1
|
Seo J, Lee DE, Kim SM, Kim E, Kim JK. Licochalcone A Exerts Anti-Cancer Activity by Inhibiting STAT3 in SKOV3 Human Ovarian Cancer Cells. Biomedicines 2023; 11:biomedicines11051264. [PMID: 37238935 DOI: 10.3390/biomedicines11051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licochalcone A (LicA), a major active component of licorice, has been reported to exhibit various pharmacological actions. The purpose of this study was to investigate the anticancer activity of LicA and detail its molecular mechanisms against ovarian cancer. SKOV3 human ovarian cancer cells were used in this study. Cell viability was measured using a cell counting kit-8 assay. The percentages of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse flow cytometry. The expression levels of proteins regulating cell apoptosis, cell cycle, and the signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using Western blotting analysis. The results indicated that LicA treatment inhibited the cell viability of SKOV3 cells and induced G2/M phase arrest. Furthermore, LicA induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspases and cytoplasmic cytochrome c. Additionally, LicA caused a dramatic decrease in STAT3 protein levels, but not mRNA levels, in SKOV3 cells. Treatment with LicA also reduced phosphorylation of the mammalian target of rapamycin and eukaryotic translation initiation factor 4E-binding protein in SKOV3 cells. The anti-cancer effects of LicA on SKOV3 cells might be mediated by reduced STAT3 translation and activation.
Collapse
Affiliation(s)
- Jeonghyeon Seo
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Da Eun Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Seong Mi Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| |
Collapse
|
2
|
Deng N, Qiao M, Li Y, Liang F, Li J, Liu Y. Anticancer effects of licochalcones: A review of the mechanisms. Front Pharmacol 2023; 14:1074506. [PMID: 36755942 PMCID: PMC9900005 DOI: 10.3389/fphar.2023.1074506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/β-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
Collapse
Affiliation(s)
- Nan Deng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingming Qiao
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengyan Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Yanfeng Liu,
| |
Collapse
|
3
|
Li MT, Xie L, Jiang HM, Huang Q, Tong RS, Li X, Xie X, Liu HM. Role of Licochalcone A in Potential Pharmacological Therapy: A Review. Front Pharmacol 2022; 13:878776. [PMID: 35677438 PMCID: PMC9168596 DOI: 10.3389/fphar.2022.878776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Licochalcone A (LA), a useful and valuable flavonoid, is isolated from Glycyrrhiza uralensis Fisch. ex DC. and widely used clinically in traditional Chinese medicine. We systematically updated the latest information on the pharmacology of LA over the past decade from several authoritative internet databases, including Web of Science, Elsevier, Europe PMC, Wiley Online Library, and PubMed. A combination of keywords containing “Licochalcone A,” “Flavonoid,” and “Pharmacological Therapy” was used to help ensure a comprehensive review. Collected information demonstrates a wide range of pharmacological properties for LA, including anticancer, anti-inflammatory, antioxidant, antibacterial, anti-parasitic, bone protection, blood glucose and lipid regulation, neuroprotection, and skin protection. LA activity is mediated through several signaling pathways, such as PI3K/Akt/mTOR, P53, NF-κB, and P38. Caspase-3 apoptosis, MAPK inflammatory, and Nrf2 oxidative stress signaling pathways are also involved with multiple therapeutic targets, such as TNF-α, VEGF, Fas, FasL, PI3K, AKT, and caspases. Recent studies mainly focus on the anticancer properties of LA, which suggests that the pharmacology of other aspects of LA will need additional study. At the end of this review, current challenges and future research directions on LA are discussed. This review is divided into three parts based on the pharmacological effects of LA for the convenience of readers. We anticipate that this review will inspire further research.
Collapse
Affiliation(s)
- Meng-Ting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Licochalcone A Promotes the Ubiquitination of c-Met to Abrogate Gefitinib Resistance. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5687832. [PMID: 35309168 PMCID: PMC8930240 DOI: 10.1155/2022/5687832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Met proto-oncogene (MET) amplification and tyrosine-protein kinase Met (c-Met) overexpression confer gefitinib resistance in non-small cell lung cancer (NSCLC). The natural product Licochalcone A (Lico A) exhibits a broad range of inhibitory effects against various tumors. However, the effects of Lico A on c-Met signaling and gefitinib resistance in NSCLC remain unclear. In the present study, Lico A efficiently overcame gefitinib-acquired resistance in NSCLC cells by suppressing c-Met signaling. Lico A decreased cell viability and colony formation dose-dependently and impaired in vivo tumorigenesis of gefitinib-resistant HCC827 and PC-9 cells. Furthermore, Lico A induced intrinsic apoptosis and upregulated the protein expression levels of cleaved poly (ADP-ribose) polymerase and cleaved caspase 3. Lico A promoted the interaction between c-Met and E3 ligase c-Casitas B-lineage lymphoma (Cbl), which enhanced c-Cbl-mediated c-Met ubiquitination and degradation. Depletion of c-Cbl compromised Lico A-induced c-Met ubiquitination and its inhibitory efficacy in gefitinib-resistant NSCLC cells. Taken together, the results suggest that Lico A is a promising antitumor agent that might be used to overcome c-Met overexpression-mediated gefitinib resistance in NSCLC cells.
Collapse
|
5
|
Luo W, Sun R, Chen X, Li J, Jiang J, He Y, Shi S, Wen H. ERK Activation-Mediated Autophagy Induction Resists Licochalcone A-Induced Anticancer Activities in Lung Cancer Cells in vitro. Onco Targets Ther 2021; 13:13437-13450. [PMID: 33447049 PMCID: PMC7802906 DOI: 10.2147/ott.s278268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction The incidence and mortality rates of lung cancer rank top in the different types of cancers in China. Licochalcone A (LA) is a flavonoid extracted from the roots of licorice with antitumor effects in various cancers in vitro and in vivo. However, the role of LA in non-small cell lung cancer (NSCLC) remains largely unclear. Methods The cell viability was measured by MTT assay, Edu staining and colony formation assay. Apoptosis was investigated using Annexin V/PI double-stained assays with flow cytometry. Real-time quantitative RT-PCR was carried out to investigate the expression of mRNA of related proteins. Western blotting was used to investigate the expression of related proteins. Results The results show that LA inhibits the proliferation of NSCLC cells in a dose-dependent manner and induces apoptotic cell death. Moreover, LA significantly suppresses the expression of c-IAP1, c-IAP2, XIAP, Survivin, c-FLIPL and RIP1 without influencing the level of mRNA. Cycloheximide chase assay demonstrates that LA greatly decreases the stability of Survivin, XIAP and RIP1. Mechanistic studies indicate that LA induces cytoprotective autophagy since block of autophagy with CQ greatly enhances LA-induced anticancer activities. Furthermore, LA rapidly induces ERK and p38 activation in a time-dependent manner in both A549 and H460 cells, but suppresses the activities of c-Jun N-terminal kinase (JNK); suppression of ERK not p38 with inhibitor attenuates LA-induced autophagy, while it remarkably enhances LA-induced cytotoxicity in lung cancer cells and further promotes the degradation of apoptosis-related proteins. Discussion The results of this study provide novel insights on the role of apoptosis-related proteins and the MAPKs pathway in the anticancer activities of LA.
Collapse
Affiliation(s)
- Wei Luo
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Leshan, Leshan, Sichuan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xin Chen
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Ju Li
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Jike Jiang
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Yuxiao He
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Gao F, Li M, Yu X, Liu W, Zhou L, Li W. Licochalcone A inhibits EGFR signalling and translationally suppresses survivin expression in human cancer cells. J Cell Mol Med 2020; 25:813-826. [PMID: 33247550 PMCID: PMC7812290 DOI: 10.1111/jcmm.16135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Dysfunction of epidermal growth factor receptor (EGFR) signalling plays a critical role in the oncogenesis of non–small‐cell lung cancer (NSCLC). Here, we reported the natural product, licochalcone A, exhibited a profound anti‐tumour efficacy through directly targeting EGFR signalling. Licochalcone A inhibited in vitro cell growth, colony formation and in vivo tumour growth of either wild‐type (WT) or activating mutation EGFR‐expressed NSCLC cells. Licochalcone A bound with L858R single‐site mutation, exon 19 deletion, L858R/T790M mutation and WT EGFR ex vivo, and impaired EGFR kinase activity both in vitro and in NSCLC cells. The in silico docking study further indicated that licochalcone A interacted with both WT and mutant EGFRs. Moreover, licochalcone A induced apoptosis and decreased survivin protein robustly in NSCLC cells. Mechanistically, we found that treatment with licochalcone A translationally suppressed survivin through inhibiting EGFR downstream kinases ERK1/2 and Akt. Depletion of the translation initiation complex by eIF4E knockdown effectively inhibited survivin expression. In contrast, knockdown of 4E‐BP1 showed the opposite effect and dramatically enhanced survivin protein level. Overall, our data indicate that targeting survivin might be an alternative strategy to sensitize EGFR‐targeted therapy.
Collapse
Affiliation(s)
- Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, China.,Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Changsha Stomatological Hospital, Changsha, China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Biochem J 2020; 478:BCJ20200411. [PMID: 33245113 PMCID: PMC7850898 DOI: 10.1042/bcj20200411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shinji Maegawa
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Yanwen Yang
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Vidya Gopalakrishnan
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, U.S.A
| | - Donghang Cheng
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
9
|
Anti-Proliferative and Pro-Apoptotic Effects of Licochalcone A through ROS-Mediated Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells. Int J Mol Sci 2019; 20:ijms20153820. [PMID: 31387245 PMCID: PMC6696302 DOI: 10.3390/ijms20153820] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Licochalcone A (LCA) is a chalcone that is predominantly found in the root of Glycyrrhiza species, which is widely used as an herbal medicine. Although previous studies have reported that LCA has a wide range of pharmacological effects, evidence for the underlying molecular mechanism of its anti-cancer efficacy is still lacking. In this study, we investigated the anti-proliferative effect of LCA on human bladder cancer cells, and found that LCA induced cell cycle arrest at G2/M phase and apoptotic cell death. Our data showed that LCA inhibited the expression of cyclin A, cyclin B1, and Wee1, but increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1, and increased p21 was bound to Cdc2 and Cdk2. LCA activated caspase-8 and -9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. Additionally, LCA increased the Bax/Bcl-2 ratio, and reduced the integrity of mitochondria, which contributed to the discharge of cytochrome c from the mitochondria to the cytoplasm. Moreover, LCA enhanced the intracellular levels of reactive oxygen species (ROS); however, the interruption of ROS generation using ROS scavenger led to escape from LCA-mediated G2/M arrest and apoptosis. Collectively, the present data indicate that LCA can inhibit the proliferation of human bladder cancer cells by inducing ROS-dependent G2/M phase arrest and apoptosis.
Collapse
|
10
|
Ding X, Kong J, Xu W, Dong S, Du Y, Yao C, Gao J, Ke S, Wang S, Sun W. ATPase inhibitory factor 1 inhibition improves the antitumor of YC-1 against hepatocellular carcinoma. Oncol Lett 2018; 16:5230-5236. [PMID: 30250592 DOI: 10.3892/ol.2018.9266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
YC-1 is a synthetic compound, which serves as a hypoxia-inducible factor 1-α inhibitor or sensitizer to enhance the effect of chemotherapy. Previous studies have revealed the anti-cancer effects of YC-1 in various types of cancer, including hepatocellular carcinoma (HCC). ATPase inhibitory factor 1 (IF1) is upregulated in a number of human carcinomas and regulates mitochondrial bioenergetics and structure. However, whether IF1 is involved in the antitumor effects of YC-1 against HCC remains unclear. The present study examined the function of IF1 in HCC and its potential role in YC-1 effects within HCC cells. MTT, colony formation and Transwell assays revealed that IF1 overexpression promoted proliferation, colony formation and invasion of HCC cells, while IF1 downregulation had the opposite effects. Overexpression of IF1 reversed the inhibitory effects of YC-1 on Huh7 cell growth and invasion activities, while downregulation of IF1 increased the sensitivity of HCCLM3 cells to YC-1. YC-1 treatment of HCCLM3 and Huh7 cells reduced the levels of phosphorylated (p-) signal transducer and activator of transcription 3 (STAT3) and IF1, and increased the expression of E-cadherin. IF1 knockdown resulted in decreased p-STAT3 levels and increased E-cadherin expression, while IF1 overexpression increased p-STAT3 levels and reduced the expression of E-cadherin. The present study demonstrated that the inhibition of IF1 improves the antitumor effects of YC-1 in HCC cells. These findings support the clinical strategy of combining YC-1 and an IF1 inhibitor for the treatment of HCC.
Collapse
Affiliation(s)
- Xuemei Ding
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenlei Xu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Yingrui Du
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shan Ke
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shaohong Wang
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
11
|
Zhao J, Li Y, Gao J, De Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol Lett 2017; 14:5569-5574. [PMID: 29142606 DOI: 10.3892/ol.2017.6873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Hesperidin is a vitamin P flavonoid compound primarily present in citrus fruits. The aim of the present study was to investigate whether hesperidin inhibits ovarian cancer cell viability via endoplasmic reticulum stress signaling pathways. A2780 cells were treated with various doses of hesperidin for 6, 12 or 24 h, and the viability of A2780 cells was assessed using the MTT assay. Hesperidin decreased the viability of A2780 cells and increased cytotoxicity in a dose- and time-dependent manner. In addition, hesperidin induced apoptosis and increased cleaved caspase-3 protein expression levels in A2780 cells. Furthermore, hesperidin markedly increased the protein expression of anti-growth arrest- and DNA damage-inducible gene 153, anti-CCAAT'enhancer-binding protein homologous protein, glucose-regulated protein 78 and cytochrome c in A2780 cells. The results of the present study indicated that hesperidin inhibits cell viability and induces apoptosis in ovarian cancer cells via endoplasmic reticulum stress signaling pathways. Thus, hesperidin may offer a novel therapeutic tool for ovarian carcinoma.
Collapse
Affiliation(s)
- Jun Zhao
- Department for Gynaecology and Obstetrics, General Hospital of People's Liberation Army, Beijing 100053, P.R. China
| | - Yali Li
- Department for Gynaecology and Obstetrics, General Hospital of People's Liberation Army, Beijing 100053, P.R. China
| | - Jinfang Gao
- Department for Gynaecology and Obstetrics, Navy General Hospital, Beijing 100048, P.R. China
| | - Yinshan De
- Department for Gynaecology and Obstetrics, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
12
|
Lee MR, Lin C, Lu CC, Kuo SC, Tsao JW, Juan YN, Chiu HY, Lee FY, Yang JS, Tsai FJ. YC-1 induces G 0/G 1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei) 2017; 7:12. [PMID: 28612710 PMCID: PMC5479426 DOI: 10.1051/bmdcn/2017070205] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G0/G1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G0/G1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future.
Collapse
Affiliation(s)
- Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Fang-Yu Lee
- Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung 437, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
13
|
Kang TH, Seo JH, Oh H, Yoon G, Chae JI, Shim JH. Licochalcone A Suppresses Specificity Protein 1 as a Novel Target in Human Breast Cancer Cells. J Cell Biochem 2017; 118:4652-4663. [PMID: 28498645 DOI: 10.1002/jcb.26131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Licochalcone A (LCA), isolated from the root of Glycyrrhiza inflata, are known to have medicinal effect such as anti-oxidant, anti-bacterial, anti-viral, and anti-cancer. Though, as a pharmacological mechanism regulator, anti-cancer studies on LCA were not investigated in human breast cancer. We investigated the anti-proliferative and apoptotic effect of LCA in human breast cancer cells MCF-7 and MDA-MB-231 through MTS assay, PI staining, Annexin-V/7-AAD assay, mitochondrial membrane potential assay, multi-caspase assay, RT-PCR, Western blot analysis, and anchorage-independent cell transformation assay. Our results showed the little difference between two cells, as MCF-7 cell is both estrogen/progesterone receptor positive, there were only effect on Sp1 protein level, but not in mRNA level. Adversely, estrogen/progesterone/human epidermal growth factor receptor 2 triple negative, MDA-MB-231 showed decreased Sp1 mRNA, and protein levels. To confirm the participation of Sp1 in breast cancer cell viability, siRNA techniques were introduced. Both cells showed dysfunction of mitochondrial membrane potential and mitochondrial ROS production, which reflects it passed intracellular mitochondrial apoptosis pathway. Additionally, LCA showed the anti-proliferative and apoptotic effect in breast cancer cells through regulating Sp1 and apoptosis-related proteins in a dose- and a time-dependent manner. Consequently, LCA might be a potential anti-breast cancer drug substitute. J. Cell. Biochem. 118: 4652-4663, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Tuttle TR, Takiar V, Kumar B, Kumar P, Ben-Jonathan N. Soluble guanylate cyclase stimulators increase sensitivity to cisplatin in head and neck squamous cell carcinoma cells. Cancer Lett 2016; 389:33-40. [PMID: 28025101 DOI: 10.1016/j.canlet.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive and often fatal disease. Cisplatin is the most common chemotherapeutic drug in the treatment of HNSCC, but intrinsic and acquired resistance are frequent, and severe side effects occur at high doses. The second messenger cyclic GMP (cGMP) is produced by soluble guanylate cyclase (sGC). We previously reported that activation of the cGMP signaling cascade caused apoptosis in HNSCC cells, while others found that this pathway enhances cisplatin efficacy in some cell types. Here we found that sGC stimulators reduced HNSCC cell viability synergistically with cisplatin, and enhanced apoptosis by cisplatin. Moreover, the sGC stimulators effectively reduced viability in cells with acquired cisplatin resistance, and were synergistic with cisplatin. The sGC stimulator BAY 41-2272 reduced expression of the survival proteins EGFR and β-catenin, and increased pro-apoptotic Bax, suggesting a potential mechanism for the anti-tumorigenic effects of these drugs. The sGC stimulator Riociguat is FDA-approved to treat pulmonary hypertension, and others are being studied for therapeutic use in several diseases. These drugs could provide valuable addition or alternative to cisplatin in the treatment of HNSCC.
Collapse
Affiliation(s)
- Traci R Tuttle
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nira Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
15
|
Yang X, Jiang J, Yang X, Han J, Zheng Q. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol Med Rep 2016; 14:911-9. [PMID: 27221781 DOI: 10.3892/mmr.2016.5334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be considered an important mechanism by which LCA induces apoptosis of T24 bladder cancer cells.
Collapse
Affiliation(s)
- Xinhui Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jiangtao Jiang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xinyan Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jichun Han
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiusheng Zheng
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
16
|
Tang ZH, Chen X, Wang ZY, Chai K, Wang YF, Xu XH, Wang XW, Lu JH, Wang YT, Chen XP, Lu JJ. Induction of C/EBP homologous protein-mediated apoptosis and autophagy by licochalcone A in non-small cell lung cancer cells. Sci Rep 2016; 6:26241. [PMID: 27184816 PMCID: PMC4869105 DOI: 10.1038/srep26241] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 01/03/2023] Open
Abstract
Licochalcone A (LCA), a flavonoid isolated from the famous Chinese medicinal herb Glycyrrhiza uralensis Fisch, presents obvious anti-cancer effects. In this study, the anti-cancer effects and potential mechanisms of LCA in non-small cell lung cancer (NSCLC) cells were studied. LCA decreased cell viability, increased lactate dehydrogenase release, and induced apoptosis in a concentration-dependent manner in NSCLC cells while not in human embryonic lung fibroblast cells. The expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II) and formation of GFP-LC3 punta, two autophagic markers, were increased after treatment with LCA. LCA-induced LC3-II expression was increased when combined with chloroquine (CQ), while knock-down of autophagy related protein (ATG) 7 or ATG5 reversed LCA-induced LC3-II expression and GFP-LC3 punta formation, suggesting that LCA induced autophagy in NSCLC cells. Inhibition of autophagy could not reverse the LCA-induced cell viability decrease and apoptosis. In addition, LCA increased the expression of endoplasmic reticulum stress related proteins, such as binding immunoglobulin protein and C/EBP homologous protein (CHOP). Knock-down of CHOP reversed LCA-induced cell viability decrease, apoptosis, and autophagy. Taken together, LCA-induced autophagic effect is an accompanied phenomenon in NSCLC cells, and CHOP is critical for LCA-induced cell viability decrease, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhao-Yu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ke Chai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ya-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Wen Wang
- Medical Center, Yuquan Hospital, Tsinghua University, Beijing, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
17
|
Waseem M, Parvez S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. PROTOPLASMA 2016; 253:417-30. [PMID: 26022087 DOI: 10.1007/s00709-015-0821-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/15/2015] [Indexed: 05/19/2023]
Abstract
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
18
|
Chtourou Y, Aouey B, Kebieche M, Fetoui H. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem Biol Interact 2015; 239:76-86. [DOI: 10.1016/j.cbi.2015.06.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
19
|
Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, Zheng Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep 2015; 5:10336. [PMID: 25981581 PMCID: PMC4434846 DOI: 10.1038/srep10336] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/10/2015] [Indexed: 11/09/2022] Open
Abstract
Both phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) signaling cascades play an important role in cell proliferation, survival, angiogenesis, and metastasis of tumor cells. In the present report, we investigated the effects of licochalcone A (LA), a flavonoid extracted from licorice root, on the PI3K/AKT/mTOR and MAPK activation pathways in human gastric cancer BGC-823 cells. LA increased reactive oxygen species (ROS) levels, which is associated with the induction of apoptosis as characterized by positive Annexin V binding and activation of caspase-3, and cleavage of poly-ADP-ribose polymerase (PARP). Inhibition of ROS generation by N-acetylcysteine (NAC) significantly prevented LA-induced apoptosis. Interestingly, we also observed that LA caused the activation of ERK, JNK, and p38 MAPK in BGC-823 cells. The antitumour activity of LA-treated BGC-823 cells was significantly distinct in KM mice in vivo. All the findings from our study suggest that LA can interfere with MAPK signaling cascades, initiate ROS generation, induce oxidative stress and consequently cause BGC cell apoptosis.
Collapse
Affiliation(s)
- Wenjin Hao
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Xuan Yuan
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Lina Yu
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Caixia Gao
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Xiling Sun
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Dong Wang
- Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Qiusheng Zheng
- 1] Binzhou medical University, Yantai, 264003, Shandong, China [2] Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
20
|
Choi AY, Choi JH, Hwang KY, Jeong YJ, Choe W, Yoon KS, Ha J, Kim SS, Youn JH, Yeo EJ, Kang I. Licochalcone A induces apoptosis through endoplasmic reticulum stress via a phospholipase Cγ1-, Ca(2+)-, and reactive oxygen species-dependent pathway in HepG2 human hepatocellular carcinoma cells. Apoptosis 2015; 19:682-97. [PMID: 24337903 DOI: 10.1007/s10495-013-0955-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca(2+), which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca(2+) chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca(2+) and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca(2+) increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca(2+)-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- A-Young Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cancer is still a major health issue worldwide and identifying novel but safe compounds for prevention and treatment is a high priority. Licorice (Glycyrrhiza) is a perennial plant that is cultivated in many countries and has been reported to exert antioxidant, anti-inflammatory and anticancer effects. However, some components of licorice exert unwanted side effects and therefore identifying safer licorice components would be ideal. The anticancer activities of many of the licorice components appear to include cycle arrest, apoptosis induction, and general antioxidant effects. Commonly reported indirect protein targets important in tumorigenesis include many cell cycle-related proteins, apoptosis-associated proteins, MMP proteins, COX-2, GSK-β, Akt, NF-κB, and MAP kinases. Importantly, several licorice components were reported to directly bind to and inhibit the activities of PI3-K, MKK4, MKK7, JNK1, mTOR, and Cdk2, resulting in decreased carcinogenesis in several cell and mouse models with no obvious toxicity. This review focuses on specific components of licorice for which a direct protein target has been identified.
Collapse
Affiliation(s)
- Ann M. Bode
- The Hormel Institute University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Zigang Dong
- The Hormel Institute University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| |
Collapse
|
22
|
Licochalcone-A induces intrinsic and extrinsic apoptosis via ERK1/2 and p38 phosphorylation-mediated TRAIL expression in head and neck squamous carcinoma FaDu cells. Food Chem Toxicol 2015; 77:34-43. [PMID: 25572524 DOI: 10.1016/j.fct.2014.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023]
Abstract
We investigated Licochalcone-A (Lico-A)-induced apoptosis and the pathway underlying its activity in a pharyngeal squamous carcinoma FaDu cell line. Lico-A purified from root of Glycyrrhiza inflata had cytotoxic effects, significantly increasing cell death in FaDu cells. Using a cell viability assay, we determined that the IC50 value of Lico-A in FaDu cells was approximately 100 µM. Chromatin condensation was observed in FaDu cells treated with Lico-A for 24 h. Consistent with this finding, the number of apoptotic cells increased in a time-dependent manner when FaDu cells were treated with Lico-A. TRAIL was significantly up-regulated in Lico-A-treated FaDu cells in a dose-dependent manner. Apoptotic factors such as caspases and PARP were subsequently activated in a caspase-dependent manner. In addition, levels of pro-apoptotic factors increased significantly in response to Lico-A treatment, while levels of anti-apoptotic factors decreased. Lico-A-induced TRAIL expression was mediated in part by a MAPK signaling pathway involving ERK1/2 and p38. In xenograft mouse model, Lico-A treatment effectively suppressed the growth of FaDu cell xenografts by activating caspase-3, without affecting the body weight of mice. Taken together, these data suggest that Lico-A has potential chemopreventive effects and should therefore be developed as a chemotherapeutic agent for pharyngeal squamous carcinoma.
Collapse
|
23
|
Yang R, Wang LQ, Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Cho JJ, Chae JI, Yoon G, Kim KH, Cho JH, Cho SS, Cho YS, Shim JH. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int J Oncol 2014; 45:667-74. [PMID: 24858379 DOI: 10.3892/ijo.2014.2461] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022] Open
Abstract
Licochalcone A (LCA), a chalconoid derived from root of Glycyrrhiza inflata, has been known to possess a wide range of biological functions such as antitumor, anti-angiogenesis, antiparasitic, anti-oxidant, antibacterial and anti-inflammatory effects. However, the anticancer effects of LCA on oral squamous cell carcinoma (OSCC) have not been reported. Our data showed that LCA inhibited OSCC cell (HN22 and HSC4) growth in a concentration- and time-dependent manner. Mechanistically, it was mediated via downregulation of specificity protein 1 (Sp1) expression and subsequent regulation of Sp1 downstream proteins such as p27, p21, cyclin D1, Mcl-1 and survivin. Here, we found that LCA caused apoptotic cell death in HSC4 and HN22 cells, as characterized by sub-G1 population, nuclear condensation, Annexin V staining, and multi-caspase activity and apoptotic regulatory proteins such as Bax, Bid, Bcl(-xl), caspase-3 and PARP. Consequently, this study strongly suggests that LCA induces apoptotic cell death of OSCC cells via downregulation of Sp1 expression, prompting its potential use for the treatment of human OSCC.
Collapse
Affiliation(s)
- Jung Jae Cho
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Goo Yoon
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Ka Hwi Kim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Seung-Sik Cho
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Hyun Shim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
25
|
Kong J, Kong F, Gao J, Zhang Q, Dong S, Gu F, Ke S, Pan B, Shen Q, Sun H, Zheng L, Sun W. YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma. Mol Cancer 2014; 13:7. [PMID: 24418169 PMCID: PMC3895679 DOI: 10.1186/1476-4598-13-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/06/2014] [Indexed: 01/15/2023] Open
Abstract
Background Traditional systemic chemotherapy does not provide survival benefits in patients with hepatocellular carcinoma (HCC). Molecular targeted therapy shows promise for HCC treatment, however, the duration of effectiveness for targeted therapies is finite and combination therapies offer the potential for improved effectiveness. Methods Sorafenib, a multikinase inhibitor, and YC-1, a soluble guanylyl cyclase (sGC) activator, were tested in HCC by proliferation assay, cell cycle analysis and western blot in vitro and orthotopic and ectopic HCC models in vivo. Results In vitro, combination of sorafenib and YC-1 synergistically inhibited proliferation and colony formation of HepG2, BEL-7402 and HCCLM3 cells. The combination also induced S cell cycle arrest and apoptosis, as observed by activated PARP and caspase 8. Sorafenib and YC-1 respectively suppressed the expression of phosphorylated STAT3 (p-STAT3) (Y705) in a dose- and time-dependent manner. Combination of sorafenib and YC-1 significantly inhibited the expression of p-STAT3 (Y705) (S727), p-ERK1/2, cyclin D1 and survivin and SHP-1 activity compared with sorafenib or YC-1 used alone in all tested HCC cell lines. In vivo, sorafenib-YC-1 combination significantly suppressed the growth of HepG2 tumor xenografts with decreased cell proliferation and increased apoptosis observed by PCNA and PARP. Similar results were also confirmed in a HCCLM3 orthotopic model. There was a reduction in CD31-positive blood vessels and reduced VEGF expression, which suggested a combinational effect of sorafenib and YC-1 on angiogenesis. The reduced expression of p-STAT3, cyclin D1 and survivin was also observed with the combination of sorafenib and YC-1. Conclusions Our data show that sorafenib-YC-1 combination is a novel potent therapeutic agent that can target the STAT3 signaling pathway to inhibit HCC tumor growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lemin Zheng
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, People's Republic of China.
| | | |
Collapse
|
26
|
Kim JS, Park MR, Lee SY, Kim DK, Moon SM, Kim CS, Cho SS, Yoon G, Im HJ, You JS, Oh JS, Kim SG. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway. Oncol Rep 2013; 31:755-62. [PMID: 24337492 PMCID: PMC3983909 DOI: 10.3892/or.2013.2929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Mi-Ra Park
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sook-Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyoung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sung-Min Moon
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
| | - Ji-Su Oh
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Su-Gwan Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
27
|
Waseem M, Parvez S. Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin. Food Chem Toxicol 2013; 53:334-42. [DOI: 10.1016/j.fct.2012.11.055] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023]
|
28
|
Yiang GT, Chen YH, Chou PL, Chang WJ, Wei CW, Yu YL. The NS3 protease and helicase domains of Japanese encephalitis virus trigger cell death via caspase‑dependent and ‑independent pathways. Mol Med Rep 2013; 7:826-30. [PMID: 23291778 DOI: 10.3892/mmr.2013.1261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 11/06/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins associated with JEV‑induced apoptosis, pEGFP‑non‑structural protein 3 (NS3) 1‑619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP‑NS3 1‑180 (expressing the protease domain) and pEGFP‑NS3 163‑619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase‑9/‑3‑dependent and ‑independent pathways. However, caspase‑8 activity was not found to be significantly different in NS3‑transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase‑9/‑3‑dependent and ‑independent cascades and trigger cell death.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|