1
|
Basu P, Taylor BK. Neuropeptide Y Y2 receptors in acute and chronic pain and itch. Neuropeptides 2024; 108:102478. [PMID: 39461244 DOI: 10.1016/j.npep.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons. Neurophysiological slice recordings indicate that Y2-selective agonists inhibits spinal neurotransmitter release from sensory neurons. However, behavioral pharmacology studies indicate that Y2 agonists exert minimal changes in nociception, even after injury. Additional discrepancies in the behavioral actions of the Y2-antagonist BIIE0246 - reports of either pronociception or antinociception - have now been resolved. In the normal state, spinally-directed (intrathecal) administration of BIIE0246 elicits ongoing nociception, hypersensitivity to sensory stimulation, and aversion. Conversely, in the setting of nerve injury and inflammation, intrathecal BIIE024 reduced not only mechanical and thermal hypersensitivity, but also a measure of the affective dimension of pain (conditioned place preference). When administered in chronic pain models of latent sensitization, BIIE0246 produced a profound reinstatement of pain-like behaviors. We propose that tissue or nerve injury induces a G protein switch in the action of NPY-Y2 signaling from antinociception in the naïve state to the inhibition of mechanical and heat hyperalgesia in the injured state, and then a switch back to antinociception to keep LS in a state of remission. This model clarifies the pharmacotherapeutic potential of Y2 research, pointing to the development of a new non-opioid pharmacotherapy for chronic pain using Y2 antagonists in patients who do not develop LS.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
2
|
Basu P, Maddula A, Nelson TS, Prasoon P, Winter MK, Herzog H, McCarson KE, Taylor BK. Neuropeptide Y Y2 Receptors in Sensory Neurons Tonically Suppress Nociception and Itch but Facilitate Postsurgical and Neuropathic Pain Hypersensitivity. Anesthesiology 2024; 141:946-968. [PMID: 39121458 PMCID: PMC11461131 DOI: 10.1097/aln.0000000000005184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Neuropeptide Y (NPY) Y2 receptor (Y2) antagonist BIIE0246 can both inhibit and facilitate nociception. The authors hypothesized that Y2 function depends on inflammation or nerve injury status. METHODS The authors implemented a battery of behavioral tests in mice of both sexes that received (1) no injury; (2) an incision model of postoperative pain; (3) a spared nerve injury model of neuropathic pain; and (4) a latent sensitization model of chronic postsurgical pain. In addition to Y2 gene expression assays, spinal Y2 G-protein coupling was studied with guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assays. RESULTS The authors report that intrathecal BIIE0246 increased mechanical and cold hypersensitivity, produced behavioral signs of spontaneous nociception and itch, and produced conditioned place aversion and preference in normal, uninjured mice. BIIE0246 did not change heat hypersensitivity or motor coordination. Conditional (sensory neuron-specific) Y2 deletion prevented BIIE0246-induced mechanical and cold hypersensitivity, nocifensive behaviors, and aversion. Both conditional deletion and pharmacologic blockade of Y2 reduced mechanical and thermal hypersensitivity after incision or nerve injury. SNI did not change the sensitivity of Y2 G-protein coupling with the Y2 agonist peptide YY (3-36) (PYY3-36), but increased the population of Y2 that effectively coupled G-proteins. Intrathecal PYY3-36 failed to reduce spared nerve injury- or incision-induced hypersensitivity in C57BL/6N mice. Incision did not change Npy2r gene expression in dorsal root ganglion. CONCLUSIONS The authors conclude that Y2 at central terminals of primary afferent neurons provides tonic inhibition of mechanical and cold nociception and itch. This switches to the promotion of mechanical and thermal hyperalgesia in models of acute and chronic postsurgical and neuropathic pain, perhaps due to an increase in the population of Y2 that effectively couples to G-proteins. These results support the development of Y2 antagonists for the treatment of chronic postsurgical and neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Akshitha Maddula
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA
- Department of Molecular Pathobiology, NYU Pain Research Center, College of Dentistry, New York University, New York, NY 10010
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kenneth E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Wilson K, Sze Y, Regan A, Zhu C, Mazur K, Velichkova AN, Torsney C. Postsurgical tactile-evoked pain: a role for brain-derived neurotrophic factor-tropomyosin receptor kinase B-dependent novel tactile corpuscles. Pain Rep 2024; 9:e1169. [PMID: 39139363 PMCID: PMC11319325 DOI: 10.1097/pr9.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Millions of people undergo surgical procedures each year with many developing postsurgical pain. Dynamic allodynia can arise when, for example, clothing brushing close to the surgical site elicits pain. The allodynia circuits that enable crosstalk between afferent tactile inputs and central pain circuits have been studied, but the peripheral tactile drive has not been explored. Objective Investigate the innervation of the skin in the rat plantar hindpaw skin-muscle incision model. Results Incision increased epidermal thickness and cell layers and reduced intraepidermal nerve fibre density, identified with PGP9.5 immunostaining. Strikingly, Collagen IV immunostaining revealed the development of dermal protrusions, oriented towards the incision site, that were reminiscent of the dermal papillae that exist in glabrous footpads. S100 immunostaining for lamellar Schwann cells revealed the presence of novel tactile corpuscles (S100-positive bulb) within incision-induced putative dermal papillae. The occurrence of these novel tactile corpuscles coincided with behavioural observations of dynamic allodynia. Tactile corpuscles require brain-derived neurotrophic factor- tropomyosin receptor kinase B (BDNF-TrkB) signalling to form during development, and an increase in BDNF-immunostaining intensity was observed close to the incision site. Local acute administration of TrkB-Fc, to block BDNF-TrkB signalling, reduced, by approximately 50%, both tactile corpuscle size (S100+ bulb area) and dynamic allodynia. Conclusion Surgery induces the development of novel tactile corpuscles in the incision surround, in a BDNF-TrKB-dependent manner, that contributes to postsurgical tactile-evoked pain.
Collapse
Affiliation(s)
- Kirsten Wilson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Regan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Chunyi Zhu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Katarzyna Mazur
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Atanaska N. Velichkova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Cho NR, Yu Y, Oh CK, Ko DS, Myung K, Lee Y, Na HS, Kim YH. Neuropeptide Y: a potential theranostic biomarker for diabetic peripheral neuropathy in patients with type-2 diabetes. Ther Adv Chronic Dis 2021; 12:20406223211041936. [PMID: 34729143 PMCID: PMC8438932 DOI: 10.1177/20406223211041936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Diabetic peripheral neuropathy (DPN), the most common microvascular complication of type-2 diabetes mellitus (T2DM), results in nontraumatic lower-limb amputations. When DPN is not detected early, disease progression is irreversible. Thus, biomarkers for diagnosing DPN are needed. Methods: We analyzed three data sets of T2DM DPN: two for mouse models (GSE70852 and GSE34889) and one for a human model (GSE24290). We found common differentially expressed genes (DEGs) in the two mouse data sets and validated them in the human data set. To identify the phenotypic function of the DEGs, we overexpressed them in zebrafish embryos. Clinical information and serum samples of T2DM patients with and without DPN were obtained from the Korea Biobank Network. To assess the plausibility of DEGs as biomarkers of DPN, we performed an enzyme-linked immunosorbent assay. Results: Among the DEGs, only NPY and SLPI were validated in the human data set. As npy is conserved in zebrafish, its mRNA was injected into zebrafish embryos, and it was observed that the branches of the central nervous system became thicker and the number of dendritic branches increased. Baseline characteristics between T2DM patients with and without DPN did not differ, except for the sex ratio. The mean serum NPY level was higher in T2DM patients with DPN than in those without DPN (p = 0.0328), whereas serum SLPI levels did not differ (p = 0.9651). Conclusion: In the pathogenesis of DPN, NPY may play a protective role in the peripheral nervous system and may be useful as a biomarker for detecting T2DM DPN.
Collapse
Affiliation(s)
- Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yeuni Yu
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Kyungjae Myung
- Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Yoonsung Lee
- Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Hak Kim
- Departments of Anatomy and Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea. Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
5
|
Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog Neurobiol 2020; 196:101894. [PMID: 32777329 DOI: 10.1016/j.pneurobio.2020.101894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Advances in assessment of pain behaviors and mechanisms of post-operative pain models. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Gupta S, Gautam M, Prasoon P, Kumar R, Ray SB, Kaler Jhajhria S. Involvement of Neuropeptide Y in Post-Incisional Nociception in Rats. Ann Neurosci 2018; 25:268-276. [PMID: 31000967 PMCID: PMC6470383 DOI: 10.1159/000495130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neuropeptide Y (NPY) is abundantly distributed in the mammalian nervous system. Its role in nociception arising from inflammatory and neuropathic pain conditions has been elucidated. However, its involvement in post-incisional nociception, particularly at the spinal cord level, is relatively unknown. PURPOSE Management of postoperative pain is suboptimal. Evaluation of changes at the spinal level could facilitate better understanding of neural mechanisms underlying this type of pain. METHODS Rats were subjected to hind paw incision and spatiotemporal pattern of NPY expression in the dorsal horn was investigated by immunohistochemistry. Next, rats were implanted with intrathecal catheters using previously standardized procedure. NPY was injected into the intrathecal space by an indwelling catheter and behavioral assessment of nociception was performed. RESULTS Higher expression of NPY was observed in the superficial laminae of the dorsal horn. After incision, specific changes were observed like an abrupt decrease at 3 h after incision, which could be correlated with the intense nociception at this time. In contrast to morphine administration, which attenuated all 3 behavioral parameters of nociception, NPY decreased guarding behavior and thermal hyperalgesia during the acute phase. CONCLUSIONS NPY is extensively expressed in the superficial laminae of the spinal cord and exhibit marked changes after incision. Nociception is also decreased after its administration. Hence, it is likely involved in post-incisional nociception. This information could have clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Saroj Kaler Jhajhria
- Departments of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
The Neuropeptide Y System Regulates Both Mechanical and Histaminergic Itch. J Invest Dermatol 2018; 138:2405-2411. [DOI: 10.1016/j.jid.2018.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023]
|
10
|
Yudin Y, Rohacs T. Inhibitory G i/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Mol Pain 2018; 14:1744806918763646. [PMID: 29580154 PMCID: PMC5882016 DOI: 10.1177/1744806918763646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, which are major transducers for extracellular signaling molecules, and their activation usually modulates the primary transduction pathways. Receptors that couple to phospholipase C via heterotrimeric Gq/11 proteins and those that activate adenylate cyclase via Gs are considered excitatory; they positively regulate somatosensory transduction and they play roles in inflammatory sensitization and pain, and in some cases also in inducing itch. On the other hand, receptors that couple to Gi/o proteins, such as opioid or GABAB receptors, are generally inhibitory. Their activation counteracts the effect of Gs-stimulation by inhibiting adenylate cyclase, as well as exerts effects on ion channels, usually resulting in decreased excitability. This review will summarize knowledge on Gi-coupled receptors in sensory neurons, focusing on their roles in ion channel regulation and discuss their potential as targets for analgesic and antipruritic medications.
Collapse
Affiliation(s)
- Yevgen Yudin
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
11
|
Diaz-delCastillo M, Woldbye DP, Heegaard AM. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience 2018; 387:162-169. [DOI: 10.1016/j.neuroscience.2017.08.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
12
|
Diaz-delCastillo M, Christiansen SH, Appel CK, Falk S, Woldbye DP, Heegaard AM. Neuropeptide Y is Up-regulated and Induces Antinociception in Cancer-induced Bone Pain. Neuroscience 2018; 384:111-119. [DOI: 10.1016/j.neuroscience.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/18/2018] [Accepted: 05/18/2018] [Indexed: 01/29/2023]
|
13
|
Vázquez-León P, Mendoza-Ruiz LG, Juan ERS, Chamorro-Cevallos GA, Miranda-Páez A. Analgesic and anxiolytic effects of [Leu 31,Pro 34]-neuropeptide Y microinjected into the periaqueductal gray in rats. Neuropeptides 2017; 66:81-89. [PMID: 29042065 DOI: 10.1016/j.npep.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
Several reports have demonstrated that neuropeptide Y (NPY) is involved in food intake, epilepsy, circadian rhythms, drug seeking, pain and anxiety, and other physiological or pathological conditions. On the other hand, periaqueductal gray (PAG) is a key brain center for modulating pain, anxiety and fear. It is the main structure implicated in integrated defensive behaviors. One such behavior, tonic immobility (TI), resembles fear and is able to induce analgesia. After microinjection of [Leu31,Pro34]-Neuropeptide Y ([Leu31,Pro34]-NPY) into the PAG dorsal (D) or ventrolateral (VL) of adult male Wistar rats, the following parameters were assessed: i) the analgesic effect by means of the tail-flick test (TF), ii) the duration of TI as a passive defensive behavioral response and as an anxiety/fear model (considering both TF and TI as single behaviors), iii) TI-induced analgesia by the combination of TF/TI, and iv) the anxious-like state through the elevated plus maze (EPM), and defensive burying behavior (DBB). The results show that the microinjection of [Leu31,Pro34]-NPY into the PAG produced an analgesic effect (increasing the TF latency); overall decreased the TI duration, which might represent an important anti-fear effect. Moreover, [Leu31,Pro34]-NPY microinjected into the PAG allows for a TI-induced analgesic effect, as well as, a substantial anxiolytic effect (evidenced by the EPM and DBB models). Hence, [Leu31,Pro34]-NPY microinjected into the PAG, especially at 0.47nmol/0.5μL produces both analgesic and anxiolytic effects, in a higher magnitude within ventrolateral area.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Luis G Mendoza-Ruiz
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - German Alberto Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico.
| |
Collapse
|
14
|
Malet M, Leiguarda C, Gastón G, McCarthy C, Brumovsky P. Spinal activation of the NPY Y1 receptor reduces mechanical and cold allodynia in rats with chronic constriction injury. Peptides 2017; 92:38-45. [PMID: 28465077 DOI: 10.1016/j.peptides.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However, their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study, we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist Leu31Pro34-NPY, in rats with chronic constriction injury (CCI). CCI and sham-injury rats were implanted with a permanent intrathecal catheter (at day 7 after injury), and their response to the administration of different doses (2.5, 5, 7, 10 or 20μg) of Leu31Pro34-NPY (at a volume of 10μl) through the implanted catheter, recorded 14days after injury. Mechanical allodynia was tested by means of the up-and-down method, using von Frey filaments. Cold allodynia was tested by application of an acetone drop to the affected hindpaw. Intrathecal Leu31Pro34-NPY induced an increase of mechanical thresholds in rats with CCI, starting at doses of 5μg and becoming stronger with higher doses. Intrathecal Leu31Pro34 also resulted in reductions in the frequency of withdrawal to cold stimuli, although the effect was somewhat more moderate and mostly observed for doses of 7μg and higher. We thus show that spinal activation of the Y1R is able to reduce neuropathic pain due to a chronic constrictive injury and, together with other studies, support the use of a spinal Y1R agonist as a therapeutic agent against chronic pain induced by peripheral neuropathy.
Collapse
Affiliation(s)
- Mariana Malet
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Guillermo Gastón
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Carly McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Lynds R, Lyu C, Lyu GW, Shi XQ, Rosén A, Mustafa K, Shi TJS. Neuronal plasticity of trigeminal ganglia in mice following nerve injury. J Pain Res 2017; 10:349-357. [PMID: 28223844 PMCID: PMC5310634 DOI: 10.2147/jpr.s120092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Nerve injury may induce neuropathic pain. In studying the mechanisms of orofacial neuropathic pain, attention has been paid to the plastic changes that occur in the trigeminal ganglia (TGs) and nucleus in response to an injury of the trigeminal nerve branches. Previous studies have explored the impact of sciatic nerve injury on dorsal root ganglia (DRGs) and it has shown dramatic changes in the expression of multiple biomarkers. In large, the changes in biomarker expression in TGs after trigeminal nerve injury are similar to that in DRGs after sciatic nerve injury. However, important differences exist. Therefore, there is a need to study the plasticity of biomarkers in TGs after nerve injury in the context of the development of neuropathic pain-like behaviors. Aim The aim of this study was to investigate the plasticity of biomarkers associated with chronic persistent pain in TGs after trigeminal nerve injury. Materials and methods To mimic the chronic nature of the disorder, we used an intraoral procedure to access the infraorbital nerve (ION) and induced a nerve injury in mice. Immunohistochemistry and quantification were used for revealing the expression level of each biomarker in TGs after nerve injury. Results Two weeks after partial ION injury, immunohistochemistry results showed strongly upregulated expressions of activating transcription factor 3 and neuropeptide Y (NPY) in the ipsilateral TGs. Microglial cells were also activated after nerve injury. In regard to positive neuronal profile counting, however, no significant difference in expression was observed in galanin, substance P, calcitonin gene-related peptide, neuronal nitric oxide synthase, phosphorylated AKT, or P2X3 in ipsilateral TGs when compared to contralateral TGs. Conclusion In this study, the expression and regulation of biomarkers in TGs have been observed in response to trigeminal nerve injury. Our results suggest that NPY and Iba1 might play crucial roles in the pathogenesis of orofacial neuropathic pain following this type of injury. Further investigations on the relevance of these changes may help to target suitable treatment possibilities for trigeminal neuralgia.
Collapse
Affiliation(s)
- Randi Lynds
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Division of Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences
| | - Gong-Wei Lyu
- Department of Neurology, The First Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xie-Qi Shi
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Division of Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Annika Rosén
- Division for Oral and Maxillofacial Surgery; Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine and Dentistry
| | - Kamal Mustafa
- Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine and Dentistry
| | | |
Collapse
|
17
|
Ohtani N, Masaki E. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats. J Pain Res 2016; 9:865-869. [PMID: 27799818 PMCID: PMC5085307 DOI: 10.2147/jpr.s120470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Methods Male Sprague-Dawley rats (250–300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Results Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. Conclusion A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.
Collapse
Affiliation(s)
- Norimasa Ohtani
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Eiji Masaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons. Exp Neurol 2016; 283:413-27. [PMID: 27264359 DOI: 10.1016/j.expneurol.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage.
Collapse
|
19
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
20
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|