1
|
Kasai S, Ogawa N, Takagi M, Takahashi Y, Makino K, Arita H, Takahashi H, Yoshizawa K. Fentanyl Analogs Exert Antinociceptive Effects via Sodium Channel Blockade in Mice. Biol Pharm Bull 2024; 47:872-877. [PMID: 38658360 DOI: 10.1248/bpb.b24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.
Collapse
Affiliation(s)
- Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Natsuki Ogawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Miho Takagi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yukino Takahashi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hironobu Arita
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hideyo Takahashi
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
2
|
Gress K, Charipova K, Jung JW, Kaye AD, Paladini A, Varrassi G, Viswanath O, Urits I. A comprehensive review of partial opioid agonists for the treatment of chronic pain. Best Pract Res Clin Anaesthesiol 2020; 34:449-461. [PMID: 33004158 DOI: 10.1016/j.bpa.2020.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
Abstract
Chronic pain is a common condition that is being increasingly recognized, diagnosed, and treated in a variety of settings. Opioids can be used to treat chronic pain but at the cost of adverse effects and risk of dependence. Recently, there has been a movement to improve analgesic care in the setting of the opioid epidemic and the overprescribing of opioids, causing over-accessibility, dependence, and large numbers of overdose deaths. Opioid-specific receptors, including the μ, δ, κ, and opioid receptor like-1 (ORL-1) receptors, are each 7-transmembrane spanning proteins, which affect the G-protein and β-arrestin cascades. Each opioid class can act differently on the receptors, resulting in full, partial, or antagonizing effects. This comprehensive review looks at different agents in major classes, nonselective and mixed/partial agonists/antagonists, including the nonselective partial agonists, levorphanol and tramadol. Mixed partial agonists/antagonists include buprenorphine, pentazocine, nalbuphine, and butorphanol. Oliceridine is the only current selective partial agonist that agonizes specific pathways to promote analgesic effects and discourage adverse effects.
Collapse
Affiliation(s)
- Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Jai Won Jung
- Georgetown University School of Medicine, Washington, DC, USA
| | - Alan D Kaye
- LSUSHC, Department of Anesthesiology, Shreveport, LA, USA
| | | | | | - Omar Viswanath
- Department MESVA, University of L'Aquila, L'Aquila, Italy; Valley Pain Consultants - Envision Physician Services, Phoenix, AZ, USA; University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther 2018; 184:189-200. [DOI: 10.1016/j.pharmthera.2017.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Zhang JJ, Kong Q. Locomotor activity: A distinctive index in morphine self-administration in rats. PLoS One 2017; 12:e0174272. [PMID: 28380023 PMCID: PMC5381783 DOI: 10.1371/journal.pone.0174272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.
Collapse
Affiliation(s)
- Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Neurobiology and the National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| | - Qingyao Kong
- Laboratory of Neurobiology and the National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Wagner K, Lee KSS, Yang J, Hammock BD. Epoxy fatty acids mediate analgesia in murine diabetic neuropathy. Eur J Pain 2016; 21:456-465. [PMID: 27634339 DOI: 10.1002/ejp.939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuropathic pain is a debilitating condition with no adequate therapy. The health benefits of omega-3 fatty acids are established, however, the role of docosahexaenoic acid (DHA) in limiting pain has only recently been described and the mechanisms of this action remain unknown. DHA is metabolized into epoxydocosapentanoic acids (EDPs) via cytochrome P450 (CYP450) enzymes which are substrates for the soluble epoxide hydrolase (sEH) enzyme. Here, we tested several hypotheses; first, that the antinociceptive action of DHA is mediated by the EDPs. Second, based on evidence that DHA and CYP450 metabolites elicit analgesia through opioid signalling, we investigated this as a possible mechanism of action. Third, we tested whether the analgesia mediated by epoxy fatty acids had similar rewarding effects as opioid analgesics. METHODS We tested diabetic neuropathic wild-type and sEH null mice in a conditioned place preference assay for their response to EDPs, sEHI and antagonism of these treatments with naloxone, a mu-opioid receptor antagonist. RESULTS The EDPs and sEH inhibitors were efficacious against chronic pain, and naloxone antagonized the action of both EDPs and sEH inhibitors. Despite this antagonism, the sEH inhibitors lacked reward side effects differing from opioids. CONCLUSIONS The EpFA are analgesic against chronic pain differing from opioids which have limited efficacy in chronic conditions. SIGNIFICANCE EDPs and sEHI mediate analgesia in modelled chronic pain and this analgesia is blocked by naloxone. However, unlike opioids, sEHI are highly effective in neuropathic pain models and importantly lack rewarding side effects.
Collapse
Affiliation(s)
- K Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - K S S Lee
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - J Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - B D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| |
Collapse
|
6
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
7
|
Hough LB, Nalwalk JW, Ding X, Scheer N. Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms. Drug Metab Dispos 2015; 43:1326-30. [PMID: 26109562 PMCID: PMC4538858 DOI: 10.1124/dmd.115.065490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Xinxin Ding
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Nico Scheer
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| |
Collapse
|
8
|
Hough LB, Nalwalk JW, Yang W, Ding X. Neuronal cytochrome P450 activity and opioid analgesia: relevant sites and mechanisms. Brain Res 2015; 1616:10-8. [PMID: 25935691 DOI: 10.1016/j.brainres.2015.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023]
Abstract
Recent studies suggest a functional role for neuronal cytochrome P450 monooxygenase (P450) activity in opioid analgesia. To characterize the relevant receptors, brain areas, and circuits, detailed in vitro and in vivo studies were performed with the highly selective μ opioid receptor agonist DAMGO in neuronal P450-deficient mutant (Null) and control mice. Homogenates of brain regions and spinal cord showed no differences in DAMGO-induced activation of [(35)S]- GTPγS binding between Null and control mice, indicating no genotype differences in µ opioid receptor signaling, receptor affinities or receptor densities. Intracerebroventricular (icv) DAMGO produced robust, near-maximal, analgesic responses in control mice which were attenuated by 50% in Null mice, confirming a role for µ opioid receptors in activating P450-associated responses. Intra-periaqueductal gray (PAG) and intra-rostral ventromedial medulla (RVM) injections of DAMGO revealed deficits in Null (vs. control) analgesic responses, yet no such genotype differences were observed after intrathecal DAMGO administration. Taken with earlier published findings, the present results suggest that activation of µ opioid receptors in both the PAG and in the RVM relieves pain by mechanisms which include nerve-terminal P450 enzymes within inhibitory PAG-RVM projections. Spinal opioid analgesia, however, does not seem to require such P450 enzyme activity.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA.
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Weizhu Yang
- College of Nanoscale Science, 257 Fuller Road, Albany, NY, USA
| | - Xinxin Ding
- College of Nanoscale Science, 257 Fuller Road, Albany, NY, USA
| |
Collapse
|
9
|
|