1
|
Xiao J, Zhang Z, Zhang W, Wu L, Zhang L, Wang Y, Li L, Li X, Ma K. Primary Cultivation and Identification of Vascular Smooth Muscle Cells from the Spiral Modiolar Artery of Guinea Pigs. Med Sci Monit 2018; 24:7023-7034. [PMID: 30280719 PMCID: PMC6699200 DOI: 10.12659/msm.912606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background This article reports a method to obtain vascular smooth muscle cells (SMCs) from the spiral modiolar artery (SMA) of guinea pigs and provides materials for related experimental studies. Material/Methods SMA was separated from the cochlea of guinea pigs, digested with trypsin (1.25 g/L) and allowed to adhere in a 35-mm culture dish. The morphology of the sample was investigated, and the sample was identified by immunofluorescence analysis, flow cytometry, Western blot, and RT-PCR. Cell viability was calculated using trypan blue and flow cytometry. Whole-cell patch clamp was used to record the membrane input resistance (Rinput), reciprocal membrane input conductance (Ginput), membrane input capacitance (Cinput), and resting membrane potential (RP) of the SMCs. Results Microscopy results showed that the cells had typical peak–valley growth pattern. The cell growth curve was similar to an S curve, and flow cytometry results showed that the cell apoptosis rate was less than 10%. Moreover, flow cytometry, immunofluorescent staining, Western blot and RT-PCR detected the specific and intensely positive expression of cell type-specific markers α-SM-actin, SM22α, calponin and desmin. Furthermore, following properties of the P3 and P6 cells were obtained: Rinput, 2611±356 and 2477±338 MΩ; Ginput, 0.454±0.071 and 0.273±0.037 ns; Cinput, 17.029±0.917 and 18.042±1.051 pF, and RP −20.602±1.503 and −22.192±1.905 mV. Conclusions Various highly purified SMCs were obtained from the SMA of guinea pigs. We provide an ideal experimental material for the study of the pathogenesis of diseases related to the circulation disturbances in the inner ear in vitro. The results can be used to evaluate the effects of drugs on vascular smooth muscle.
Collapse
Affiliation(s)
- Jingjie Xiao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Zhiping Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Otolaryngology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Wei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Gerontology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Lei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Cardiology, The First Affiliated Hospital, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Yang Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li Li
- Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Pathophysiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Ketao Ma
- Department of Physiology, Medicine School of Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
2
|
Hannigan KI, Griffin CS, Large RJ, Sergeant GP, Hollywood MA, McHale NG, Thornbury KD. The role of Ca 2+-activated Cl - current in tone generation in the rabbit corpus cavernosum. Am J Physiol Cell Physiol 2017; 313:C475-C486. [PMID: 28835432 DOI: 10.1152/ajpcell.00025.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 11/22/2022]
Abstract
Rabbit corpus cavernosum smooth muscle (RCCSM) cells express ion channels that produce Ca2+-activated Cl- (IClCa) current, but low sensitivity to conventional antagonists has made its role in tone generation difficult to evaluate. We have reexamined this question using two new generation IClCa blockers, T16Ainh-A01 and CaCCinh-A01. Isolated RCCSM cells were studied using the perforated patch method. Current-voltage protocols revealed that both L-type Ca2+ current and IClCa T16Ainh-A01 and CaCCinh-A01 (10 μM) reduced IClCa by ~85%, while 30 μM abolished it. L-type Ca2+ current was unaffected by 10 μM CaCCinh-A01 but was reduced by 50% at 30 μM CaCCinh-A01, 46% at 10 μM T16Ainh-A01, and 78% at 30 μM T16Ainh-A01. Both drugs reduced spontaneous isometric tension in RCCSM strips, by 60-70% at 10 μM and >90% at 30 μM. Phenylephrine (PE)-enhanced tension was also reduced (ED50 = 3 μM, CaCCinh-A01; 14 μM, T16Ainh-A01). CaCCinh-A01 at 10 μM had little effect on 60 mM KCl contractures, though they were reduced by 30 μM CaCCinh-A01 and T16Ainh-A01 (10 μM and 30 μM) consistent with their effects on L-type Ca2+ current. Both drugs also reversed the stimulatory effect of PE on intracellular Ca2+ waves, studied with laser scanning confocal microscopy in isolated RCCSM cells. In conclusion, although both drugs were effective blockers of IClCa, the effect of T16Ainh-A01 on L-type Ca2+ current precludes its use for evaluating the role of IClCa in tone generation. However, 10 μM CaCCinh-A01 selectively blocked IClCa versus L-type Ca2+ current and reduced spontaneous and PE-induced tone, suggesting that IClCa is important in maintaining penile detumescence.
Collapse
Affiliation(s)
- Karen I Hannigan
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
3
|
Qian YF, Wang Y, Tian WW, Wang S, Zhao L, Li L, Ma KT, Si JQ. Effects of RMF on BKCa and Kv channels in basilar arterial smooth‑muscle cells of SHR. Mol Med Rep 2017; 16:2620-2626. [PMID: 28677751 PMCID: PMC5548071 DOI: 10.3892/mmr.2017.6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 04/19/2017] [Indexed: 11/30/2022] Open
Abstract
The current study observed the effects and investigated the mechanism of remifentanil (RMF) on the isolated cerebral basilar arteries of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. A pressure myograph system was used to observe and compare the effects of different concentrations of RMF (10−10-10−5 mol/l) on the diameter changes of freshly isolated cerebral basilar arteries, which have been pre-shrunk by phenylephrine (PE), an endothelium-independent vasoconstrictor. Vascular smooth-muscle cells of the cerebral basilar artery (BASMCs) were freshly obtained via enzymolysis. BKCa (large-conductance calcium-activated potassium channels) current (IBKCa) and Kv (voltage-gated potassium channels) current (IKv) were recorded using a whole-cell patch-clamp technique. The changes in IBKCa and IKv produced by different concentrations of RMF (10−10 to 10−5 mol/l) on the two types of rats with the holding potential of −40 mV were observed and compared. The cerebral basilar arteries of the SHR and WKY rats were relaxed by RMF in a concentration-dependent manner (P<0.05; n=5). At the same concentration, the diastolic effect of RMF on SHR was weaker than that observed in WKY rats (P<0.05, n=5). When the rats were pre-perfused with 10−3 mol/l of the BKCa channel blocker tetraethylammonium (TEA), the diastolic amplitudes of RMF in SHR and WKY rats were decreased, and the fitting curves shifted down (P<0.05; n=7 and 6, respectively). However, no statistically significant difference was observed with 10−3 mol/l of the Kv channel blocker 4-aminopyridine (4-AP; n=6 and 9, respectively; P>0.05). Outward currents were increased by RMF in both BASMCs of SHR and WKY rats in a voltage- and dose-dependent manner (P<0.05; n=6). At the same concentration, the effect of RMF on the outward currents in BASMCs of WKY rats was stronger than that on SHR (P<0.05; n=6). The enhancing effect of RMF can be partially blocked by either 10−3 mol/l TEA (P<0.05; n=6) or 10−3 mol/l 4-AP (P<0.05 or 0.01; n=6 and 9, respectively) however can be totally blocked by the mixture of TEA and 4-AP (P<0.05, n=7). RMF served a diastolic role in the cerebral basilar arteries of rats in a dose-dependent manner, likely by activating the BKCa and Kv channels. However, SHR demonstrated a less pronounced diastolic reaction to RMF than that observed in WKY rats.
Collapse
Affiliation(s)
- Yan-Fei Qian
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wei-Wei Tian
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Sheng Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Lei Zhao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
4
|
Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol 2017; 14:759-71. [PMID: 27262601 PMCID: PMC5050393 DOI: 10.2174/1570159x14666160603115942] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. OBJECTIVE Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. RESULTS Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. CONCLUSION Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S. Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico D.F., Mexico
| |
Collapse
|
5
|
Wang LJ, Liu WD, Zhang L, Ma KT, Zhao L, Shi WY, Zhang WW, Wang YZ, Li L, Si JQ. Enhanced expression of Cx43 and gap junction communication in vascular smooth muscle cells of spontaneously hypertensive rats. Mol Med Rep 2016; 14:4083-4090. [PMID: 27748857 PMCID: PMC5101886 DOI: 10.3892/mmr.2016.5783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
Niflumic acid (NFA) is a novel gap junction (GJ) inhibitor. The aim of the present study was to investigate the effect of NFA on GJ communication and the expression of connexin (Cx) in vascular smooth muscle cells (VSMCs) of mesenteric arterioles of spontaneously hypertensive rats (SHR). Whole-cell patch clamp recording demonstrated that NFA at 1×10–4 M significantly inhibited the inward current and its effect was reversible. The time for charging and discharging of cell membrane capacitance (Cinput) reduced from 9.73 to 0.48 ms (P<0.05; n=6). Pressure myograph measurement showed that NFA at 3×10-4 M fully neutralized the contraction caused by phenylephrine. The relaxation responses of normotensive control Wistar Kyoto (WKY) rats were significantly higher, compared with those of the SHRs (P<0.05; n=6). Western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the mRNA and protein expression levels of Cx43 of the third-level branch of mesenteric arterioles of the SHRs and WKY rats were higher, compared with those of the first-level branch. The mRNA and protein expression levels of Cx43 of the primary and third-level branches of the mesenteric arterioles in the SHRs were higher, compared with those in the WKY rats (P<0.05; n=6). The mRNA levels of Cx43 in the mesenteric arterioles were significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). The protein levels of Cx43 in primary cultured VSMCs isolated from the mesenteric arterioles were also significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). These results showed that the vasorelaxatory effects of GJ inhibitors were reduced in the SHRs, which was associated with a higher protein expression level of Cx43 in the mesenteric arterioles of the SHRs. NFA also relaxed the mesenteric arterioles by reducing the expression of Cx43, which decreased blood pressure. Therefore, regulation of the expression of GJs may be a therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Li-Jie Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wei-Dong Liu
- Department of Gastroenterology, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Lei Zhao
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Wen Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ying-Zi Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
6
|
Li L, Zhang W, Shi WY, Ma KT, Zhao L, Wang Y, Zhang L, Li XZ, Zhu H, Zhang ZS, Liu WD, Si JQ. The enhancement of Cx45 expression and function in renal interlobar artery of spontaneously hypertensive rats at different age. Kidney Blood Press Res 2016; 40:52-65. [PMID: 25791497 DOI: 10.1159/000368482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study was designed to investigate the expression and function of gap junction protein connexin 45 (Cx45) in renal interlobar artery (RIA) of spontaneously hypertensive rats (SHR), and the association between hypertension and enhanced vasoconstrictive response in SHR. METHODS Western blot analysis and pressure myography were used to examine the differences in expression and function of Cx45 in vascular smooth muscle cells (VSMCs) of RIA between SHR and normotensive Wistar-Kyoto (WKY) rats. RESULTS Our results demonstrated that 1) whole-cell patch clamp measurements showed that the membrane capacitance and conductance of in-situ RIA VSMCs of SHR were significantly greater than those of WKY rats (p<0.05, n=6), suggesting that the coupling of gap junction between VSMCs of RIA was enhanced in SHR; 2) the KCl or phenylephrine (PE)-stimulated RIA constriction was more pronounced in SHR than that in WKY rats (p<0.05, n=10). After applying a gap junction inhibitor 18β-glycyrrhetintic acid (18β-GA), the inhibitory effect of 18β-GA on KCl or PE-induced vasoconstriction was greater in SHR (p<0.05, n=10); and 3) the expression of Cx45 in RIA of SHR was greater than that in WKY rats (p<0.05, n=3) at 4, 12 and 48 wks of age. CONCLUSIONS The hypertension-induced elevation of Cx45 may affect communication between VSMCs and coupling between VSMCs and endothelium, which results in an increased vasoconstrictive response in renal artery and might contribute to the development of hypertension.
Collapse
|
7
|
Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. J Neurosci 2015; 35:11292-307. [PMID: 26269637 DOI: 10.1523/jneurosci.1357-15.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.
Collapse
|