferences of extracranial and intradural middle meningeal artery segments were measured using semi-automated analysis software. The area under the curve for circumference change was compared using paired t-tests between study days. Results Twelve healthy volunteers completed the study. The area under the curveBaseline-120min was significantly larger on both the sildenafil and the calcitonin gene-related peptide day in the intradural middle meningeal artery (calcitonin gene-related peptide, p = 0.013; sildenafil, p = 0.027) and the extracranial middle meningeal artery (calcitonin gene-related peptide, p = 0.0003; sildenafil, p = 0.021), compared to placebo. Peak intradural middle meningeal artery dilation was 9.9% (95% CI [2.9–16.9]) after sildenafil (T30min) and 12.5% (95% CI [8.1–16.8]) after calcitonin gene-related peptide (T30min). Peak dilation of the extracranial middle meningeal artery after calcitonin gene-related peptide (T30min) was 15.7% (95% CI [11.2–20.1]) and 18.9% (95% CI [12.8–24.9]) after sildenafil (T120min). Conclusion An important novel finding is that both sildenafil and calcitonin gene-related peptide dilate intradural arteries, supporting the notion that all known pharmacological migraine triggers dilate cephalic vessels. We suggest that intradural artery dilation is associated with headache induced by calcitonin gene-related peptide and sildenafil.
Collapse
Affiliation(s)
- Casper Emil Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick de Koning
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and research, Amager and Hvidovre Hospital, Copenhagen, Denmark
| | - Olaf Bjarne Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Heckman PRA, Blokland A, Prickaerts J. From Age-Related Cognitive Decline to Alzheimer's Disease: A Translational Overview of the Potential Role for Phosphodiesterases. ADVANCES IN NEUROBIOLOGY 2017; 17:135-168. [PMID: 28956332 DOI: 10.1007/978-3-319-58811-7_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer's disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Hamishehkar H, Khoshbakht M, Jouyban A, Ghanbarzadeh S. The Relationship between Solubility and Transdermal Absorption of Tadalafil. Adv Pharm Bull 2015; 5:411-7. [PMID: 26504764 PMCID: PMC4616899 DOI: 10.15171/apb.2015.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study was to find a relationship between drug solubility and its transdermal permeation and find the best vehicle composition to improve transdermal permeation of Tadalafil. METHODS Pure or binary mixtures of commonly used solvents in pharmaceutical sciences including ethanol, glycerin, N-methyl pyrrolidone (NMP), polyethylene glycol (PEG) 400 and propylene glycol (PG) were evaluated for drug solubility and transdermal delivery through the exercised rat skin employing Franz diffusion cells. RESULTS Tadalafil showed higher solubility in NMP compared to the other solvents. The amount of Tadalafil permeation from the pure vehicles was ranked as follow: Ethanol >glycerin >NMP>PEG 400 >PG. Furthermore, the solubility and transdermal delivery from binary mixtures of NMP and PG were higher than that obtained from pure PG, and accordingly, both increased with increasing NMP concentration in the binary solvent mixtures. The Flux values were determined as following order for Ethanol>NMP>glycerin>PG>PEG 400. CONCLUSION Generally, increase in Tadalafil solubility resulted in a decrease in its skin penetration rate and amount. However, NMP exhibited substantial drug skin penetration rate and amount accompanying with appropriate drug solvency. In conclusion, the results of this study introduced NMP as a solvent suitable for application in the formulation of topically applied drug delivery systems.
Collapse
Affiliation(s)
- Hamed Hamishehkar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Khoshbakht
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Strach B, Wyska E, Pociecha K, Krupa A, Jachowicz R. Sensitive and precise HPLC method with back-extraction clean-up step for the determination of sildenafil in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2015; 29:1559-66. [PMID: 25864807 DOI: 10.1002/bmc.3459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/05/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
A sensitive HPLC method was developed and validated for the determination of sildenafil concentrations in rat plasma (200 μL) using a liquid-liquid extraction procedure and paroxetine as an internal standard. In order to eliminate interferences and improve the peak shape, a back-extraction into an acidic solution was utilized. Chromatographic separation was achieved on a cyanopropyl bonded-phase column with a mobile phase composed of 50 m m potassium dihydrogen phosphate buffer (pH 4.5) and acetonitrile (75:25, v/v), pumped at the flow rate of 1 mL/min. A UV detector was set at 230 nm. A calibration curve was constructed within a concentration range from 10 to 1500 ng/mL. The limit of detection was 5 ng/mL. The inter- and intra-day precisions of the assay were in the ranges 2.91-7.33 and 2.61-6.18%, respectively, and the accuracies for inter- and intra-day runs were within 0.14-3.92 and 0.44-2.96%, respectively. The recovery of sildenafil was 85.22 ± 4.54%. Tests confirmed the stability of sildenafil in plasma during three freeze-thaw cycles and during long-term storage at -20 and -80°C for up to 2 months. The proposed method was successfully applied to a pharmacokinetic study in rats.
Collapse
Affiliation(s)
- Beata Strach
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Cracow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Cracow, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University, Medical College, Cracow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University, Medical College, Cracow, Poland
| |
Collapse
|
13
|
Guo S, Olesen J, Ashina M. Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. ACTA ACUST UNITED AC 2014; 137:2951-9. [PMID: 25161294 DOI: 10.1093/brain/awu244] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The initiating mechanisms of migraine attacks are very complex but may involve the cyclic AMP signalling pathway. It is unknown whether intracellular cyclic AMP accumulation induces migraine attacks. We investigated whether administration of cilostazol, which causes cyclic AMP accumulation, may induce migraine attacks. We included 14 migraine patients without aura in a double-blind, placebo-controlled crossover study. All participants received oral cilostazol or placebo on two separate days. We recorded migraine headache characteristics, associated symptoms and time of rescue medication intake using a questionnaire. Cilostazol induced delayed migraine-like attacks in 12 patients (86%) compared with two (14%) patients after placebo (P = 0.002). The median time to onset for migraine-like attacks was 6 h (range 3-11 h). Patients reported that the attacks mimicked their usual migraine attacks and that cilostazol-induced attacks responded to their usual migraine treatment. Median time of medication intake was 6 h (range 4-11 h). The present study suggests that intracellular cyclic AMP accumulation plays a crucial role in migraine induction. This knowledge is a further step in our understanding of the intracellular pathway of migraine initiation.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600 Glostrup, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600 Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600 Glostrup, Copenhagen, Denmark
| |
Collapse
|
14
|
Comparison of the vasodilator responses of isolated human and rat middle meningeal arteries to migraine related compounds. J Headache Pain 2014; 15:22. [PMID: 24754925 PMCID: PMC4011837 DOI: 10.1186/1129-2377-15-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Migraine attacks occur spontaneously in those who suffer from the condition, but migraine-like attacks can also be induced artificially by a number of substances. Previously published evidence makes the meninges a likely source of migraine related pain. This article investigates the effect of several vasodilators on meningeal arteries in order to find a connection between the effect of a substance on a meningeal vessel and its ability to artificially induce migraine. Methods A myograph setup was used to test the vasodilator properties of the substances acetylcholine (ACh), sodium nitroprusside (SNP), sildenafil, prostaglandin E2 (PGE2), pituitary adenylate cyclase activating peptide-38 (PACAP-38), calcitonin gene-related peptide (CGRP) and NaCl buffer on meningeal arteries from human and rat. An unpaired t-test was used to statistically compare the mean Emax(%) at the highest concentration of each substance to the Emax(%) of NaCl buffer. Results In the human experiments, all substances except PACAP-38 had an Emax (%) higher than the NaCl buffer, but the difference was only significant for SNP and CGRP. For the human samples, clinically tested antimigraine compounds (sumatriptan, telcagepant) were applied to the isolated arteries, and both induced a significant decrease of the effect of exogenously administrated CGRP. In experiments on rat middle meningeal arteries, pre-contracted with PGF2α, similar tendencies were seen. When the pre-contraction was switched to K+ in a separate series of experiments, CGRP and sildenafil significantly relaxed the arteries. Conclusions Still no definite answer can be given as to why pain is experienced during an attack of migraine. No clear correlation was found between the efficacy of a substance as a meningeal artery vasodilator in human and the ability to artificially induce migraine or the mechanism of action. Vasodilatation could be an essential trigger, but only in conjunction with other unknown factors. The vasculature of the meninges likely contributes to the propagation of the migrainal cascade of symptoms, but more research is needed before any conclusions can be drawn about the nature of this contribution.
Collapse
|
15
|
Archavlis E, Carvi Y Nievas M. Cerebral vasospasm: a review of current developments in drug therapy and research. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-120x-2-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|