1
|
Silva LDD, Pinheiro JLS, Rodrigues LHM, Santos VMRD, Borges JLF, Oliveira RRD, Maciel LG, Araújo TDSL, Martins CDS, Gomes DA, Lira EC, Souza MHLP, Medeiros JVR, Damasceno ROS. Crucial role of carbon monoxide as a regulator of diarrhea caused by cholera toxin: Evidence of direct interaction with toxin. Biochem Pharmacol 2023; 216:115791. [PMID: 37689274 DOI: 10.1016/j.bcp.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study evaluated the role of heme oxygenase 1 (HO-1)/carbon monoxide (CO) pathway in the cholera toxin-induced diarrhea and its possible action mechanism. The pharmacological modulation with CORM-2 (a CO donor) or Hemin (a HO-1 inducer) decreased the intestinal fluid secretion and Cl- efflux, altered by cholera toxin. In contrast, ZnPP (a HO-1 inhibitor) reversed the antisecretory effect of Hemin and potentiated cholera toxin-induced intestinal secretion. Moreover, CORM-2 also prevented the alteration of intestinal epithelial architecture and local vascular permeability promoted by cholera toxin. The intestinal absorption was not altered by any of the pharmacological modulators. Cholera toxin inoculation also increased HO-1 immunoreactivity and bilirubin levels, a possible protective physiological response. Finally, using fluorometric technique, ELISA assay and molecular docking simulations, we show evidence that CO directly interacts with cholera toxin, forming a complex that affects its binding to GM1 receptor, which help explain the antisecretory effect. Thus, CO is an essential molecule for protection against choleric diarrhea and suggests its use as a possible therapeutic tool.
Collapse
Affiliation(s)
- Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Jand Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | | |
Collapse
|
2
|
Jalil AT, Hassan MM, Ziyad RA, Jasim I, Zabibah R, Fadhil A. PDE5 inhibitors and gastric mucosa: implications for the management of peptic ulcer disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2261-2267. [PMID: 37119288 DOI: 10.1007/s00210-023-02503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Peptic ulcer disease (PUD) continues to be a cause of significant morbidity and mortality worldwide. Almost two-thirds of PUD cases are asymptomatic. In symptomatic patients, epigastric pain is the most common presenting symptom of PUD, which is manifested by nausea, abdominal fullness, bloating, and dyspepsia. Most PUD cases are associated with the use of COX inhibitors or Helicobacter pylori infection, or both. The traditional management of PUD includes the use of proton pump inhibitors to reduce the gastric acid secretion and antibacterial drugs to combat H. pylori. Timely diagnosis and treatment of PUD are vital to reduce the risk of associated morbidity and mortality, as is prevention of PUD among patients at high risk, including COX inhibitors users and those infected with H. pylori. PDE5 inhibitors have been used for the management of erectile dysfunction and pulmonary hypertension for decades. In recent years, studies have mentioned tremendous pleiotropic effects of PDE5 inhibitors on gastrointestinal, urogenital, musculoskeletal, reproductive, cutaneous, and neurologic disorders. Recent data shows that PDE5 inhibition augments gastric mucosa protection, and here, we review the most recent findings regarding the use of PDE5 inhibitors for the prevention and management of PUD.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq.
| | | | - Rand Ali Ziyad
- National University of Science and Technology, Nasiriyah, Dhi-Qar, Iraq
| | - Ihsan Jasim
- Department of Pharmacology, Al-Turath University College, Baghdad, Iraq
| | - Rahman Zabibah
- Depaetment of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Damasceno ROS, Soares PMG, Barbosa ALDR, Nicolau LAD, Medeiros JVR, Souza MHLP. Modulatory Role of Carbon Monoxide on the Inflammatory Response and Oxidative Stress Linked to Gastrointestinal Disorders. Antioxid Redox Signal 2022; 37:98-114. [PMID: 34806398 DOI: 10.1089/ars.2020.8223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Carbon monoxide (CO) is an endogenous gaseous mediator that plays an important role in maintaining gastrointestinal (GI) tract homeostasis, acting in mucosal defense, and providing negative modulation of pathophysiological markers of clinical conditions. Recent Advances: Preclinical studies using animal models and/or cell culture show that CO can modulate the inflammatory response and oxidative stress in GI mucosal injuries and pathological conditions, reducing proinflammatory cytokines and reactive oxygen species, while increasing antioxidant defense mechanisms. Critical Issues: CO has potent anti-inflammatory and antioxidant effects. The defense mechanisms of the GI tract are subject to aggression by different chemical agents (e.g., drugs and ethanol) as well as complex and multifactorial diseases, with inflammation and oxidative stress as strong triggers for the deleterious effects. Thus, it is possible that CO acts on a variety of molecules involved in the inflammatory and oxidative signaling cascades, as well as reinforcing several defense mechanisms that maintain GI homeostasis. Future Directions: CO-based therapies are promising tools for the treatment of GI disorders, such as gastric and intestinal injuries, inflammatory bowel disease, and pancreatitis. Therefore, it is necessary to develop safe and selective CO-releasing agents and/or donor drugs to facilitate effective treatments and methods for analysis of CO levels that are simple and inexpensive. Antioxid. Redox Signal. 37, 98-114.
Collapse
Affiliation(s)
| | | | | | | | - Jand-Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Federal University of the Parnaíba Delta, Parnaíba, Brazil
| | | |
Collapse
|
4
|
Magierowska K, Magierowski M. COin Gastrointestinal Physiology and Protection. CARBON MONOXIDE IN DRUG DISCOVERY 2022:466-481. [DOI: 10.1002/9781119783435.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Iles B, Ribeiro de Sá Guimarães Nolêto I, Dourado FF, de Oliveira Silva Ribeiro F, de Araújo AR, de Oliveira TM, Souza JMT, Barros AB, Sousa GC, de Jesus Oliveira AC, da Silva Martins C, de Oliveira Viana Veras M, de Carvalho Leitão RF, de Souza de Almeida Leite JR, da Silva DA, Medeiros JVR. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NANOIMPACT 2021; 24:100355. [PMID: 35559814 DOI: 10.1016/j.impact.2021.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.
Collapse
Affiliation(s)
- Bruno Iles
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela Ribeiro de Sá Guimarães Nolêto
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Flaviane França Dourado
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Taiane Maria de Oliveira
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jessica Maria Teles Souza
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ayslan Batista Barros
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle Costa Sousa
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Center for Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - University City, Recife, PE 50670-901, Brazil
| | - Conceição da Silva Martins
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Mariana de Oliveira Viana Veras
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - José Roberto de Souza de Almeida Leite
- Center for Research in Applied Morphology and Immunology - NuPMIA, University of Brasilia, Campus Darcy Ribeiro - Asa Norte-Brasília-DF, CEP 70.910-900 Brasilia, Brazil
| | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
7
|
Peoc'h K, Puy V, Fournier T. Haem oxygenases play a pivotal role in placental physiology and pathology. Hum Reprod Update 2020; 26:634-649. [PMID: 32347305 DOI: 10.1093/humupd/dmaa014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Haem oxygenases (HO) catabolise haem, which is the prosthetic group of numerous haemoproteins. Thus, multiple primary cellular pathways and functions rely on haem availability. HO exists in two isoforms, both expressed in the placenta, namely HO-1 and HO-2, the first being inducible. Haem oxygenases, particularly HO-1, have garnered specific interest in the field of physiological and pathological placental function. These enzymes mediate haem degradation by cleaving the alpha methene bridge to produce biliverdin, which is subsequently converted to bilirubin, carbon monoxide and iron. HO-1 has anti-inflammatory and antioxidant activities. SEARCH METHODS An initial literature analysis was performed using PubMed on 3 October 2018 using key terms such as 'haem oxygenase and pregnancy', 'haem oxygenase and placenta', 'HO-1 and pregnancy', 'HO-1 and placenta', 'HO and placenta', 'HO and pregnancy', 'genetic variant and HO', 'CO and pregnancy', 'CO and placenta', 'Bilirubin and pregnancy', 'Iron and pregnancy' and 'PPAR and Haem', selecting consensus conferences, recommendations, meta-analyses, practical recommendations and reviews. A second literature analysis was performed, including notable miscarriages, foetal loss and diabetes mellitus, on 20 December 2019. The three authors studied the publications independently to decipher whether they should be included in the manuscript. OBJECTIVE AND RATIONALE This review aimed to summarise current pieces of knowledge of haem oxygenase location, function and regulation in the placenta, either in healthy pregnancies or those associated with miscarriages and foetal loss, pre-eclampsia, foetal growth restriction and diabetes mellitus. OUTCOMES HO-1 exerts some protective effects on the placentation, probably by a combination of factors, including its interrelation with the PGC-1α/PPAR pathway and the sFlt1/PlGF balance, and through its primary metabolites, notably carbon monoxide and bilirubin. Its protective role has been highlighted in numerous pregnancy conditions, including pre-eclampsia, foetal growth restriction, gestational diabetes mellitus and miscarriages. WIDER IMPLICATIONS HO-1 is a crucial enzyme in physiological and pathological placentation. This protective enzyme is currently considered a potential therapeutic target in various pregnancy diseases.
Collapse
Affiliation(s)
- Katell Peoc'h
- Université de Paris, Laboratory of Excellence GR-Ex, Centre de Recherche sur l'Inflammation, INSERM U1149, UFR de Médecine Bichat, 75018 Paris, France
- Assistance Publique des Hôpitaux de Paris, APHP Nord, Paris, France
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP, Clamart 92140, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S 1139, 3PHM, F-75006, Paris, France
- Fondation PremUp, F-75014, Paris, France
| |
Collapse
|
8
|
Zhang S, Xu Y, Zhu J, Ma J, Niu Q, Wang X. Carbon monoxide attenuates LPS-induced myocardial dysfunction in rats by regulating the mitochondrial dynamic equilibrium. Eur J Pharmacol 2020; 889:173726. [PMID: 33159931 DOI: 10.1016/j.ejphar.2020.173726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) induces myocardial dysfunction by damaging the mitochondrial structure in cardiomyocytes. Since low levels of carbon monoxide can confer cytoprotective effects against end-organ damage from endotoxic shock, we tested whether treatment with carbon monoxide-releasing molecule-2 (CORM-2) could ameliorate LPS-induced myocardial dysfunction in rats by maintaining the dynamic equilibrium between the mitochondrial fusion and fission processes. Cardiac function, myocardial histopathology, myocardial enzymes, and changes in myocardial mitochondrial function and mitochondrial fusion-fission protein expression were assessed in rats. The mitochondrial structure and morphology were studied by electron microscopy, and the expression levels of key proteins involved in the mitochondrial dynamics were assessed by Western blot assay. Cardiac dysfunction and increased myocardial enzyme activity together with myocardial pathological damage, mitochondrial dysfunction, and impaired mitochondrial dynamics homeostasis were observed in the LPS-challenged septic rats. However, these observations were reversed by CORM-2, which effectively inhibited cardiac and mitochondrial damage in the LPS-challenged rats and improved the survival rate of the animals. In conclusion, CORM-2 regulates the LPS-induced imbalance of the dynamic mitochondrial fusion and fission processes, thereby effectively ameliorating the LPS-induced myocardial dysfunction and improving the survival of the rats.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China; Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, People's Republic of China
| | - Yanping Xu
- Department of Cardiac Functions Examination, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinlan Ma
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Qingsheng Niu
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xiaohong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
9
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
10
|
Korbut E, Brzozowski T, Magierowski M. Carbon Monoxide Being Hydrogen Sulfide and Nitric Oxide Molecular Sibling, as Endogenous and Exogenous Modulator of Oxidative Stress and Antioxidative Mechanisms in the Digestive System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5083876. [PMID: 32377300 PMCID: PMC7180415 DOI: 10.1155/2020/5083876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress reflects an imbalance between oxidants and antioxidants in favor of the oxidants capable of evoking tissue damage. Like hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) is an endogenous gaseous mediator recently implicated in the physiology of the gastrointestinal (GI) tract. CO is produced in mammalian tissues as a byproduct of heme degradation catalyzed by the heme oxygenase (HO) enzymes. Among the three enzymatic isoforms, heme oxygenase-1 (HO-1) is induced under conditions of oxidative stress or tissue injury and plays a beneficial role in the mechanism of protection against inflammation, ischemia/reperfusion (I/R), and many other injuries. According to recently published data, increased endogenous CO production by inducible HO-1, its delivery by novel pharmacological CO-releasing agents, or even the direct inhalation of CO has been considered a promising alternative in future experimental and clinical therapies against various GI disorders. However, the exact mechanisms underlying behind these CO-mediated beneficial actions are not fully explained and experimental as well as clinical studies on the mechanism of CO-induced protection are awaited. For instance, in a variety of experimental models related to gastric mucosal damage, HO-1/CO pathway and CO-releasing agents seem to prevent gastric damage mainly by reduction of lipid peroxidation and/or increased level of enzymatic antioxidants, such as superoxide dismutase (SOD) or glutathione peroxidase (GPx). Many studies have also revealed that HO-1/CO can serve as a potential defensive pathway against oxidative stress observed in the liver and pancreas. Moreover, increased CO levels after treatment with CO donors have been reported to protect the gut against formation of acute GI lesions mainly by the regulation of reactive oxygen species (ROS) production and the antioxidative activity. In this review, we focused on the role of H2S and NO molecular sibling, CO/HO pathway, and therapeutic potential of CO-releasing pharmacological tools in the regulation of oxidative stress-induced damage within the GI tract with a special emphasis on the esophagus, stomach, and intestines and also two solid and important metabolic abdominal organs, the liver and pancreas.
Collapse
Affiliation(s)
- Edyta Korbut
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| |
Collapse
|
11
|
Magierowska K, Korbut E, Hubalewska-Mazgaj M, Surmiak M, Chmura A, Bakalarz D, Buszewicz G, Wójcik D, Śliwowski Z, Ginter G, Gromowski T, Kwiecień S, Brzozowski T, Magierowski M. Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radic Biol Med 2019; 145:198-208. [PMID: 31568823 DOI: 10.1016/j.freeradbiomed.2019.09.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
Endogenous gaseous mediators, such as nitric oxide, hydrogen sulfide or carbon monoxide (CO) are known to exert anti-inflammatory and anti-oxidative activity due to modulation of various molecular pahtways. Therefore, we aimed to investigate if CO released from tricarbonyldichlororuthenium (II) dimer (CORM-2) prevents gastric mucosa against ischemia/reperfusion (I/R)-induced injury in male Wistar rats. Animals were pretreated i.g. With vehicle (DMSO and saline, 1:10), CORM-2 (1, 5 or 10 mg/kg) or zinc protoporphyrin IX (ZnPP, 10 mg/kg i.p.), the HMOXs inhibitor. In separate series, rats were pretreated with CORM-2 (5 mg/kg) applied in combination with glibenclamide (10 mg/kg i.g.), NG-nitro-l-arginine (L-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.) or indomethacin (5 mg/kg i.p.). I/R-injuries were induced by clamping celiac artery for 30 min (I) followed by removal of the clamp to obtain R for 3 h. The macroscopic and microscopic area of gastric damage, mucus production and protein expression for HMOX-1/Nrf-2 was determined by planimetry, histology and immunohistochemistry, respectively. Gastric mucosal HMOX-1, HMOX-2, COX-1, COX-2, Kir6.1, Sur2, sGC-α1, sGC-α2, iNOS and eNOS mRNA expression was assessed by real-time PCR. COHb in blood and gastric mucosal CO concentration was analyzed by gas chromatography. Serum content of TGF-β1, TGF-β2, TGF-β3, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α, IFN-γ, GM-CSF was evaluated using Luminex platform. PGE2 concentration and 8-hydroxyguanozine (8-OHG) concentration in gastric mucosa was determined by ELISA. Exposure to I/R induced extensive hemorrhagic erosions in gastric mucosa pretreated with vehicle as compared with intact rats and the area of this gastric damage was reduced by pretreatment with CORM-2 (5 mg/kg i.g.). This effect of CO donor was accompanied by the increased PGE2 content and a significant decrease in 8-OHG and expression of pro- and anti-inflammatory markers mRNA and proteins. Concurrent treatment of CORM-2 with glibenclamide, L-NNA, ODQ but not with indomethacin significantly increased the area of I/R-induced injury and significantly decreased GBF as compared with the group treated with CORM-2 alone. We conclude that CO releasing CORM-2 prevents gastric mucosal oxidative damage induced by I/R improving GBF, decreasing DNA oxidation and inflammatory response on systemic level. This CO-gastroprotection is mediated by the activity of sGC, NOS and K-ATP channels. CO delivered from its donor maintained physiological gastric mucosal PGE2 concentration but the involvement of endogenous COX in beneficial activity of this gaseous mediator at least in this model is questionable.
Collapse
Affiliation(s)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Gromowski
- Human Genome Variation Research Group & Genomics Centre, Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
12
|
Lin HC, Su SL, Lin WC, Lin AH, Yang YC, Lii CK, Chen HW. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:269-279. [PMID: 29165873 DOI: 10.1002/tox.22514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation.
Collapse
Affiliation(s)
- Hung-Chih Lin
- Division of Neonatology, College of Medicine, Children's Hospital of China Medical University and China Medical University Hospital, Taichung, Taiwan
- Department of Pediatrics, Children's Hospital of China Medical University and China Medical University Hospital, Taichung, Taiwan
| | - Shih-Li Su
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Division of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Chun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ai-Hsuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Magierowska K, Brzozowski T, Magierowski M. Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res 2018; 129:56-64. [PMID: 29360501 DOI: 10.1016/j.phrs.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Heme oxygenase (HO) catalyzes the degradation of toxic free heme to the equimolar amounts of biliverdin, Fe2+ and concurrently releases of carbon monoxide (CO). CO is nowadays increasingly recognized as an important signaling molecule throughout the body that is involved in many physiological processes and shows multidirectional biological activity. Recent evidence indicates that CO exhibits the anti-inflammatory, anti-proliferative, anti-apoptotic, anti-aggregatory and vasodilatory properties. The cellular mechanisms underlying the activity of CO involve stimulation of cGMP-dependent signaling pathway and large conductance calcium activated K+ channels, the activation of mitogen-activated protein kinases and the nuclear factor k-light chain-enhancer of activated B cells transcription factor pathway. Stimulation of endogenous CO production by HO inducers or the inhalation of CO or the delivery of this gaseous molecule by novel pharmaceutical agents have been found in experimental animal models to be promising in the future therapy of various diseases. CO appears to act as a significant component of the complex mechanism of gastrointestinal (GI) mucosal defense. This gaseous molecule plays an important role in diabetic gastroparesis, prevention of the upper GI mucosal damage, post-operative ileus and the healing of ulcerative colitis. This review focuses on the better understanding mechanisms through which CO contributes to the mechanism of protection, resistance to injury and ulcer healing. It is becoming apparent that the pleiotropic effect of this molecule may increase clinical applicability of CO donors and their implementation in many pharmacological research areas, pharmaceutical industry and health-care system.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
14
|
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, Surmiak M, Sliwowski Z, Wierdak M, Kwiecien S, Chmura A, Brzozowski T. Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochem Pharmacol 2018; 149:131-142. [PMID: 29203367 DOI: 10.1016/j.bcp.2017.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) and carbon monoxide (CO) exert gastroprotection against acute gastric lesions. We determined the cross-talk between H2S and CO in gastric ulcer healing process and regulation of gastric blood flow (GBF) at ulcer margin. Male Wistar rats with acetic acid-induced gastric ulcers were treated i.g. throughout 9 days with vehicle (control), NaHS (0.1-10 mg/kg) +/- zinc protoporphyrin (ZnPP, 10 mg/kg), d,l-propargylglycine (PAG, 30 mg/kg), CO-releasing CORM-2 (2.5 mg/kg) +/- PAG. GBF was assessed by laser flowmetry, ulcer area was determined by planimetry/histology. Gastric mucosal H2S production was analysed spectrophotometrically. Protein and/or mRNA expression at ulcer margin for vascular endothelial growth factor (VEGF)A, epidermal growth factor receptor (EGFr), cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenases (HOs), nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α and hypoxia inducible factor (HIF)-1α were determined by real-time PCR or western blot. IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, TNF-α, GM-CSF plasma concentration was assessed using Luminex platform. NaHS dose-dependently decreased ulcer area and increased GBF but ZnPP attenuated these effects. PAG decreased H2S production but failed to affect CORM-2-mediated ulcer healing and vasodilation. NaHS increased Nrf-2, EGFr, VEGFA and decreased pro-inflammatory markers expression and IL-1β, IL-2, IL-13, TNF-α, GM-CSF plasma concentration. CORM-2 decreased IL-1β and GM-CSF plasma levels. We conclude that NaHS accelerates gastric ulcer healing increasing microcirculation and Nrf-2, EGFr, VEGFA expression. H2S-mediated ulcer healing involves endogenous CO activity while CO does not require H2S. NaHS decreases systemic inflammation more effectively than CORM-2.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Mateusz Wierdak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| |
Collapse
|
15
|
Magierowski M, Hubalewska-Mazgaj M, Magierowska K, Wojcik D, Sliwowski Z, Kwiecien S, Brzozowski T. Nitric oxide, afferent sensory nerves, and antioxidative enzymes in the mechanism of protection mediated by tricarbonyldichlororuthenium(II) dimer and sodium hydrosulfide against aspirin-induced gastric damage. J Gastroenterol 2018; 53:52-63. [PMID: 28238019 DOI: 10.1007/s00535-017-1323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Aspirin exerts side effects within the gastrointestinal tract. Hydrogen sulfide (H2S) and carbon monoxide (CO) have been implicated in gastroprotection but the mechanism of beneficial action of these gaseous mediators against aspirin-induced damage has not been fully studied. We determined the involvement of afferent sensory neurons, calcitonin-gene-related peptide (CGRP), lipid peroxidation, and nitric oxide (NO) biosynthesis in gastroprotection of H2S-releasing NaHS and CO-releasing tricarbonyldichlororuthenium(II) dimer (CORM-2) against aspirin-induced injury. METHODS Wistar rats with or without capsaicin-induced denervation of sensory neurons were pretreated with vehicle, CORM-2 (5 mg/kg intragastrically), or NaHS (5 mg/kg intragastrically) with or without capsazepine (5 mg/kg intragastrically) or N G-nitro-L-arginine (L-NNA, 20 mg/kg intraperitoneally). The areas of aspirin-induced lesions and gastric blood flow (GBF) were assessed by planimetry and laser flowmetry respectively. Gastric mucosal messenger RNA and/or protein expression of CGRP, heme oxygenase 1, inducible nitric oxide synthase, cyclooxygenase 2, interleukin-1β, glutathione peroxidase 1 (GPx-1), and superoxide dismutase was determined by real-time PCR or Western blot. Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) content was determined by colorimetric assay. RESULTS Aspirin caused gastric lesions, decreased GBF, and raised MDA content, but pretreatment with NaHS and CORM-2 reduced these effects. Capsaicin-induced denervation or co-treatment with capsazepine reversed the gastroprotective and vasodilatory effects of NaHS but not those of CORM-2. L-NNA reversed NaHS-induced gastroprotection and partly reduced CORM-2-induced gastroprotection. NaHS and CORM-2 decreased MDA and 4-HNE content, restoring GPx-1 protein expression. CONCLUSIONS We conclude that H2S- but not CO-mediated gastroprotection against aspirin-induced injury involves afferent sensory nerves and partly NO activity. NaHS and CORM-2 prevented aspirin-induced gastric mucosal lipid peroxidation via restoration of microcirculation and antioxidative GPx-1 protein expression.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland.
| | - Magdalena Hubalewska-Mazgaj
- Department of Genetic Research and Nutrigenomics, Malopolska Centre of Biotechnology, Jagiellonian University, 7A Gronostajowa Street, 30-387, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Cracow, Poland
| |
Collapse
|
16
|
Wallace JL, Ianaro A, de Nucci G. Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig Dis Sci 2017; 62:2223-2230. [PMID: 28733867 DOI: 10.1007/s10620-017-4681-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
Abstract
Of the numerous gaseous substances that can act as signaling molecules, the best characterized are nitric oxide, carbon monoxide and hydrogen sulfide. Contributions of each of these low molecular weight substances, alone or in combination, to maintenance of gastrointestinal mucosal integrity have been established. There is considerable overlap in the actions of these gases in modulating mucosal defense and responses to injury, and in some instances they act in a cooperative manner. Each also play important roles in regulating inflammatory and repair processes throughout the gastrointestinal tract. In recent years, significant progress has been made in the development of novel anti-inflammatory and cytoprotective drugs that exploit the beneficial activities of one or more of these gaseous mediators.
Collapse
Affiliation(s)
- John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Department of Medicine, Universidade Camilo Castelo Branco, Fernandopolis, SP, Brazil.
| | - Angela Ianaro
- Department of Experimental Pharmacology, University of Naples, Naples, Italy
| | - Gilberto de Nucci
- Department of Medicine, Universidade Camilo Castelo Branco, Fernandopolis, SP, Brazil
| |
Collapse
|
17
|
Ulbrich F, Hagmann C, Buerkle H, Romao CC, Schallner N, Goebel U, Biermann J. The Carbon monoxide releasing molecule ALF-186 mediates anti-inflammatory and neuroprotective effects via the soluble guanylate cyclase ß1 in rats' retinal ganglion cells after ischemia and reperfusion injury. J Neuroinflammation 2017; 14:130. [PMID: 28655348 PMCID: PMC5488359 DOI: 10.1186/s12974-017-0905-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 06/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endogenously produced gaseous molecule carbon monoxide is able to promote organ protection after ischemia-reperfusion injuries (IRI). The impact of carbon monoxide releasing molecules (CORM) regarding inflammation in neuronal tissues has not been studied in detail. In this investigation, we aimed to analyze the effects of the CORM ALF-186 on neuro-inflammation and hypothesized that the soluble guanylate cyclase (sGC) is playing a decisive role. METHODS Retinal ischemia-reperfusion injury was performed for 60 min in Sprague-Dawley rats. Thereafter, the CORM ALF-186 (10 mg/kg) in the presence or absence of the sGC inhibitor ODQ was injected via a tail vein. Retinal tissue was harvested 24 h later to analyze mRNA or protein expression of sGC-β1 subunit, transcription factors NF-κB and CREB, the inflammatory cytokines TNF-α and IL-6, as well as the heat shock proteins (HSP) HSP-70 and HSP-90. Immunohistochemistry was performed on frozen sections of the retina. The overall neuroprotective effect of ALF-186 was assessed by counting fluorogold-pre-labeled retinal ganglion cells (RGC) 7 days after IRI. RESULTS Ischemia-reperfusion mediated loss of vital RGC was attenuated by the administration of ALF-186 after injury. ALF-186 treatment after IRI induced sGC-ß1 leading to a decreased NF-κB and CREB phosphorylation. Consecutively, ALF-186 mitigated IRI induced TNF-α and IL-6 expression in the retina and in the rats' serum. Moreover, ALF-186 attenuated heat shock protein 70 (Hsp-70) while increasing Hsp-90. The sGC-inhibitor ODQ attenuated the anti-inflammatory effects of ALF-186 and increased retinal loss of ganglion cells. These results were confirmed by immunohistochemistry. CONCLUSION The CORM ALF-186 protected RGC from IRI induced loss. Furthermore, ALF-186 reduced IRI mediated neuroinflammation in the retina and in the serum by activating sGC. Inhibition of sGC stopped the beneficial and protective effects of ALF-186. ALF-186 may present a promising therapeutic alternative in treating inflammation after neuronal IRI.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Claus Hagmann
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Carlos C Romao
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Oeiras, Portugal
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany.
| | - Julia Biermann
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, Adamski J, Bakalarz D, Sliwowski Z, Pajdo R, Kwiecien S, Brzozowski T. Interaction between endogenous carbon monoxide and hydrogen sulfide in the mechanism of gastroprotection against acute aspirin-induced gastric damage. Pharmacol Res 2016; 114:235-250. [PMID: 27825819 DOI: 10.1016/j.phrs.2016.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
Abstract
Acetylsalicylic acid (ASA) is mainly recognized as painkiller or anti-inflammatory drug. However, ASA causes serious side effects towards gastrointestinal (GI) tract which limits its usefulness. Carbon monoxide (CO) and hydrogen sulfide (H2S) have been described to act as important endogenous messengers and mediators of gastroprotection but whether they can interact in gastroprotection against acute ASA-induced gastric damage remains unknown. In this study male Wistar rats were pretreated with 1) vehicle (saline, i.g.), 2) tricarbonyldichlororuthenium (II) dimer (CORM-2, 5mg/kg i.g.), 3) sodium hydrosulfide (NaHS, 5mg/kg i.g.), 4) zinc protoporphyrin (ZnPP, 10mg/kg i.p.), 5) D,L-propargylglycine (PAG, 30mg/kg i.g.), 6) ZnPP combined with NaHS, 7) PAG combined with CORM-2 or 8) 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10mg/kg i.p.) combined with CORM-2 or NaHS and 30min later ASA was administered i.g. in a single dose of 125mg/kg. After 1h, gastric blood flow (GBF) was determined by H2 gas clearance technique and gastric lesions were assessed by planimetry and histology. CO content in gastric mucosa and COHb concentration in blood were determined by gas chromatography and H2S production was assessed in gastric mucosa using methylene blue method. Protein and/or mRNA expression for cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenase (HO)-1, HO-2, hypoxia inducible factor-alpha (HIF)-1α, nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-1 and COX-2, inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β were determined by Western blot or real-time PCR, respectively. ASA caused hemorrhagic gastric mucosal damage and significantly decreased GBF, H2S production, CO content, mRNA or protein expression for CSE, 3-MST, HO-2 and increased mRNA and/or protein expression for CBS, HO-1, Nrf-2, HIF-1α, iNOS, IL-1β, COX-2 in gastric mucosa and COHb concentration in blood. Pretreatment with CORM-2 or NaHS but not with PAG decreased ASA-damage and increased GBF. ZnPP reversed protective and hyperemic effect of NaHS but PAG failed to affect CORM-2-induced gastroprotection. CORM-2 elevated CO content, mRNA or protein expression for HO-1, Nrf-2, and decreased expression of CBS, HIF-1α, COX-2, IL-1β, iNOS, the H2S production in gastric mucosa and COHb concentration in blood. NaHS raised mRNA or protein expression for CSE, COX-1 and decreased mRNA expression for IL-1β and COHb level in blood. We conclude that CO is involved in gastroprotection induced by H2S while beneficial protective action of CO released from CORM-2 in gastric mucosa seems to be H2S-independent. In contrast to H2S, CO ameliorates hypoxia, regulates Nrf-2 expression but similarly to H2S acts on sGC-dependent manner to restore gastric microcirculation and exhibit anti-inflammatory activity in gastric mucosa compromised by ASA.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Genetic Research and Nutrigenomics, Malopolska Centre of Biotechnology, Jagiellonian University, 7A Gronostajowa Street, 30-387 Cracow, Poland
| | - Juliusz Adamski
- Department of Forensic Toxicology, Institute of Forensic Research, 9 Westerplatte Street, 31-033 Cracow, Poland
| | - Dominik Bakalarz
- Department of Forensic Toxicology, Institute of Forensic Research, 9 Westerplatte Street, 31-033 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| |
Collapse
|
19
|
Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T. Hydrogen Sulfide and Carbon Monoxide Protect Gastric Mucosa Compromised by Mild Stress Against Alendronate Injury. Dig Dis Sci 2016; 61:3176-3189. [PMID: 27541924 PMCID: PMC5067292 DOI: 10.1007/s10620-016-4280-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/10/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alendronate is an inhibitor of osteoclast-mediated bone resorption, but its clinical utility is limited due to gastrointestinal complications including bleeding erosions. AIMS We studied whether potent vasodilators hydrogen sulfide (H2S) and carbon monoxide (CO) can protect against alendronate-induced gastric lesions in rats exposed to mild stress. METHODS Three series (A, B, and C) of Wistar rats received alendronate (150-700 mg/kg i.g., series A) with or without NaHS (5 mg/kg), H2S donor or CORM-2 (5 mg/kg) releasing CO administered i.g. 30 min before alendronate administration (series B) in rats exposed for 3 days before alendronate administration to mild stress (series C). The area of gastric lesions was assessed by planimetry, the gastric blood flow (GBF) was determined by H2-gas clearance technique, and H2S production via CSE/CBS/3-MST activity and the gastric expression of HO-1, HO-2, HIF-1α, NF-κB, iNOS, COX-2, IL-1β, TNF-α, GPx-1 and SOD-2 were analyzed by qPCR or Western blot. RESULTS Alendronate dose-dependently produced gastric mucosal lesions and significantly decreased GBF, and these effects were exacerbated by mild stress. NaHS and CORM-2 significantly reduced the alendronate-induced gastric lesions in non-stressed and stressed animals, but only NaHS but not CORM-2 raised H2S production. NaHS and CORM-2 inhibited gastric expression of HIF-1α protein and HO-1, HIF-1α, NF-κB, COX-2, iNOS, IL-1β, TNF-α mRNAs but failed to affect those of HO-2, GPx-1, and SOD-2. CONCLUSION Both H2S and CO released from their donors, NaHS and CORM-2, protect gastric mucosa compromised by stress against alendronate-induced gastric damage via mechanism involving downregulation of HIF-1α, NF-κB and proinflammatory factors COX-2, iNOS, IL-1β, and TNF-α.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Jakub Szmyd
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| |
Collapse
|
20
|
Magierowska K, Magierowski M, Surmiak M, Adamski J, Mazur-Bialy AI, Pajdo R, Sliwowski Z, Kwiecien S, Brzozowski T. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO). Int J Mol Sci 2016; 17:442. [PMID: 27023525 PMCID: PMC4848898 DOI: 10.3390/ijms17040442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.g.)), RuCl₃ (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1-10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with N(G)-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl₃ was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO's hyperemic and anti-inflammatory properties, but is independent of NO.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, 31-006 Cracow, Poland.
| | - Juliusz Adamski
- Department of Forensic Toxicology, Institute of Forensic Research, 31-033 Cracow, Poland.
| | - Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
21
|
Carvalho NS, Silva MM, Silva RO, Nicolau LAD, Araújo TSL, Costa DS, Sousa NA, Souza LKM, Soares PMG, Medeiros JVR. Protective Effects of Simvastatin Against Alendronate-Induced Gastric Mucosal Injury in Rats. Dig Dis Sci 2016; 61:400-9. [PMID: 26403426 DOI: 10.1007/s10620-015-3890-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND It has been reported that simvastatin, a statin commonly prescribed for its anti-inflammatory and antioxidant effects, has gastroprotective effects in indomethacin and ethanol-induced gastric ulcers. However, the effects of simvastatin on alendronate-induced gastric mucosal injury remain unexplored. AIM This study investigated the use of simvastatin for the treatment of alendronate-induced gastric ulcers in rats. METHODS Female rats were pretreated with vehicle or simvastatin (20 and 60 mg/kg p.o.). After 1 h, the rats received alendronate (50 mg/kg p.o.). Simvastatin was administered once daily for 7 days, and from the fourth day of simvastatin treatment, alendronate was administered once daily for 4 days. On the final day of treatment, 4 h after alendronate administration, animals were euthanized, their stomachs were removed, and gastric damage was measured. Samples of the stomach were fixed in 10 % formalin immediately after their removal for subsequent histopathological assessment. Unfixed samples were weighed, frozen at -80 °C until assayed for glutathione (GSH), malondialdehyde (MDA), and cytokine levels and myeloperoxidase (MPO) activity. A third group was used to measure mucus and gastric secretion. RESULTS Pretreatment with simvastatin prevented alendronate-induced macroscopic gastric damage and reduced the levels of MDA and GSH, TNF-α and IL-1β, MPO activity, and mucus levels, in the stomach. CONCLUSIONS This study demonstrates the protective effects of simvastatin against alendronate-induced gastric ulceration. Maintenance of mucosal integrity, inhibition of neutrophil activity, and reduced oxidative stress associated with decreased gastric acidity may explain the gastroprotective effects of simvastatin.
Collapse
Affiliation(s)
- Nathalia S Carvalho
- Post Graduation Program in Pharmacology, Medicinal Plant Research Center (NPPM), Federal University of Piauí, Teresina, PI, Brazil
| | - Mônica M Silva
- Post Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Renan O Silva
- Laboratory of Pharmacology of Inflammation and Cancer (LAFICA), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Cancer (LAFICA), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago S L Araújo
- Post Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Douglas S Costa
- Post Graduation Program in Pharmacology, Medicinal Plant Research Center (NPPM), Federal University of Piauí, Teresina, PI, Brazil
| | - Nayara A Sousa
- Post Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Luan K M Souza
- Post Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Pedro M G Soares
- Laboratory of Pharmacology of Inflammation and Cancer (LAFICA), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jand Venes R Medeiros
- Post Graduation Program in Pharmacology, Medicinal Plant Research Center (NPPM), Federal University of Piauí, Teresina, PI, Brazil. .,Post Graduation Program in Biotechnology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil. .,BIOTEC/LAFFEX/UFPI, Av. São Sebastião, no. 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| |
Collapse
|
22
|
The Preventive Effect on Ethanol-Induced Gastric Lesions of the Medicinal Plant Plumeria rubra: Involvement of the Latex Proteins in the NO/cGMP/K ATP Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:706782. [PMID: 26788111 PMCID: PMC4691623 DOI: 10.1155/2015/706782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Plumeria rubra (Apocynaceae) is frequently used in folk medicine for the treatment of gastrointestinal disorders, hepatitis, and tracheitis, among other infirmities. The aim of this study was to investigate the gastroprotective potential of a protein fraction isolated from the latex of Plumeria rubra (PrLP) against ethanol-induced gastric lesions and describe the underlying mechanisms. In a dose-dependent manner, the pretreatment with PrLP prevented ethanol-induced gastric lesions in mice after single intravenous administration. The gastroprotective mechanism of PrLP was associated with the involvement of prostaglandins and balance of oxidant/antioxidant factors. Secondarily, the NO/cGMP/KATP pathway and activation of capsaicin-sensitive primary afferents were also demonstrated as part of the mechanism. This study shows that proteins extracted from the latex of P. rubra prevent gastric lesions induced in experimental animals. Also, the results support the use of the plant in folk medicine.
Collapse
|
23
|
Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage. PLoS One 2015; 10:e0140493. [PMID: 26460608 PMCID: PMC4604159 DOI: 10.1371/journal.pone.0140493] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023] Open
Abstract
The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties.
Collapse
|
24
|
Li W, Yao H, Niu X, Wang Y, Zhang H, Li H, Mu Q. Protective effect of δ-amyrone against ethanol-induced gastric ulcer in mice. Immunobiology 2015; 220:798-806. [PMID: 25572867 DOI: 10.1016/j.imbio.2014.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
|
25
|
Brzozowski T. Role of renin-angiotensin system and metabolites of angiotensin in the mechanism of gastric mucosal protection. Curr Opin Pharmacol 2014; 19:90-8. [PMID: 25238456 DOI: 10.1016/j.coph.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/29/2022]
Abstract
Angiotensin II, the main effector of the renin-angiotensin system (RAS), is generated from the precursor angiotensinogen by the actions of renin, angiotensin-converting enzyme, chymase and various peptidases. RAS is essential in the control of blood pressure and body fluid homeostasis but their involvement in the mechanism of the protection of gastric mucosa has not been extensively studied. On the other hand, angiotensin-(1-7) which acts on the Mas receptor, exhibits a potent vasodilatory activity and attenuates the gastric lesions induced by various ulcerogens. In this review, the mechanism of RAS, the antagonists of angiotensin AT1 and AT2 receptors and angiotensin-(1-7) in formation of gastric damage is discussed with possible translating relevance to treatment modalities in the protection against gastric mucosal injury.
Collapse
Affiliation(s)
- Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
26
|
Alendronate induces gastric damage by reducing nitric oxide synthase expression and NO/cGMP/K(ATP) signaling pathway. Nitric Oxide 2014; 40:22-30. [PMID: 24831353 DOI: 10.1016/j.niox.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 11/21/2022]
Abstract
Chronic use of alendronate has been linked to gastrointestinal tract problems. Our objective was to evaluate the role of the NO/cGMP/KATP signaling pathway and nitric oxide synthase expression in alendronate-induced gastric damage. Rats were either treated with the NO donor, sodium nitroprusside (SNP; 1, 3, and 10 mg/kg), or the NO synthase (NOS) substrate, L-arginine (L-Arg; 50, 100, and 200 mg/kg). Some rats were pretreated with either ODQ (a guanylate cyclase inhibitor; 10 mg/kg) or glibenclamide (KATP channels blocker; 10 mg/kg). In other experiments, rats were pretreated with L-NAME (non-selective NOS inhibitor; 10 mg/kg), 1400 W (selective inducible NOS [iNOS] inhibitor; 10 mg/kg), or L-NIO (a selective endothelial NOS [eNOS] inhibitor; 30 mg/kg). After 1 h, the rats were treated with alendronate (30 mg/kg) by gavage for 4 days. SNP and L-Arg prevented alendronate-induced gastric damage in a dose-dependent manner. Alendronate reduced nitrite/nitrate levels, an effect that was reversed with SNP or L-Arg treatment. Pretreatment with ODQ or glibenclamide reversed the protective effects of SNP and L-Arg. L-NAME, 1400 W, or L-NIO aggravated the severity of alendronate-induced lesions. In addition, alendronate reduced the expression of iNOS and eNOS in the gastric mucosa. Gastric ulcerogenic responses induced by alendronate were mediated by a decrease in NO derived from both eNOS and iNOS. In addition, our findings support the hypothesis that activation of the NO/cGMP/KATP pathway is of primary importance for protection against alendronate-induced gastric damage.
Collapse
|
27
|
Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicol Appl Pharmacol 2013; 272:21-9. [DOI: 10.1016/j.taap.2013.05.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 01/12/2023]
|
28
|
Nicolau L, Silva R, Damasceno S, Carvalho N, Costa N, Aragão K, Barbosa A, Soares P, Souza M, Medeiros J. The hydrogen sulfide donor, Lawesson's reagent, prevents alendronate-induced gastric damage in rats. Braz J Med Biol Res 2013; 46:708-14. [PMID: 23969974 PMCID: PMC3854416 DOI: 10.1590/1414-431x20133030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/21/2013] [Indexed: 11/21/2022] Open
Abstract
Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg, ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35 ± 9.8 mm(2)); increased levels of TNF-α, IL-1β, and MDA (2311 ± 302.3 pg/mL, 901.9 ± 106.2 pg/mL, 121.1 ± 4.3 nmol/g, respectively); increased MPO activity (26.1 ± 3.8 U/mg); and reduced GSH levels (180.3 ± 21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77 ± 5.3 mm(2)); reduced TNF-α, IL-1β, and MDA formation (1502 ± 150.2 pg/mL, 632.3 ± 43.4 pg/mL, 78.4 ± 7.6 nmol/g, respectively); lowered MPO activity (11.7 ± 2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9 ± 40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.
Collapse
Affiliation(s)
- L.A.D. Nicolau
- Núcleo de Pesquisa em Produtos Naturais, Departamento de
Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - R.O. Silva
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| | - S.R.B. Damasceno
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| | - N.S. Carvalho
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| | - N.R.D. Costa
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| | - K.S. Aragão
- Laboratório de Farmacologia da Inflamação e do Câncer, Departamento
de Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.L.R. Barbosa
- Núcleo de Pesquisa em Produtos Naturais, Departamento de
Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| | - P.M.G. Soares
- Laboratório de Farmacologia da Inflamação e do Câncer, Departamento
de Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M.H.L.P. Souza
- Laboratório de Farmacologia da Inflamação e do Câncer, Departamento
de Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J.V.R. Medeiros
- Núcleo de Pesquisa em Produtos Naturais, Departamento de
Farmacologia, Universidade Federal do Piauí, Teresina, PI, Brasil
- Laboratório de Fisiofarmacologia Experimental, Centro de Pesquisa em
Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brasil
| |
Collapse
|
29
|
MEDEIROS JVR, SOARES PMG, BRITO GADC, SOUZA MHLPD. IMMUNOHISTOCHEMICAL APPROACH REVEALS LOCALIZATION OF CYSTATHIONINE-?-LYASE AND CYSTATHIONINE-ß-SYNTHETASE IN ETHANOL-INDUCED GASTRIC MUCOSA DAMAGE IN MICE. ARQUIVOS DE GASTROENTEROLOGIA 2013; 50:157-60. [DOI: 10.1590/s0004-28032013000200027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/12/2013] [Indexed: 11/22/2022]
Abstract
Context Hydrogen sulphide (H2S) has been proved to be a neuromodulator and contributes to the maintenance of gastric mucosal integrity in damage caused by anti-inflammatory nonsteroidal drugs. Previously, we demonstrated that H2S synthesis is essential to gastric protection against ethanol. Objective To better understanding the role of H2S and the detailed localization of its production in both normal and injured stomach due to ethanol injection, we studied the expression of cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS) isoforms in gastric mucosa of mice treated with saline or 50% ethanol. Methods Mice were treated by gavage with saline or 50% ethanol (0.5 mL/25 g). After 1 hour, mice were sacrificed, and gastric tissue was evaluated by histological and immunohistochemical analysis specific for CSE and CBS. Results We have demonstrated a non-specific expression of CBS in the normal gastric mucosa and expression of CSE occurring mainly in the parietal cells of the animals treated with ethanol. Conclusion Thus, we demonstrated that the expression of CBS appears to be constitutive and diffuse across the gastric epithelium, while the expression of CSE appears to be induced in parietal cells by damage agents such as ethanol.
Collapse
|