1
|
Li CX, Xu Q, Jiang ST, Liu D, Tang C, Yang WL. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol Med Rep 2025; 32:176. [PMID: 40280109 PMCID: PMC12056544 DOI: 10.3892/mmr.2025.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Salvia miltiorrhiza Bunge (Salvia miltiorrhiza), commonly referred to as Danshen, is a well‑known herb in traditional Chinese medicine, the active ingredients of which are mostly categorized as water soluble and lipid soluble. Salvianolic acids are the major water‑soluble phenolic acid constituents of Danshen; salvianolic acid B is the most prevalent, with salvianolic acid A (SAA) being the next most predominant form. SAA offers a wide array of pharmacological benefits, including cardiovascular protection, and anti‑inflammatory, antioxidant, antiviral and anticancer activities. SAA is currently undergoing phase III clinical trials for diabetic peripheral neuropathy and has shown protective benefits against cardiovascular illnesses; furthermore, its safety and effectiveness are encouraging. By targeting several signaling pathways, preventing cell cycle progression, tumor cell migration, invasion and metastasis, normalizing the tumor vasculature and encouraging cell apoptosis, SAA can also prevent the growth of malignancies. In addition, it enhances sensitivity to chemotherapeutic drugs, and alleviates their toxicity and side effects. However, the broad therapeutic use of SAA has been somewhat limited by its low content in Salvia miltiorrhiza Bunge and the difficulty of its extraction techniques. Therefore, the present review focuses on the potential mechanisms of SAA in tumor prevention and treatment. With the anticipation that SAA will serve a notable role in clinical applications in the future, these discoveries may offer a scientific basis for the combination of SAA with conventional chemotherapeutic drugs in the treatment of cancer, and could establish a foundation for the development of SAA as an anticancer drug.
Collapse
Affiliation(s)
- Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Xu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Wan S, Chen X, Yin F, Li S, Zhang Y, Luo H, Luo Z, Cui N, Chen Y, Li X, Kong L, Wang X. Indirubin derivatives as bifunctional molecules inducing DNA damage and targeting PARP for the treatment of cancer. Eur J Med Chem 2023; 261:115843. [PMID: 37832229 DOI: 10.1016/j.ejmech.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Based on the facts that significant synergistic effect existed between PARP inhibitors and DNA damage agents and the DNA damage caused by indirubin's derivatives, we herein adopted the strategy to combine the pharmacophores of PARP inhibitors and the unique scaffold of indirubin to design a series of bifunctional molecules inducing DNA damage and targeting PARP. After SAR studies, the most potent compound 12a, encoded as KWWS-12a, exhibited improved inhibitory effect against PARP1 compared with PARP1 inhibitor Olaparib (IC50 = 1.89 nM vs 7.48 nM) and enhanced antiproliferative activities than the combination of Olaparib and indirubin-3'-monoxime towards HCT-116 cells (IC50 = 0.31 μM vs 1.37 μM). In the normal NCM-460 cells, 12a showed low toxicity (IC50 > 60 μM). The mechanism research indicated that 12a could increase the levels of γH2AX concentration dependently, arrest the cell cycle in S phase and induce apoptosis in HCT-116 cells. In vivo experiments showed that 12a displayed more significant antitumor potential than that of the positive controls. Our studies demonstrated that 12a could be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yifan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Aktanova AA, Boeva OS, Barkovskaya MS, Kovalenko EA, Pashkina EA. Influence of Cucurbiturils on the Production of Reactive Oxygen Species by T- and B-Lymphocytes, Platelets and Red Blood Cells. Int J Mol Sci 2023; 24:ijms24021441. [PMID: 36674954 PMCID: PMC9864653 DOI: 10.3390/ijms24021441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive chemical molecules containing oxygen. ROS play an important role in signaling and cell homeostasis at low and moderate concentrations. ROS could be a cause of damage to proteins, nucleic acids, lipids, membranes and organelles at high concentrations. There are a lot of cells that can produce ROS to maintain functional activity. It is known that metal nanoparticles can increase production of ROS in cells. However, the effect of cucurbiturils on ROS production is still unknown. In our study, we evaluated production of ROS by the immune (T-, B-lymphocytes, NK-cells) and non-immune cells (red blood cells, platelets), as well as tumor cells line (1301, K562) after treatment with cucurbiturils in vitro. Assessment of reactive oxide species (ROS) were provided by using dihydrorhodamine 123 (DHR 123). Fluorescence intensity and percentage DHR123 were measured by flow cytometry. Platelets, erythrocytes and activated T-helpers were changed the level of ROS production in response to stimulation with cucurbiturils. It was found that the percentage of these ROS-producing cells was reduced by cucurbiturils. Thus, cucurbiturils may affect the production of ROS by cells, but further research is needed in this area.
Collapse
Affiliation(s)
- Alina A. Aktanova
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Olga S. Boeva
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
- Department of Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Margarita Sh. Barkovskaya
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| | - Ekaterina A. Kovalenko
- Laboratory of Cluster and Supramolecular Chemistry, Nicolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
- Correspondence:
| | - Ekaterina A. Pashkina
- Laboratory of Clinical immunopathology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia
| |
Collapse
|
4
|
Abstract
Background In clinical practice, many patients become multidrug resistant during chemotherapy, resulting in reduced or no healing effect. Therefore, the present study focused on bufalin, which is extracted from a traditional Chinese medicine named Chan Su (Venenum bufonis). We assessed the effect of bufalin in reversing K562/A02 cell drug resistance and inducing apoptosis, and explored the possible mechanism by which bufalin induces K562/A02 cell apoptosis. Material/Methods We used flow cytometry to evaluate intracellular ADM concentration, and RT-PCR and Western blot analysis were used to assess the effect of nuclear factor erythroid-2-related factor 2 (Nrf2) bufalin-related resistance gene expression. We used MTT and flow cytometry to detect apoptosis, and RT-PCR and Western blot were used to detect endoplasmic reticulum stress and apoptosis gene action. Results We found that bufalin can increase the concentration of Adriamycin (ADM) in K562/A02 cells by inhibiting the expression of Nrf2 and related drug resistance factors. The results showed that bufalin induced apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway. Conclusions These results suggest bufalin can reverse drug resistance in K562/A02 cells and that it induces apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Blood Transfusion, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xu Yan
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ling Sun
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
5
|
Zhivkova V, Kiecker F, Langer P, Eberle J. Crucial role of reactive oxygen species (ROS) for the proapoptotic effects of indirubin derivative DKP-073 in melanoma cells. Mol Carcinog 2018; 58:258-269. [PMID: 30320471 DOI: 10.1002/mc.22924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Melanoma represents a prime example demonstrating the success of targeted therapy in cancer. Nevertheless, it remained a deadly disease until now, and the identification of new, independent strategies as well as the understanding of their molecular mechanisms may help to finally overcome the high mortality. Both indirubins and TNF-related apoptosis-inducing ligand (TRAIL) represent promising candidates. Here, the indirubin derivative DKP-073 is shown to trigger apoptosis in melanoma cells, which is enhanced by the combination with TRAIL and is accompanied by complete loss of cell viability. Addressing the signaling cascade, characteristic molecular steps were identified as caspase-3 activation, downregulation of XIAP, upregulation of p53 and TRAIL receptor 2, loss of mitochondrial membrane potential, and STAT-3 dephosphorylation. The decisive step, however, turned out to be the early production of ROS already at 1 h. This was proven by antioxidant pretreatment, which completely abolished apoptosis induction and loss of cell viability as well as abrogated all signaling effects listed above. Thus, ROS appeared as upstream of all proapoptotic signaling. The data indicate a dominant role of ROS in apoptosis regulation, and the new pathway may expose a possible Achilleś heel of melanoma.
Collapse
Affiliation(s)
- Veselina Zhivkova
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Rostock, Germany.,Leibniz Institute of Catalysis at the University of Rostock e.V., Rostock, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Wang W, Lv M, Wang Y, Zhang J. Development of novel application of 3,3'-diindolylmethane: sensitizing multidrug resistance human breast cancer cells to γ-irradiation. PHARMACEUTICAL BIOLOGY 2016; 54:3164-3168. [PMID: 27307186 DOI: 10.1080/13880209.2016.1192198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/13/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Multidrug resistance (MDR) is known as a major obstacle to effective cancer therapy. The effects of irradiation on MDR in cancer cells had rarely been reported. OBJECTIVE The effect of 3,3'-diindolylmethane (DIM) sensitizing MDR human breast carcinoma to γ-irradiation was investigated. MATERIALS AND METHODS MCF-7/ADR cells were exposed to different concentrations of DIM (0-30 μM) for 48 or 2 h before IR (γ-Co60, 10 Gy, room temperature) then cultured for 48 h. Cell survival was determined by MTT assay. Intracellular reactive oxygen spices (ROS) induced by DIM (20 and 30 μM, 2 h before irradiation) was measured by flow cytometry. Propidium iodide staining assay was used for cell cycle distribution studies; cell apoptosis was measured by flow cytometry and confocal microscopy. RESULTS DIM (20 and 30 μM, 2 h before irradiation) sensitized MCF-7/ADR cells to IR with survival rates decreased from 100% to 79% and 63%, respectively. DIM combined with γ-radiation demonstrated that the activity of G2/M phase cell cycle arresting with percentages enhanced from 9% to 49% and 52%. DIM can increase intracellular ROS generation by 1.45- and 1.55-times compared to control group. Significantly enhanced radiation-induced apoptosis by DIM was also observed. DISCUSSION AND CONCLUSION These data provide a rationale for the use of DIM as a promising radio-sensitizer to MDR cancer cells.
Collapse
Affiliation(s)
- Wenjing Wang
- a Department of Blood Biopharmaceuticals and Viral Detection , Institute of Transfusion Medicine, The Academy of Military Medical Sciences , Beijing , P.R. China
| | - Maomin Lv
- a Department of Blood Biopharmaceuticals and Viral Detection , Institute of Transfusion Medicine, The Academy of Military Medical Sciences , Beijing , P.R. China
| | - Yanlin Wang
- a Department of Blood Biopharmaceuticals and Viral Detection , Institute of Transfusion Medicine, The Academy of Military Medical Sciences , Beijing , P.R. China
| | - Jingang Zhang
- a Department of Blood Biopharmaceuticals and Viral Detection , Institute of Transfusion Medicine, The Academy of Military Medical Sciences , Beijing , P.R. China
| |
Collapse
|
7
|
Zhou Q, Chen Y, Chen X, Zhao W, Zhong Y, Wang R, Jin M, Qiu Y, Kong D. In Vitro Antileukemia Activity of ZSTK474 on K562 and Multidrug Resistant K562/A02 Cells. Int J Biol Sci 2016; 12:631-8. [PMID: 27194941 PMCID: PMC4870707 DOI: 10.7150/ijbs.14878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a malignant hematological disorder mainly caused by the Bcr-Abl tyrosine kinase. While Bcr-Abl inhibitors including Imatinib showed antitumor efficacy on many CML patients, resistance was frequently reported in recent years. Therefore, novel drugs for CML are still expected. ZSTK474 is a specific phosphatidylinositol 3-kinase (PI3K) inhibitor that we identified. In the present study, the efficacy of ZSTK474, alone or in combination with Imatinib, on K562 CML cells as well as on its multidrug resistance counterpart K562/A02 cells, was investigated. ZSTK474 inhibited the cell proliferation with an IC50 of 4.69 μM for K562 and 7.57 μM for K562/A02 cells, respectively. Treatment by ZSTK474 resulted in cell cycle arrest in G1 phase, which might be associated with upregulation of p27, and downregulation of cyclin D1. ZSTK474 also inhibited phosphorylation of Akt and GSK-3β, which might be involved in the effect on the above cell cycle-related proteins. Moreover, combination of ZSTK474 and Imatinib indicated synergistic effect on both cell lines. In conclusion, ZSTK474 exhibited antileukemia activity alone, and showed synergistic effect when combined with Imatinib, on CML K562 cells as well as the multidrug resistant ones, providing a potential therapeutic approach for CML patients.
Collapse
Affiliation(s)
- Qianxiang Zhou
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yali Chen
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wennan Zhao
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuxu Zhong
- 3. State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ran Wang
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meihua Jin
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuling Qiu
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dexin Kong
- 1. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;; 2. Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Reactive oxygen species contribute to TRAIL receptors upregulation; the mechanism for PH II-7 augmenting TRAIL induced apoptosis in leukemia cells. Eur J Pharmacol 2015; 746:344-52. [DOI: 10.1016/j.ejphar.2014.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022]
|
9
|
Wu P, Li S, Zhang H. Design real-time reversal of tumor multidrug resistance cleverly with shortened carbon nanotubes. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2431-8. [PMID: 25525333 PMCID: PMC4266246 DOI: 10.2147/dddt.s74962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance (MDR) in tumors renders many currently available chemotherapeutic drugs ineffective. Research in nanobiotechnology-based therapeutic alternatives has provided innovative and promising strategies to overcome MDR. The aim of this study was to investigate whether the new strategy of a co-loaded reversal agent and chemotherapeutic drug with shortened carbon nanotubes (CNTs) would show useful effects on the real-time reversal of tumor MDR. CNTs were cut and purified via ultrasonication and oxidative acid treatment to optimize their length for drug-delivery vehicles, then verapamil (Ver) and doxorubicin (Dox) were co-loaded on shortened CNTs (denoted as Ver/Dox/shortened CNTs), which acted as a drug delivery system. The multidrug resistant leukemia K562/A02 cells were treated with the denoted Ver/Dox/shortened CNTs. The real-time reversal of tumor MDR were evaluated by flow cytometer, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, acridine orange/ethidium bromide staining, and Western blot analysis. In the same MDR tumor cells the new strategy of a co-loaded reversal agent and chemotherapeutic drug with CNTs could inhibit the function of P-glycoprotein in real-time by Ver as reversal agent, significantly increase the uptake of Dox, enhance the sensitivity of the MDR cancer cells to the chemotherapeutic agent, and induce apoptosis. It was therefore concluded that a co-loaded reversal agent and chemotherapeutic drug with shortened CNTs could have real-time reversal ability of MDR in tumors, which could represent a promising approach in cancer therapy.
Collapse
Affiliation(s)
- Pingping Wu
- Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Shang Li
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Chen J, Shu T, Lv Z, Nie Z, Chen J, Chen H, Yu W, Gai Q, Zhang Y. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa. PLoS One 2014; 9:e114351. [PMID: 25469649 PMCID: PMC4254979 DOI: 10.1371/journal.pone.0114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/09/2014] [Indexed: 11/30/2022] Open
Abstract
Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.
Collapse
Affiliation(s)
- Jianqing Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tejun Shu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hao Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Yu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qijing Gai
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yaozhou Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Pharmacy, Tianjin University, Tianjin 300073, China
- * E-mail:
| |
Collapse
|
11
|
Wang Q, Wang YL, Wang K, Yang JL, Cao CY. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis. Oncol Lett 2014; 9:278-282. [PMID: 25435975 PMCID: PMC4246664 DOI: 10.3892/ol.2014.2615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yan-Lin Wang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Kai Wang
- College of Chemical and Pharmacy, Wuhan Engineering University, Wuhan, Hubei 430073, P.R. China
| | - Jian-Lin Yang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chun-Yu Cao
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
12
|
Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 2014; 42:623-31. [PMID: 24492893 PMCID: PMC3965902 DOI: 10.1124/dmd.113.056176] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/31/2014] [Indexed: 01/30/2023] Open
Abstract
P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.
Collapse
Affiliation(s)
- Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology, College of Medicine, Biology & Environment, The Australian National University, Canberra, New South Wales, Australia (R.C.); and School of Pharmacy, Graduate School of Health, The University of Technology, Sydney, New South Wales, Australia (F.L., M.B.)
| | | | | |
Collapse
|