1
|
Bayer H, Bertoglio LJ, Maren S, Stern CAJ. Windows of change: Revisiting temporal and molecular dynamics of memory reconsolidation and persistence. Neurosci Biobehav Rev 2025; 174:106198. [PMID: 40354954 PMCID: PMC12119219 DOI: 10.1016/j.neubiorev.2025.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Retrieval can bring memories to a labile state, creating a window to modify its content during reconsolidation. Numerous studies have investigated this period to elucidate reconsolidation mechanisms, understand long-term memory persistence, and develop therapeutic strategies for memory-related psychiatric disorders. However, the temporal dynamics of post-retrieval memory processes have been largely overlooked, leading to mixed findings and hindering the development of targeted interventions. This review discusses retrieval-related cellular and molecular events and how they develop in series and parallel across time. Emerging evidence suggests that some mechanisms triggered after fear memory retrieval can influence either reconsolidation or persistence in different time windows. The temporal boundaries of these post-retrieval processes are still unclear. Further research integrating behavioral and molecular approaches to a deeper understanding of reconsolidation and persistence temporal dynamics is essential to address current debates, including which system/pathway offers the most effective therapeutic window of opportunity.
Collapse
Affiliation(s)
- Hugo Bayer
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Leandro J. Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Stephen Maren
- Beckman Institute for Advanced Science and Technology and Department of Psychology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Cristina A. J. Stern
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Poleg T, Hadar N, Kristal E, Roberts NY, Dolgin V, Aminov I, Safran A, Agam N, Jean M, Freund O, Sheridan EG, Poulter JA, Thompson ML, Algoos Y, Al-Qahtani S, AlAbdi L, Maddirevula S, Hartill V, Houlden H, Maroofian R, Nahum A, Birk OS. Early-Onset Movement Disorder Syndrome Caused by Biallelic Variants in PDE1B Encoding Phosphodiesterase 1B. Mov Disord 2025. [PMID: 40492975 DOI: 10.1002/mds.30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/12/2025] [Indexed: 06/12/2025] Open
Abstract
BACKGROUND Breakdown of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in basal ganglia cells through hydrolysis of diesteric bonds, primarily by PDE10A and PDE1B, is essential for normal human movement. While biallelic loss-of-function variants in PDE10A are known to cause hyperkinetic movement disorders, the role of PDE1B in human disease has not been characterized. OBJECTIVES We aimed to define the phenotypic and molecular characteristics of a novel autosomal recessive disorder caused by biallelic PDE1B variants. METHODS Clinical phenotyping by senior geneticists and neurologists, followed by whole exome sequencing, segregation analysis (Sanger sequencing), and molecular studies, including mini-gene splicing assays and protein studies in transfected HEK293 cells. RESULTS Seven affected individuals from five unrelated pedigrees presented with an apparently autosomal recessive disorder characterized by hypotonia in infancy, progressing to ataxia and dystonia in early childhood, with developmental delay and intellectual disability. Biallelic PDE1B variants were identified in all affected individuals: three truncating (p.Q45*, p.Q86*, p.S298Afs*6) and three splicing variants (c.594 + 2 T>G, c.735 + 5G>A, c.837-1G>C). Functional studies confirmed that the truncating variants caused loss of the catalytic domain, resulting in truncated or absent functional protein. Splicing variants led to exon skipping, frameshifts, and catalytic domain disruption. These findings establish a causative link between biallelic PDE1B variants and the observed clinical phenotype. CONCLUSIONS Biallelic loss-of-function variants in PDE1B underlie a novel early-onset movement disorder resembling the phenotype associated with PDE10A deficiency. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tomer Poleg
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Noam Hadar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eyal Kristal
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Pediatric Ambulatory Unit, Soroka University Medical Center, Be'er Sheva, Israel
| | - Nicola Y Roberts
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Vadim Dolgin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ilana Aminov
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amit Safran
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nadav Agam
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Matan Jean
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ofek Freund
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Salma Al-Qahtani
- Movement Disorders Program, Neuroscience Centre, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amit Nahum
- Pediatric Division, Kaplan Medical Center, Rehovot, Israel, Affiliated to the Hebrew University of Jerusalem and Hadassah Medical School, Jerusalem, Israel
| | - Ohad S Birk
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
3
|
Cardoso NC, Sohn JMB, Raymundi AM, Santos MR, Prickaerts J, Gazarini L, Stern CAJ. Time-dependent fear memory generalization triggered by phosphodiesterase 5 inhibition during reconsolidation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111274. [PMID: 39870136 DOI: 10.1016/j.pnpbp.2025.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored. Considering the importance of retrieval-induced reconsolidation in memory maintenance, we aimed to investigate whether PDE5 inhibition during reconsolidation of recent fear memory affects generalization over time in adult male Wistar rats submitted to contextual fear conditioning. The PDE5 inhibition with vardenafil (VAR) 1 mg/kg i.p. during reconsolidation triggered a time-dependent fear generalization without affecting fear memory in the paired context. Fear generalization and impaired pattern separation appear to be interlinked. Likewise, an impairment of object pattern separation was observed in the VAR-treated group at the remote time point. These effects depended on memory retrieval and were restricted to the reconsolidation time window. A chemogenetic inhibition of the anterior cingulate cortex (ACC), a region involved in allocating remote memories and generalization, prevented the effects of VAR. Moreover, VAR infusion into the ACC (6 μg/0.2 μL) after retrieval also promoted fear generalization and impaired OPS in remote time point, suggesting that ACC underlies the behavioral outcomes of the treatment with VAR. In conclusion, our results suggest that inhibiting PDE5 during the reconsolidation of a recent fear memory recruits the activity of the ACC, triggering fear memory generalization and impairing object pattern separation over time.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mateus Reis Santos
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jos Prickaerts
- Peitho Translational, Drug Discovery and Development Consulting, Maastricht, the Netherlands
| | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
4
|
Machado Batista Sohn J, Cardoso NC, Raymundi AM, Prickaerts J, Stern CAJ. Phosphodiesterase 4 inhibition after retrieval switches the memory fate favoring extinction instead of reconsolidation. Sci Rep 2023; 13:20384. [PMID: 37990053 PMCID: PMC10663466 DOI: 10.1038/s41598-023-47717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Phosphodiesterase 4 (PDE4), an enzyme expressed in the dorsal hippocampus (DH), hydrolyzes the cAMP, limiting the PKA-induced CREB phosphorylation (pCREB) and BDNF expression. Depending on the brain region, PKA and pCREB mediate reconsolidation or extinction, whereas BDNF is mainly related to extinction facilitation. The mechanisms underpinning the switch between reconsolidation and extinction are relatively unknown. Here, we tested the hypothesis that PDE4 might control these processes. We showed in Wistar rats submitted to contextual fear conditioning that PDE4 inhibition with roflumilast (ROF) within the DH, after a short retrieval, did not change freezing behavior after one day (TestA1). After 10 days, the ROF-treated group significantly reduced the expression of freezing behavior. This effect depended on retrieval, Test A1 exposure, and reinstated after a remainder foot shock, suggesting an extinction facilitation. The ROF effect depended on PKA after retrieval or, protein synthesis after Test A1. After retrieval, ROF treatment did not change the pCREB/CREB ratio in the DH. It enhanced proBDNF expression without changing pre-proBDNF or mature BDNF in the DH after Test A1. The results suggest that the inhibition of PDE4 in the DH after a short retrieval changes the memory sensibility from reconsolidation to extinction via regulating proBDNF expression.
Collapse
Affiliation(s)
- Jeferson Machado Batista Sohn
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
5
|
Zhou Q, Zhang Y, Lu L, Shi W, Zhang H, Qin W, Wang Y, Pu Y, Yin L. Upregulation of postsynaptic cAMP/PKA/CREB signaling alleviates copper(Ⅱ)-induced oxidative stress and pyroptosis in MN9D cells. Toxicology 2023:153582. [PMID: 37353053 DOI: 10.1016/j.tox.2023.153582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
It has been widely reported that long-term exposure to copper increases the prevalence and mortality of Parkinson's disease. Our previous study showed that CuSO4 exposure induced a significant increase in the expression of cleaved Caspase1 proteins and the loss of dopaminergic neurons in the SNpc of mice. In this study, the effects of copper(Ⅱ) on cAMP/PKA/CREB pathway and pyroptosis-related proteins in MN9D cells were investigated by setting up copper(Ⅱ) exposure groups with different concentration gradients, to provide possible molecular evidence for studying the mechanism of copper(Ⅱ)-induced degeneration of dopaminergic neurons. We found that after 48hours of copper(Ⅱ) exposure, the cu content in MN9D cells increased in a dose-dependent manner, and the proliferation activity decreased significantly. In addition, copper(Ⅱ) exposure caused up-regulation of PDE4D and down-regulation of D1R, cAMP, PKA and p-CREB/CREB. Simultaneously, we proved that copper(Ⅱ) exposure induced oxidative stress in MN9D cells, including decreased GSH-Px content, Keap1 expression and mitochondrial membrane potential, increased malondialdehyde content, ROS intensity, and Nrf2, NQO1, HO-1, HSP-70 expression, further causing up-regulation of inflammasome and GSDMD protein. After pretreatment with Roflupram, the level of copper(Ⅱ)-induced oxidative damage decreased, the expression of inflammasome and GSDMD proteins were down-regulated. However, the protective effects of ROF were blocked by H-89. In summary, copper(Ⅱ) treatment induced oxidative stress and inflammasome-mediated pyroptosis in MN9D cells, which may be related to copper(Ⅱ)-induced postsynaptic cAMP, PKA, and CREB signal transduction disorders.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Weizhuo Qin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Shekarian M, Salehi I, Raoufi S, Asadbegi M, Kourosh-Arami M, Komaki A. Neuroprotective effects of vinpocetine, as a phosphodiesterase 1 inhibitor, on long-term potentiation in a rat model of Alzheimer's disease. BMC Neurosci 2023; 24:20. [PMID: 36927298 PMCID: PMC10018848 DOI: 10.1186/s12868-023-00790-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Vinpocetine (Vin) is known as a phosphodiesterase 1 inhibitor (PDE1-I) drug with multilateral effects, including antioxidant and anti-inflammatory activity. In this research, we investigated the neuroprotective and therapeutic effects of Vin through hippocampal synaptic plasticity on a rat's model of Alzheimer's disease (AD) induced by an intracerebroventricular (ICV) injection of beta-amyloid (Aβ). METHODS Sixty adult male Wistar rats were randomly divided into six groups: 1. control, 2. sham, 3. Aβ, 4. pretreatment (Vin + Aβ): Vin (4 mg/kg, gavage) for 30 days and then, inducing an AD model by an ICV injection of Aβ(1-42), 5. treatment (Aβ + Vin): inducing an AD model and then receiving Vin for 30 days by gavage, and 7. pretreatment + treatment (Vin + Aβ + Vin): receiving Vin by gavage for 30 days before and 30 days after the induction of an AD model. After these procedures, via stereotaxic surgery, the stimulating electrodes were placed at the perforant pathway (PP) and the recording electrodes were implanted in the dentate gyrus. RESULTS Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the Aβ group meaningfully diminished compared to the control group after the induction of long-term potentiation (LTP). CONCLUSIONS Vin could significantly prevent the Aβ effects on LTP. It can be concluded that pretreatment and treatment with Vin can be neuroprotective against harmful consequences of Aβ on hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Meysam Shekarian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Iraj Salehi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Masoumeh Asadbegi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Essam RM, Kandil EA. p-CREB and p-DARPP-32 orchestrating the modulatory role of cAMP/PKA signaling pathway enhanced by Roflumilast in rotenone-induced Parkinson's disease in rats. Chem Biol Interact 2023; 372:110366. [PMID: 36706892 DOI: 10.1016/j.cbi.2023.110366] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza, 3296121, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Emerging Potential of the Phosphodiesterase (PDE) Inhibitor Ibudilast for Neurodegenerative Diseases: An Update on Preclinical and Clinical Evidence. Molecules 2022; 27:molecules27238448. [PMID: 36500540 PMCID: PMC9737612 DOI: 10.3390/molecules27238448] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases constitute a broad range of central nervous system disorders, characterized by neuronal degeneration. Alzheimer's disease, Parkinson's disease, amyolotrophic lateral sclerosis (ALS), and progressive forms of multiple sclerosis (MS) are some of the most frequent neurodegenerative diseases. Despite their diversity, these diseases share some common pathophysiological mechanisms: the abnormal aggregation of disease-related misfolded proteins, autophagosome-lysosome pathway dysregulation, impaired ubiquitin-proteasome system, oxidative damage, mitochondrial dysfunction and excessive neuroinflammation. There is still no effective drug that could halt the progression of neurodegenerative diseases, and the current treatments are mainly symptomatic. In this regard, the development of novel multi-target pharmaceutical approaches presents an attractive therapeutic strategy. Ibudilast, an anti-inflammatory drug firstly developed as an asthma treatment, is a cyclic nucleotide phosphodiesterases (PDEs) inhibitor, which mainly acts by increasing the amount of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), while downregulating the pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α), macrophage migration inhibitory factor (MIF) and Toll-like receptor 4 (TLR-4). The preclinical evidence shows that ibudilast may act neuroprotectively in neurodegenerative diseases, by suppressing neuroinflammation, inhibiting apoptosis, regulating the mitochondrial function and by affecting the ubiquitin-proteasome and autophagosome-lysosome pathways, as well as by attenuating oxidative stress. The clinical trials in ALS and progressive MS also show some promising results. Herein, we aim to provide an update on the emerging preclinical and clinical evidence on the therapeutic potential of ibudilast in these disorders, discuss the potential challenges and suggest the future directions.
Collapse
|
9
|
Bagri K, Deshmukh R. Vinpocetine restores cognitive and motor functions in Traumatic brain injury challenged rats. Inflammopharmacology 2022; 30:2243-2259. [PMID: 36190686 DOI: 10.1007/s10787-022-01059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain damage is common worldwide and the treatments are not well-defined. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine and is clinically being used for various brain disorders. Here in the current study, we have investigated the neuroprotective potential of vinpocetine against traumatic brain injury. TBI was induced by the Marmarou weight drop method in rats. Brain damage was evaluated using cognitive and motor functions and the alterations in biomolecules. Injured rats were treated with different doses of vinpocetine (2.5, 5, and 10 mg/kg) for 4 weeks. Traumatic brain injury in rats produced significant deterioration of cognition and motor functions, which was accompanied by increased oxidative stress and significant alterations in brain monoamine levels as compared with the sham control group (p < 0.05). Vinpocetine alleviated TBI-induced oxidative burden, altered neurochemistry, and improved the cognitive and motor functions as compared with that of the TBI control group (p < 0.05). The observed neuroprotective potential of vinpocetine may be due to the observed antioxidant potential and its ability to restore the levels of brain neurochemicals under stressed conditions. The outcomes of the current study may help the repositioning of vinpocetine for preventing or treating traumatic brain injuries.
Collapse
Affiliation(s)
- Kajal Bagri
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|
10
|
Masilamoni GJ, Sinon CG, Kochoian BA, Singh A, McRiner AJ, Leventhal L, Papa SM. Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of l-DOPA in parkinsonian non-human primates. Neuropharmacology 2022; 212:109060. [PMID: 35461880 PMCID: PMC11698471 DOI: 10.1016/j.neuropharm.2022.109060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Phosphodiesterase 9 (PDE9) degrades selectively the second messenger cGMP, which is an important molecule of dopamine signaling pathways in striatal projection neurons (SPNs). In this study, we assessed the effects of a selective PDE9 inhibitor (PDE9i) in the primate model of Parkinson's disease (PD). Six macaques with advanced parkinsonism were used in the study. PDE9i was administered as monotherapy and co-administration with l-DOPA at two predetermined doses (suboptimal and threshold s.c. doses of l-Dopa methyl ester plus benserazide) using a controlled blinded protocol to assess motor disability, l-DOPA -induced dyskinesias (LID), and other neurologic drug effects. While PDE9i was ineffective as monotherapy, 2.5 and 5 mg/kg (s.c.) of PDE9i significantly potentiated the antiparkinsonian effects of l-DOPA with a clear prolongation of the "on" state (p < 0.01) induced by either the suboptimal or threshold l-DOPA dose. Co-administration of PDE9i had no interaction with l-DOPA pharmacokinetics. PDE9i did not affect the intensity of LID. These results indicate that cGMP upregulation interacts with dopamine signaling to enhance the l-DOPA reversal of parkinsonian motor disability. Therefore, striatal PDE9 inhibition may be further explored as a strategy to improve motor responses to l-DOPA in PD.
Collapse
Affiliation(s)
| | - Christopher G Sinon
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Brik A Kochoian
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Arun Singh
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | | | | | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
12
|
Abstract
Estrogen replacement therapy including specific estrogen receptor alpha (ERα) agonist, 4,4',4″-(4-propyl-[1H] pyrazole-1,3,5-triyl) trisphenol (PPT), improves cognitive function in the females with estrogen insufficiency condition. It is well suggested that the cyclic nucleotides are considered as one of the downstream mediators to ERα receptor activity and they can be hypothesized as a potential target in the management of estrogen insufficiency condition. Roflumilast, a phosphodiesterase-4 inhibitor, increases the level of cyclic adenosine monophosphate (cAMP) in most of the tissues including the brain, and is reported to have procognitive activity in the experimental animals. Hence, the present study evaluated the therapeutic effect of roflumilast with or without PPT in rats with experimentally-induced estrogen insufficiency. Estrogen insufficiency was induced in female rats through bilateral ovariectomy on day-1 (D-1) of the experimental schedule. Roflumilast (0.3 and 1.0 mg/kg; p.o.) and PPT (333µg/kg; i.p.) attenuated ovariectomy-induced cognitive deficits in the rodents during behavioral tests. Roflumilast and PPT increased the cholinergic function and cAMP level in the rat hippocampus and prefrontal cortex. Further, ovariectomy-induced decrease in the extent of phosphorylation of ERα in both the brain regions was attenuated with the monotherapy of either roflumilast or PPT. Interestingly, the combination of 1.0 mg/kg roflumilast and PPT exhibited better therapeutic effectiveness than their monotherapy. In addition, roflumilast facilitated PPT-induced increase in the level of expression of phosphorylated protein kinase-B (Akt) in both the rat brain regions. Hence, it can be assumed that the combination of roflumilast and PPT could be a therapeutic option in the management of estrogen insufficiency-induced disorders.
Collapse
|
13
|
Erro R, Mencacci NE, Bhatia KP. The Emerging Role of Phosphodiesterases in Movement Disorders. Mov Disord 2021; 36:2225-2243. [PMID: 34155691 PMCID: PMC8596847 DOI: 10.1002/mds.28686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of the cyclic nucleotides cyclic adenosine monophosphate and cyclic guanosine monophosphate, which act as intracellular second messengers for many signal transduction pathways in the central nervous system. Several classes of PDE enzymes with specific tissue distributions and cyclic nucleotide selectivity are highly expressed in brain regions involved in cognitive and motor functions, which are known to be implicated in neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. The indication that PDEs are intimately involved in the pathophysiology of different movement disorders further stems from recent discoveries that mutations in genes encoding different PDEs, including PDE2A, PDE8B, and PDE10A, are responsible for rare forms of monogenic parkinsonism and chorea. We here aim to provide a translational overview of the preclinical and clinical data on PDEs, the role of which is emerging in the field of movement disorders, offering a novel venue for a better understanding of their pathophysiology. Modulating cyclic nucleotide signaling, by either acting on their synthesis or on their degradation, represents a promising area for development of novel therapeutic approaches. The study of PDE mutations linked to monogenic movement disorders offers the opportunity of better understanding the role of PDEs in disease pathogenesis, a necessary step to successfully benefit the treatment of both hyperkinetic and hypokinetic movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Niccoló E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
14
|
Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021; 891:173748. [PMID: 33227285 PMCID: PMC7678434 DOI: 10.1016/j.ejphar.2020.173748] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic of Coronavirus Disease 2019 (COVID-19) has brought the world to a grinding halt. A major cause of concern is the respiratory distress associated mortality attributed to the cytokine storm. Despite myriad rapidly approved clinical trials with repurposed drugs, and time needed to develop a vaccine, accelerated search for repurposed therapeutics is still ongoing. In this review, we present Nitazoxanide a US-FDA approved antiprotozoal drug, as one such promising candidate. Nitazoxanide which is reported to exert broad-spectrum antiviral activity against various viral infections, revealed good in vitro activity against SARS-CoV-2 in cell culture assays, suggesting potential for repurposing in COVID-19. Furthermore, nitazoxanide displays the potential to boost host innate immune responses and thereby tackle the life-threatening cytokine storm. Possibilities of improving lung, as well as multiple organ damage and providing value addition to COVID-19 patients with comorbidities, are other important facets of the drug. The review juxtaposes the role of nitazoxanide in fighting COVID-19 pathogenesis at multiple levels highlighting the great promise the drug exhibits. The in silico data and in vitro efficacy in cell lines confirms the promise of nitazoxanide. Several approved clinical trials world over further substantiate leveraging nitazoxanide for COVID-19 therapy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
15
|
Goyal A, Garabadu D. Vinpocetine facilitates the anti-amnesic activity of estrogen-receptor alpha agonist in bilateral ovariectomy-challenged animals. Behav Brain Res 2020; 393:112789. [PMID: 32593544 DOI: 10.1016/j.bbr.2020.112789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
The fluctuation in plasma estrogen level influences the cognitive function in the females. The specific estrogen receptor alpha (ERα) agonist, (4,4',4″-(4-propyl-[1 H] pyrazole-1,3,5-triyl) tris phenol (PPT), is reported to exhibit therapeutic activity similar to that of estrogen replacement therapy. However, the former can also exert cyclic adenosine monophosphate (cAMP)-dependent carcinogenic activity in the uterus of the ovariectomized animals. Moreover, there is no report of cGMP on ERα-mediated phosphorylation of Akt in the experimental condition. Vinpocetine increases the rate of formation of cGMP than cAMP in several tissues. Hence, the present study evaluated the neuroprotective effect of vinpocetine with or without PPT against ovariectomy-induced dementia in experimental rodents. The condition of estrogen insufficiency was induced in female rats through bilateral ovariectomy on day-1 (D-1) of the experimental schedule. Vinpocetine (20 mg/kg) and PPT attenuated ovariectomy-induced cognitive deficits in behavioral tests and increase in body weight in the rodents. Vinpocetine and PPT increased the cholinergic function and the ratio of cGMP/cAMP in the hippocampus, pre-frontal cortex and amygdala of the ovariectomized animals. Further, ovariectomy-induced decrease in the extent of phosphorylation of ERα in all brain regions was attenuated with the monotherapy of either vinpocetine or PPT. Interestingly, the combination of vinpocetine and PPT exhibited better effectiveness than their monotherapy. However, vinpocetine attenuated the PPT-induced increased level of phosphorylated Akt in discrete brain regions and weight of uterus of these rodents. Hence, the combination could be considered as a better alternative candidate with minimal side effects in the management of estrogen insufficiency-induced disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
16
|
Sohn JMB, de Souza STF, Raymundi AM, Bonato J, de Oliveira RMW, Prickaerts J, Stern CA. Persistence of the extinction of fear memory requires late-phase cAMP/PKA signaling in the infralimbic cortex. Neurobiol Learn Mem 2020; 172:107244. [PMID: 32376452 DOI: 10.1016/j.nlm.2020.107244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Fear extinction is a form of new learning that inhibits expression of the original fear memory without erasing the conditioned stimulus-unconditioned stimulus association. Much is known about the mechanisms that underlie the acquisition of extinction, but the way in which fear extinction is maintained has been scarcely explored. Evidence suggests that protein kinase A (PKA) in the frontal cortex might be related to the persistence of extinction. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP). The present study evaluated the effect of the selective PDE4 inhibitor roflumilast (ROF; 0.01, 0.03, and 0.1 mg/kg given i.p.) on acquisition and consolidation of the extinction of fear memory in male Wistar rats in a contextual fear conditioning paradigm. When administered before acquisition, 0.1 mg/kg ROF disrupted short-term (1 day) extinction recall. In contrast, 0.03 mg/kg ROF administration in the late consolidation phase (3 h after extinction learning) but not in the early phase immediately after learning improved long-term extinction recall at 11 days, suggesting potentiation of the persistence of extinction. This effect of ROF requires the first (day 1) exposure to the context. A similar effect was observed when 9 ng ROF or 30 µM 8-bromoadenosine 3',5'-cAMP (PKA activator) was directly infused in the infralimbic cortex (IL), a brain region necessary for memory extinction. The PKA activity-dependent ROF-induced effect in the IL was correlated with an increase in its brain-derived neurotrophic factor (BDNF) protein expression, while blockade of PKA with 10 µM H89 in the IL abolished the ROF-induced increase in BDNF expression and prevented the effect of ROF on extinction recall. These effects were not associated with changes in anxiety-like behavior or general exploratory behavior. Altogether, these findings suggest that cAMP-PKA activity in the IL during the late consolidation phase after extinction learning underlies the persistence of extinction.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jéssica Bonato
- Department of Pharmacology and Therapeutics, University of Maringá, Maringá, PR, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, the Netherlands
| | | |
Collapse
|
17
|
Castán A, Badorrey R, Díez JA, Christoffersen CT, Rasmussen LK, Kehler J, Köhler R, Gálvez JA, Díaz-de-Villegas MD. Debenzylative Cycloetherification as a Synthetic Tool in the Diastereoselective Synthesis of 3,6-Disubstituted Hexahydro-2 H-furo[3,2- b]pyrroles, PDE1 Enzyme Inhibitors with an Antiproliferative Effect on Melanoma Cells. J Org Chem 2020; 85:5941-5951. [PMID: 32248689 DOI: 10.1021/acs.joc.0c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two series of novel chiral hexahydro-2H-furo[3,2-b]pyrroles, 4-(7,8-dimethoxyquinazolin-4-yl) series A and 4-(6,7- dimethoxyquinazolin-4-yl) series B, were synthesized in enantiomerically pure form and evaluated for their inhibitory effects on phosphodiesterase 1 (PDE1) and phosphodiesterase 4 (PDE4) as well as for their inhibitory activity on cell proliferation in A375 melanoma and 3T3 fibroblast cells in vitro. Key steps of synthesis were (i) diastereoselective nucleophilic addition of vinylmagnesium bromide to N-allylimine derived from conveniently protected d-glyceraldehyde, (ii) ring-closing metathesis, (iii) debenzylative cycloetherification, and (iv) aromatic nucleophilic substitution. Some of the obtained compounds were proven to be active as inhibitors of PDE1 isoforms, with IC50 values in the high nanomolar/low micromolar concentration range, and showed antiproliferative activity on A375 melanoma cells.
Collapse
Affiliation(s)
- Alejandro Castán
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ramón Badorrey
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A Díez
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Ralf Köhler
- Aragon Institute of Health Sciences & IIS, 50009 Zaragoza, Spain.,Aragon Agency for Research and Development (ARAID), 50018 Zaragoza, Spain
| | - José A Gálvez
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María D Díaz-de-Villegas
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in Neurodegenerative Diseases: The Role of Histone Deacetylases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:11-18. [PMID: 30289079 DOI: 10.2174/1871527317666181004155136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & OBJECTIVE Imbalance in histone acetylation levels and consequently the dysfunction in transcription are associated with a wide variety of neurodegenerative diseases. Histone proteins acetylation and deacetylation is carried out by two opposite acting enzymes, histone acetyltransferases and histone deacetylases (HDACs), respectively. In-vitro and in-vivo animal models of neurodegenerative diseases and post mortem brains of patients have been reported overexpressed level of HDACs. In recent past numerous studies have indicated that HDAC inhibitors (HDACIs) might be a promising class of therapeutic agents for treating these devastating diseases. HDACs being a part of repressive complexes, the outcome of their inhibition has been attributed to enhanced gene expression due to heightened histone acetylation. Beneficial effects of HDACIs has been explored both in preclinical and clinical studies of these diseases. Thus, their screening as future therapeutics for neurodegenerative diseases has been widely explored. CONCLUSION In this review, we focus on the putative role of HDACs in neurodegeneration and further discuss their potential as a new therapeutic avenue for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - K C Sarathlal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
19
|
Goyal A, Garabadu D. Sildenafil promotes the anti-amnesic activity of estrogen receptor alpha agonist in animals with estrogen insufficiency. Neurochem Int 2019; 132:104609. [PMID: 31778728 DOI: 10.1016/j.neuint.2019.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
The cognitive function in the females is observed to modulate with the fluctuation in plasma estrogen level. The specific estrogen receptor alpha (ERα) agonist, (4,4',4″-(4-propyl-[1H] pyrazole-1,3,5-triyl) tris phenol (PPT), exerts similar therapeutic activity to that of estrogen replacement therapy. It can also exert cyclic adenosine monophosphate (cAMP)-dependent carcinogenic activity in the uterus of the ovariectomized animals. However, there is no report of cGMP on the ERα-mediated phosphorylation of Akt in the experimental condition. Sildenafil increases the level of cGMP in most of the tissues including brain. Hence, the present study evaluated the therapeutic effect of Sildenafil with or without PPT in rats with experimentally-induced estrogen insufficiency. The condition of estrogen insufficiency was induced in female rats through bilateral ovariectomy on day-1 (D-1) of the experimental schedule. Sildenafil (1.0 and 10.0 mg/kg) and PPT attenuated ovariectomy-induced cognitive deficits in behavioural tests and increase in body weight in the rodents. Sildenafil and PPT increased the cholinergic function and the ratio of cGMP/cAMP in the hippocampus, pre-frontal cortex and amygdala of the animals. Further, the ovariectomy-induced decrease in the extent of phosphorylation of ERα in all the brain regions was attenuated with the monotherapy of either Sildenafil or PPT. Interestingly, the combination of Sildenafil and PPT exhibited better therapeutic effectiveness than their monotherapy. However, Sildenafil attenuated the PPT-induced increase in the level of expression of phosphorylated protein kinase-B (Akt) in the discrete brain regions and the weight of uterus of these rodents. Hence, it can be assumed that the combination could be a better therapeutic alternative with minimal side effect in the management of estrogen insufficiency-induced disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
20
|
Palasz E, Niewiadomski W, Gasiorowska A, Wysocka A, Stepniewska A, Niewiadomska G. Exercise-Induced Neuroprotection and Recovery of Motor Function in Animal Models of Parkinson's Disease. Front Neurol 2019; 10:1143. [PMID: 31736859 PMCID: PMC6838750 DOI: 10.3389/fneur.2019.01143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is manifested by progressive motor, autonomic, and cognitive disturbances. Dopamine (DA) synthesizing neurons in the substantia nigra (SN) degenerate, causing a decline in DA level in the striatum that leads to the characteristic movement disorders. A disease-modifying therapy to arrest PD progression remains unattainable with current pharmacotherapies, most of which cause severe side effects and lose their efficacy with time. For this reason, there is a need to seek new therapies supporting the pharmacological treatment of PD. Motor therapy is recommended for pharmacologically treated PD patients as it alleviates the symptoms. Molecular mechanisms behind the beneficial effects of motor therapy are unknown, nor is it known whether such therapy may be neuroprotective in PD patients. Due to obvious limitations, human studies are unlikely to answer these questions; therefore, the use of animal models of PD seems indispensable. Motor therapy in animal models of PD characterized by the loss of dopaminergic neurons has neuroprotective and neuroregenerative effects, and the completeness of neuronal protection may depend on (i) degree of neuronal loss, (ii) duration and intensity of exercise, and (iii) time elapsed between insult and commencing of training. As the physical activity is neuroprotective for dopaminergic neurons, the question arises what is the mechanism of this protective action. A current hypothesis assumes a central role of neurotrophic factors in the neuroprotection of dopaminergic neurons, even though it is still not clear whether increased DA level in the nigrostriatal axis results from neurogenesis of dopaminergic neurons in the SN, recovery of the phenotype of dopaminergic neurons, increased sprouting of the residual dopaminergic axons in the striatum, or generation of local striatal neurons from inhibitory interneurons. In the present review, we discuss studies describing the influence of physical exercise on the PD-like changes manifested in animal models of the disease and focus our interest on the current state of knowledge on the mechanism of neuroprotection induced by physical activity as a supportive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Wiktor Niewiadomski
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gasiorowska
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland.,Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Wysocka
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Anna Stepniewska
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
21
|
Liu D, Wang Z, Nicolas V, Lindner M, Mika D, Vandecasteele G, Fischmeister R, Brenner C. PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria. Mitochondrion 2019; 47:64-75. [PMID: 31100470 DOI: 10.1016/j.mito.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) production regulates certain aspects of mitochondria function in rodent cardiomyocytes, such as ATP production, oxygen consumption, calcium import and mitochondrial permeability transition (MPT), but how this cAMP pool is controlled is not well known. Here, expression, localization and activity of several cAMP-degrading enzymes, i.e. phosphodiesterases (PDEs), were investigated in isolated rodent cardiac mitochondria. In contrast to the heart ventricle where PDE4 is the major PDE, in cardiac mitochondria, cGMP-stimulated PDE2 activity was largest than PDE3 and PDE4 activities. PDE2 expression was mainly detected in subsarcolemmal mitochondria in association with the inner membrane rather than in interfibrillar mitochondria. PDE2, 3 and 4 activities were further confirmed in neonatal rat cardiomyocytes by real time FRET analysis. In addition, the pharmacological inhibition or the cardiac-specific overexpression of PDE2 modulated mitochondrial membrane potential loss, MPT and calcium import. In mitochondria isolated from PDE2 transgenic mice with a cardiac selective PDE2 overexpression, the oxidative phosphorylation (OXPHOS) was significantly lower than in wild-type mice, but stimulated by cGMP. Thus, cAMP degradation by PDEs represents a new regulatory mechanism of mitochondrial function.
Collapse
Affiliation(s)
- Dawei Liu
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zhenyu Wang
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Nicolas
- IPSIT-US31-UMS3679, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marta Lindner
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Delphine Mika
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Catherine Brenner
- INSERM UMR-S 1180, Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
22
|
Jamwal S, Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson's Disease and Huntington's Disease: A Review. Curr Neuropharmacol 2019; 17:165-175. [PMID: 29512464 PMCID: PMC6343208 DOI: 10.2174/1570159x16666180302115032] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Alteration in neurotransmitters signaling in basal ganglia has been consistently shown to significantly contribute to the pathophysiological basis of Parkinson's disease and Huntington's disease. Dopamine is an important neurotransmitter which plays a critical role in coordinated body movements. Alteration in the level of brain dopamine and receptor radically contributes to irregular movements, glutamate mediated excitotoxic neuronal death and further leads to imbalance in the levels of other neurotransmitters viz. GABA, adenosine, acetylcholine and endocannabinoids. This review is based upon the data from clinical and preclinical studies to characterize the role of various striatal neurotransmitters in the pathogenesis of Parkinson's disease and Huntington's disease. Further, we have collected data of altered level of various neurotransmitters and their metabolites and receptor density in basal ganglia region. Although the exact mechanisms underlying neuropathology of movement disorders are not fully understood, but several mechanisms related to neurotransmitters alteration, excitotoxic neuronal death, oxidative stress, mitochondrial dysfunction, neuroinflammation are being put forward. Restoring neurotransmitters level and downstream signaling has been considered to be beneficial in the treatment of Parkinson's disease and Huntington's disease. Therefore, there is an urgent need to identify more specific drugs and drug targets that can restore the altered neurotransmitters level in brain and prevent/delay neurodegeneration.
Collapse
Affiliation(s)
| | - Puneet Kumar
- Address correspondence to this author at the Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Panjab, India; E-mail:
| |
Collapse
|
23
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
24
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Martin KM, Barandoc-Alviar K, Schneweis DJ, Stewart CL, Rotenberg D, Whitfield AE. Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors. Virology 2017; 509:71-81. [DOI: 10.1016/j.virol.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/29/2022]
|
26
|
Jacova C, Factor SA. Phosphodiesterase 4. Neurology 2017; 89:530-531. [DOI: 10.1212/wnl.0000000000004221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Schwenkgrub J, Zaremba M, Joniec-Maciejak I, Cudna A, Mirowska-Guzel D, Kurkowska-Jastrzębska I. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of Parkinson's disease. PLoS One 2017; 12:e0182019. [PMID: 28753652 PMCID: PMC5533435 DOI: 10.1371/journal.pone.0182019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Since the degeneration of the nigrostriatal dopaminergic pathway in Parkinson’s disease (PD) is associated with the inflammation process and decreased levels of cyclic nucleotides, inhibition of up-regulated cyclic nucleotide phosphodiesterases (PDEs) appears to be a promising therapeutic strategy. We used ibudilast (IBD), a non-selective PDE3,4,10,11 inhibitor, due to the abundant PDE 4 and 10 expression in the striatum. The present study for the first time examined the efficacy of IBD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Methods IBD [0, 20, 30, 40, or 50 mg/kg] was injected b.i.d. subcutaneously for nine days to three-month-old male C57Bl/10Tar mice, beginning two days prior to MPTP (60 mg/kg) intoxication. High-pressure liquid chromatography, Western blot analysis, and real time RT-PCR methods were applied. Results Our study demonstrated that chronic administration of IBD attenuated astroglial reactivity and increased glial cell-derived neurotrophic factor (GDNF) production in the striatum. Moreover, IBD reduced TNF-α, IL-6, and IL-1β expression. Conclusion IBD had a well-defined effect on astroglial activation in the mouse model of PD; however, there was no protective effect in the acute phase of injury. Diminished inflammation and an increased level of GDNF may provide a better outcome in the later stages of neurodegeneration.
Collapse
Affiliation(s)
- Joanna Schwenkgrub
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
- Laboratory of Magnetic Resonance Imaging of Small Animals, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
- * E-mail:
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudna
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
- 2 Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
28
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
29
|
Wilson H, De Micco R, Niccolini F, Politis M. Molecular Imaging Markers to Track Huntington's Disease Pathology. Front Neurol 2017; 8:11. [PMID: 28194132 PMCID: PMC5278260 DOI: 10.3389/fneur.2017.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging is a crucial neuroimaging tool, with the potential to detect early changes and validate sensitivity of biomarkers for tracking HD pathology. Moreover, continued development of novel PET tracers provides exciting opportunities to investigate new molecular targets, such as histamine and serotonin receptors, to further understand the mechanisms underlying HD pathology.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Rosa De Micco
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| |
Collapse
|
30
|
Sharma N, Jamwal S, Kumar P. Beneficial effect of antidepressants against rotenone induced Parkinsonism like symptoms in rats. PATHOPHYSIOLOGY 2016; 23:123-34. [DOI: 10.1016/j.pathophys.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
|
31
|
Wilson JM, Ogden AML, Loomis S, Gilmour G, Baucum AJ, Belecky-Adams TL, Merchant KM. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015; 99:379-86. [DOI: 10.1016/j.neuropharm.2015.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
32
|
Herbs to curb cyclic nucleotide phosphodiesterase and their potential role in Alzheimer's disease. Mech Ageing Dev 2015; 149:75-87. [PMID: 26050556 DOI: 10.1016/j.mad.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/22/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
Abstract
Cyclic nucleotides viz., cAMP/cGMP has been well known to play important role in cellular function and deficiency in their levels has been implicated in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Phosphodiesterases (PDE) are the enzymes involved in the metabolism of cyclic nucleotides and the inhibition of phosphodiesterases is considered to be viable strategy to restore the level of cyclic nucleotides and their functions in the brain. Various synthetic PDE inhibitors had been used clinically for various disorders and also suggested to be useful candidates for treating neurological disorders. However, side effects of these synthetic PDE inhibitors have limited their use in clinical practice. Natural plant extracts or their bio-active compounds are considered to be safe and are widely acceptable. During the last decade, many plant extracts or their bio-active compounds were tested pre-clinically for PDE inhibitory activity and are reported to be equally potent in inhibiting PDE's, as that of synthetic compounds. The present review is aimed to discuss the potential plant extract/compounds with PDE inhibitory activity and critically discuss their potential role in Alzheimer's disease.
Collapse
|
33
|
Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother 2015; 70:283-93. [DOI: 10.1016/j.biopha.2015.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/23/2015] [Indexed: 12/27/2022] Open
|
34
|
Targeting histone deacetylases: a novel approach in Parkinson's disease. PARKINSONS DISEASE 2015; 2015:303294. [PMID: 25694842 PMCID: PMC4324954 DOI: 10.1155/2015/303294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/03/2015] [Indexed: 12/29/2022]
Abstract
The worldwide prevalence of movement disorders is increasing day by day. Parkinson's disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in both in vivo and in vitro models of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.
Collapse
|
35
|
Sharma S, Taliyan R. Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:337-49. [PMID: 25547373 DOI: 10.1007/s00210-014-1081-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
Recent studies suggest the importance of combined treatment of glycogen synthase kinase-3β (GSK-3β) and histone deacetylase (HDAC) inhibition in various in vitro and in vivo models of neurological diseases. Lithium chloride (LiCl) and valproate (VPA), two well-known mood stabilizers, have been reported to act through GSK-3β and HDAC inhibition, respectively. The present study was designed to investigate the potential of low-dose combination of LiCl and VPA in intracerebroventricular streptozotocin (ICV-STZ)-induced cognitive deficits in rats. STZ was injected twice (3 mg/kg ICV) on alternate days (day 1 and day 3) in rats. The ICV-STZ-treated rats received LiCl (60 mg/kg, i.p.), VPA (200 mg/kg, i.p.), and combination of both LiCl (60 mg/kg, i.p.) and VPA (200 mg/kg, i.p.) drugs for a period of 3 weeks. The ICV-STZ administration results in significant memory impairment, elevated oxidative-nitrosative stress, and reduced brain-derived neurotrophic factor (BDNF) levels. Using a battery of behavioral and biochemical tests, we observed that co-treatment of both drugs showed synergistic effect in improving the spatial learning and memory impairment as well as significantly attenuated the oxidative stress markers in STZ-treated rats as compared to either drug alone. Moreover, the combination of both drugs reversed the hyperinsulinemic brain condition and improved the BDNF levels in STZ-treated rats. Based upon these results, it could be suggested that a low-dose combination of LiCl and VPA produces synergistic and more consistent neuroprotective effects in ICV-STZ-induced cognitive deficits in rats.
Collapse
Affiliation(s)
- Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | | |
Collapse
|
36
|
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 2014; 286:393-403. [PMID: 25514048 DOI: 10.1016/j.neuroscience.2014.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
Abstract
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD.
Collapse
|
37
|
Morales-Garcia JA, Aguilar-Morante D, Hernandez-Encinas E, Alonso-Gil S, Gil C, Martinez A, Santos A, Perez-Castillo A. Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol Aging 2014; 36:1160-73. [PMID: 25457552 DOI: 10.1016/j.neurobiolaging.2014.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Different studies have suggested that the nucleotide cyclic adenosine 3', 5'-monophosphate can actively play an important role as a neuroprotective and anti-inflammatory agent after a brain injury. The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling specifically the intracellular levels of cyclic adenosine 3', 5'-monophosphate in the immune and central nervous systems. Therefore, this enzyme could play an important role in brain inflammation and neurodegeneration. In this regard, using different chemical inhibitors of PDE7 we have demonstrated their neuroprotective and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, we have used the toxin 6-hydroxydopamine and lipopolysaccharide to model PD and explore the protective effects of PDE7B deficiency in dopaminergic neurons cell death. Lentivirus-mediated PDE7B deprivation conferred marked in vitro and in vivo neuroprotection against 6-hydroxydopamine and lipopolysaccharide toxicity in dopaminergic neurons and preserved motor function involving the dopamine system in mouse. Our results substantiate previous data and provide a validation of PDE7B enzyme as a valuable new target for therapeutic development in the treatment of PD.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biologicas, Biología FisicoQuimica, CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas, Biología FisicoQuimica, CSIC, Madrid, Spain
| | - Angel Santos
- Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
38
|
Efficacy of selective PDE4D negative allosteric modulators in the object retrieval task in female cynomolgus monkeys (Macaca fascicularis). PLoS One 2014; 9:e102449. [PMID: 25050979 PMCID: PMC4106781 DOI: 10.1371/journal.pone.0102449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The phosphodiesterase (PDE) type 4 inhibitor rolipram has shown significant pro-cognitive effects in neurological disease models, both in rodents and primates. However, competitive non-isoform selective PDE4 inhibitors have a low therapeutic index which has stalled their clinical development. Here, we demonstrate the pro-cognitive effects of selective negative allosteric modulators (NAMs) of PDE4D, D159687 and D159797 in female Cynomolgous macaques, in the object retrieval detour task. The efficacy displayed by these NAMs in a primate cognitive task which engages the corticostriatal circuitry, together with their suitable pharmacokinetic properties and safety profiles, suggests that clinical development of these allosteric modulators should be considered for the treatment of a variety of brain disorders associated with cognitive decline.
Collapse
|