1
|
Cruz SL, Bowen SE. The last two decades on preclinical and clinical research on inhalant effects. Neurotoxicol Teratol 2021; 87:106999. [PMID: 34087382 DOI: 10.1016/j.ntt.2021.106999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
This paper reviews the scientific evidence generated in the last two decades on the effects and mechanisms of action of most commonly misused inhalants. In the first section, we define what inhalants are, how they are used, and their prevalence worldwide. The second section presents specific characteristics that define the main groups of inhalants: (a) organic solvents; (b) aerosols, gases, and volatile anesthetics; and (c) alkyl nitrites. We include a table with the molecular formula, structure, synonyms, uses, physicochemical properties and exposure limits of representative compounds within each group. The third and fourth sections review the direct acute and chronic effects of common inhalants on health and behavior with a summary of mechanisms of action, respectively. In the fifth section, we address inhalant intoxication signs and available treatment. The sixth section examines the health effects, intoxication, and treatment of nitrites. The seventh section reviews current intervention strategies. Finally, we propose a research agenda to promote the study of (a) solvents other than toluene; (b) inhalant mixtures; (c) effects in combination with other drugs of abuse; (d) age and (e) sex differences in inhalant effects; (f) the long-lasting behavioral effects of animals exposed in utero to inhalants; (g) abstinence signs and neurochemical changes after interrupting inhalant exposure; (h) brain networks involved in inhalant effects; and finally (i) strategies to promote recovery of inhalant users.
Collapse
Affiliation(s)
- Silvia L Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies (Cinvestav), Calzada de los Tenorios No. 235, Col. Granjas Coapa, México City 14330, México.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward Ave., Suite 7906.1, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Apawu AK, Callan SP, Mathews TA, Bowen SE. Repeated toluene exposure leads to neuroadaptation in dopamine release mechanisms within the nucleus accumbens core. Toxicol Appl Pharmacol 2020; 408:115260. [DOI: 10.1016/j.taap.2020.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
|
3
|
Crossin R, Qama A, Andrews ZB, Lawrence AJ, Duncan JR. The effect of adolescent inhalant abuse on energy balance and growth. Pharmacol Res Perspect 2019; 7:e00498. [PMID: 31384470 PMCID: PMC6664821 DOI: 10.1002/prp2.498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
The abuse of volatile solvents such as toluene is a significant public health concern, predominantly affecting adolescents. To date, inhalant abuse research has primarily focused on the central nervous system; however, inhalants also exert effects on other organ systems and processes, including metabolic function and energy balance. Adolescent inhalant abuse is characterized by a negative energy balance phenotype, with the peak period of abuse overlapping with the adolescent growth spurt. There are multiple components within the central and peripheral regulation of energy balance that may be affected by adolescent inhalant abuse, such as impaired metabolic signaling, decreased food intake, altered dietary preferences, disrupted glucose tolerance and insulin release, reduced adiposity and skeletal density, and adrenal hypertrophy. These effects may persist into abstinence and adulthood, and the long-term consequences of inhalant-induced metabolic dysfunction are currently unknown. The signs and symptoms resulting from chronic adolescent inhalant abuse may result in a propensity for the development of adult-onset metabolic disorders such as type 2 diabetes, however, further research investigating the long-term effects of inhalant abuse upon energy balance and metabolism are needed. This review addresses several aspects of the short- and long-term effects of inhalant abuse relating to energy and metabolic processes, including energy balance, intake and expenditure; dietary preferences and glycemic control; and the dysfunction of metabolic homeostasis through altered adipose tissue, bone, and hypothalamic-pituitary-adrenal axis function.
Collapse
Affiliation(s)
- Rose Crossin
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- Turning Point, Eastern HealthRichmondVIC
- Eastern Health Clinical SchoolMonash UniversityBox HillVIC
| | - Ashleigh Qama
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- WHO Collaborating Centre for Viral HepatitisPeter Doherty Institute for Infection and ImmunityMelbourneVIC
| | - Zane B. Andrews
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVIC
| | | |
Collapse
|
4
|
Abstract
Several aspects of thermoregulation play a role in epilepsy. Circuitries involved in thermoregulation are affected by seizures and epilepsy, hyperthermia may be both cause and result of seizures, and hypothermia may prevent or abort seizures. Autonomic manifestations of seizures including thermoregulatory disturbances are common in a variety of clinical epilepsy syndromes. Experimental hyperthermia has been studied extensively, predominantly to investigate febrile seizures of childhood. In particular prolonged or complex febrile seizures have been associated with the later development of epilepsy in adulthood and the pathophysiology of how febrile seizures cause epilepsy is of tremendous interest. Febrile seizures represent an opportunity to potentially intervene early in life in susceptible individuals and affect epileptogenesis. The pathophysiologic underpinnings of how hyperthermia induces seizures and how this in turn results in epilepsy are controversial, but likely involve multiple factors. Both glutamatergic and GABAergic neurotransmission is affected, and numerous mutations in genes encoding ion channels have been identified. Cytokines such as interleukin-1β have been implicated in febrile seizures as well as susceptibility to provoked seizures later in life. Hyperthermia is a common feature of generalized convulsive status epilepticus, but may also be seen with nonconvulsive seizures, indicating involvement of thermoregulatory centers.
Collapse
Affiliation(s)
- Sebastian Pollandt
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States.
| | - Thomas P Bleck
- Departments of Neurological Sciences, Neurosurgery, Medicine, and Anesthesiology, Rush Medical College, Chicago, IL, United States; Clinical Neurophysiology Laboratory, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Violante‐Soria V, Cruz SL, Rodríguez‐Manzo G. Sexual behaviour is impaired by the abused inhalant toluene in adolescent male rats. Eur J Neurosci 2018; 50:2113-2123. [DOI: 10.1111/ejn.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Silvia L. Cruz
- Departamento de Farmacobiología Cinvestav‐Sede Sur Mexico City Mexico
| | | |
Collapse
|
6
|
Huang SJ, Xu YM, Lau ATY. Electronic cigarette: A recent update of its toxic effects on humans. J Cell Physiol 2018; 233:4466-4478. [PMID: 29215738 DOI: 10.1002/jcp.26352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes), battery-powered and liquid-vaporizing devices, were invented to replace the conventional cigarette (c-cigarette) smoking for the sake of reducing the adverse effects on multiple organ systems that c-cigarettes have induced. Although some of the identified harmful components in e-cigarettes were alleged to be measured in lower quantity than those in c-cigarettes, researchers unveiled that the toxic effects of e-cigarettes should not be understated. This review is sought for an attempt to throw light on several typical types of e-cigarette components (tobacco-specific nitrosamines, carbonyl compounds, and volatile organic compounds) by revealing their possible impacts on human bodies through different action mechanisms characterized by alteration of specific biomarkers on cellular and molecular levels. In addition, this review is intended to draw the limelight that like c-cigarettes, e-cigarettes could also be accompanied with toxic effects on whole human body, which are especially apparent on respiratory system. From head to foot, from physical aspect to chemical aspect, from genotype to phenotype, potential alterations will take place upon the intake of the liquid aerosol.
Collapse
Affiliation(s)
- Shu-Jie Huang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Delfino-Pereira P, Bertti-Dutra P, de Lima Umeoka EH, de Oliveira JAC, Santos VR, Fernandes A, Marroni SS, Del Vecchio F, Garcia-Cairasco N. Intense olfactory stimulation blocks seizures in an experimental model of epilepsy. Epilepsy Behav 2018; 79:213-224. [PMID: 29346088 DOI: 10.1016/j.yebeh.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
There are reports of patients whose epileptic seizures are prevented by means of olfactory stimulation. Similar findings were described in animal models of epilepsy, such as the electrical kindling of amygdala, where olfactory stimulation with toluene (TOL) suppressed seizures in most rats, even when the stimuli were 20% above the threshold to evoke seizures in already kindled animals. The Wistar Audiogenic Rat (WAR) strain is a model of tonic-clonic seizures induced by acute acoustic stimulation, although it also expresses limbic seizures when repeated acoustic stimulation occurs - a process known as audiogenic kindling (AK). The aim of this study was to evaluate whether or not the olfactory stimulation with TOL would interfere on the behavioral expression of brainstem (acute) and limbic (chronic) seizures in the WAR strain. For this, animals were exposed to TOL or saline (SAL) and subsequently exposed to acoustic stimulation in two conditions that generated: I) acute audiogenic seizures (only one acoustic stimulus, without previous seizure experience before of the odor test) and II) after AK (20 acoustic stimuli [2 daily] before of the protocol test). We observed a decrease in the seizure severity index of animals exposed only to TOL in both conditions, with TOL presented 20s before the acoustic stimulation in both protocols. These findings were confirmed by behavioral sequential analysis (neuroethology), which clearly indicated an exacerbation of clusters of specific behaviors such as exploration and grooming (self-cleaning), as well as significant decrease in the expression of brainstem and limbic seizures in response to TOL. Thus, these data demonstrate that TOL, a strong olfactory stimulus, has anticonvulsant properties, detected by the decrease of acute and AK seizures in WARs.
Collapse
Affiliation(s)
- Polianna Delfino-Pereira
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil
| | - Poliana Bertti-Dutra
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - José Antônio Cortes de Oliveira
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Victor Rodrigues Santos
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Artur Fernandes
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil; Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Simone Saldanha Marroni
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Flávio Del Vecchio
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Norberto Garcia-Cairasco
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil.
| |
Collapse
|
8
|
ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PLoS One 2017; 12:e0181654. [PMID: 28759636 PMCID: PMC5536352 DOI: 10.1371/journal.pone.0181654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/05/2017] [Indexed: 12/03/2022] Open
Abstract
Background Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. Methods Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. Findings In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T2 mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. Conclusions The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements.
Collapse
|
9
|
Silveira AT, Albuquerque ACC, Lepera JS, Martins I. Diazepam influences urinary bioindicator of occupational toluene exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:191-196. [PMID: 27816004 DOI: 10.1016/j.etap.2016.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
In the present study, we investigated the influence of diazepam (DZP) on the excretion of TOL by examining their urinary metabolites, hippuric acid (HA) and ortho-cresol (o-C). Male Wistar rats were exposed to TOL (20ppm) in a nose-only exposure chamber (6h/day, 5days/week for 6 weeks) with simultaneous administration of DZP (10mg/kg/day). Urinary o-C levels were determined by GC-MS, while HA, creatinine (CR), DZP and its metabolite, nordiazepam, were analysed by HPLC-DAD. The results of a Mann-Whitney U test showed that DZP influenced the urinary excretion of o-C (p<0.05). This pioneering study revealed that there was an interaction between DZP and TOL, probably by the inhibition of the CYP isoforms (CYP2B6, CYP2C8, CYP2E1, and CYP1A2) involved in the oxidative metabolism of the solvent. This is relevant information to be considered in the biomonitoring of occupational toluene exposure.
Collapse
Affiliation(s)
- Alberto Thalison Silveira
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Unifal-MG, Alfenas, MG, Brazil
| | | | - José Salvador Lepera
- Laboratory of Occupational Toxicology, Faculty of Pharmaceutical Sciences of Araraquara - FCFAr, UNESP, Araraquara, SP, Brazil
| | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Unifal-MG, Alfenas, MG, Brazil.
| |
Collapse
|
10
|
Miao YL, Guo WZ, Shi WZ, Fang WW, Liu Y, Liu J, Li BW, Wu W, Li YF. Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS One 2014; 9:e101450. [PMID: 24988461 PMCID: PMC4079590 DOI: 10.1371/journal.pone.0101450] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating anxiety disorder that may develop after an individual has experienced or witnessed a severe traumatic event. It has been shown that the 18 kDa translocator protein (TSPO) may be correlated with PTSD and that the TSPO ligand improved the behavioral deficits in a mouse model of PTSD. Midazolam, a ligand for TSPO and central benzodiazepine receptor (CBR), induces anxiolytic- and anti-depressant-like effects in animal models. The present study aimed to determine whether midazolam ameliorates PTSD behavior in rats as assessed by the single prolonged stress (SPS) model. The SPS rats received daily Sertraline (Ser) (15 mg/kg, i.p.) [corrected] and midazolam (0.125, 0.25, 0.5, and 1 mg/kg, i.p.) [corrected] during the exposure to SPS and behavioral assessments, which included the open field (OF) test, the contextual fear paradigm (CFP), and the elevated plus-maze (EPM). The results showed that, like Ser (15 mg/kg, i.p.) [corrected], midazolam (0.25 and 0.5 mg/kg, i.p.) [corrected] significantly reversed the behavioral deficiencies of the SPS rats, including PTSD-associated freezing and anxiety-like behavior but not the effects on spontaneous locomotor activity. In addition, the anti-PTSD effects of midazolam (0.5 mg/kg, i.p.) [corrected] were antagonized by the TSPO antagonist PK11195 (3 mg/kg, i.p.), the CBR antagonist flumazenil (15 mg/kg, i.p.) [corrected] and the inhibitor of steroidogenic enzymes finasteride (30 mg/kg, i.p.) [corrected], which by themselves had no effect on PTSD-associated freezing and anxiety-like behavior. In summary, this study demonstrated that midazolam improves the behavioral deficits in the SPS model through dual TSPO and CBR and neurosteroidogenesis.
Collapse
Affiliation(s)
- Yu-Liang Miao
- Department of Anesthesiology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
| | - Wen-Zhi Guo
- Department of Anesthesiology, Beijing Military General Hospital of the PLA, Beijing, P.R. China
| | - Wen-Zhu Shi
- Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Sanya, P.R. China
| | - Wei-Wu Fang
- Department of Anesthesiology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
| | - Yan Liu
- Department of Anesthesiology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
| | - Ji Liu
- Department of Anesthesiology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
| | - Bao-Wei Li
- Department of Head and Neck Surgery of Otolaryngology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
| | - Wei Wu
- Department of Head and Neck Surgery of Otolaryngology, Chinese PLA No. 306 Hospital, Beijing, P.R. China
- * E-mail: (WW); (YFL)
| | - Yun-Feng Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, P.R. China
- * E-mail: (WW); (YFL)
| |
Collapse
|
11
|
Cruz SL, Rivera-García MT, Woodward JJ. Review of toluene action: clinical evidence, animal studies and molecular targets. ACTA ACUST UNITED AC 2014; 3. [PMID: 25360325 DOI: 10.4303/jdar/235840] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly used drugs of abuse such as psychostimulants, alcohol and nicotine. This imbalance has begun to shift in recent years as the serious effects of abused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a representative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and pre-clinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs. This is highlighted by tables highlighting toluene's effect on behaviors (reward, motor effects, learning, etc.) and cellular proteins (e.g. voltage and ligand-gated ion channels) closely associated the actions of abused substances. These sections demonstrate not only the significant progress that has been made in understanding the neurobiological basis for solvent abuse but also reveal the challenges that remain in developing a coherent understanding of this often overlooked class of drugs of abuse.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, México, D.F., University of South Carolina, Charleston, SC
| | | | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
12
|
Duncan JR, Lawrence AJ. Conventional Concepts and New Perspectives for Understanding the Addictive Properties of Inhalants. J Pharmacol Sci 2013; 122:237-43. [DOI: 10.1254/jphs.13r04cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|