1
|
Salehi A, Ghanadian M, Zolfaghari B, Jassbi AR, Fattahian M, Reisi P, Csupor D, Khan IA, Ali Z. Neuropharmacological Potential of Diterpenoid Alkaloids. Pharmaceuticals (Basel) 2023; 16:ph16050747. [PMID: 37242531 DOI: 10.3390/ph16050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing β-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the β-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Maryam Fattahian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Dezső Csupor
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
2
|
Mohamed RA, Abdallah DM, El-brairy AI, Ahmed KA, El-Abhar HS. Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation. Molecules 2021; 26:5068. [PMID: 34443654 PMCID: PMC8401912 DOI: 10.3390/molecules26165068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Since westernized diet-induced insulin resistance is a risk factor in Alzheimer's disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD.
Collapse
Affiliation(s)
- Reem A. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| | - Amany I. El-brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road Intersection with Wahat Road, 6th of October City, Giza 12451, Egypt; (R.A.M.); (A.I.E.-b.)
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan S. El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., Cairo 11562, Egypt;
| |
Collapse
|
3
|
Gonzalez-Garcia M, Fusco G, De Simone A. Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Front Cell Dev Biol 2021; 9:642623. [PMID: 33791300 PMCID: PMC8006268 DOI: 10.3389/fcell.2021.642623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
Collapse
Affiliation(s)
- Mario Gonzalez-Garcia
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Kikuchi T. Is Memantine Effective as an NMDA-Receptor Antagonist in Adjunctive Therapy for Schizophrenia? Biomolecules 2020; 10:biom10081134. [PMID: 32751985 PMCID: PMC7466074 DOI: 10.3390/biom10081134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023] Open
Abstract
Memantine, an n-methyl-d-aspartate (NMDA) receptor antagonist approved for treating Alzheimer's disease, has a good safety profile and is increasingly being studied for possible use in a variety of non-dementia psychiatric disorders. There is an abundance of basic and clinical data that support the hypothesis that NMDA receptor hypofunction contributes to the pathophysiology of schizophrenia. However, there are numerous randomized, double-blind, placebo-controlled clinical trials showing that add-on treatment with memantine improves negative and cognitive symptoms, particularly the negative symptoms of schizophrenia, indicating that memantine as adjunctive therapy in schizophrenia helps to ameliorate negative symptoms and cognitive deficits. It remains unclear why memantine does not show undesirable central nervous system (CNS) side effects in humans unlike other NMDA receptor antagonists, such as phencyclidine and ketamine. However, the answer could lie in the fact that it would appear that memantine works as a low-affinity, fast off-rate, voltage-dependent, and uncompetitive antagonist with preferential inhibition of extrasynaptic receptors. It is reasonable to assume that the effects of memantine as adjunctive therapy on negative symptoms and cognitive deficits in schizophrenia may derive primarily, if not totally, from its NMDA receptor antagonist activity at NMDA receptors including extrasynaptic receptors in the CNS.
Collapse
Affiliation(s)
- Tetsuro Kikuchi
- New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| |
Collapse
|
5
|
Terry AV, Callahan PM. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology 2020; 170:108053. [PMID: 32188568 DOI: 10.1016/j.neuropharm.2020.108053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Schizophrenia is a devastating mental illness and its effective treatment is among the most challenging issues in psychiatry. The symptoms of schizophrenia are heterogeneous ranging from positive symptoms (e.g., delusions, hallucinations) to negative symptoms (e.g., anhedonia, social withdrawal) to cognitive dysfunction. Antipsychotics are effective at ameliorating positive symptoms in some patients; however, they are not reliably effective at improving the negative symptoms or cognitive impairments. The inability to address the cognitive impairments is a particular concern since they have the greatest long-term impact on functional outcomes. While decades of research have been devoted to the development of pro-cognitive agents for schizophrenia, to date, no drug has been approved for clinical use. Converging behavioral, neurobiological, and genetic evidence led to the identification of the α7-nicotinic acetylcholine receptor (α7-nAChR) as a therapeutic target several years ago and there is now extensive preclinical evidence that α7-nAChR ligands have pro-cognitive effects and other properties that should be beneficial to schizophrenia patients. However, like the other pro-cognitive strategies, no α7-nAChR ligand has been approved for clinical use in schizophrenia thus far. In this review, several topics are discussed that may impact the success of α7-nAChR ligands as pro-cognitive agents for schizophrenia including the translational value of the animal models used, clinical trial design limitations, confounding effects of polypharmacy, dose-effect relationships, and chronic versus intermittent dosing considerations. Determining the most optimal pharmacologic strategy at α7-nAChRs: agonist, positive allosteric modulator, or potentially even receptor antagonist is also discussed. article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia; Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| |
Collapse
|
6
|
The D2-family receptor agonist bromocriptine but, not nicotine, reverses NMDA receptor antagonist-induced working memory deficits in the radial arm maze in mice. Neurobiol Learn Mem 2020; 168:107159. [PMID: 31911198 DOI: 10.1016/j.nlm.2020.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Hypofunction of the NMDA receptor (NMDAr) may underlie cognitive deficits associated with schizophrenia and other psychiatric conditions including working memory (WM) impairments. Given that these deficits link closely to functional outcome, treatments remediating such deficits require identification. NMDAr hypofunction can be modeled via treatment with the antagonist MK-801. Hence, the present study determined whether cholinergic or dopaminergic agonists attenuate MK-801-induced WM deficits in mice. WM was assessed in male C57BL/6 mice trained on an automated 12-arm radial arm maze (RAM) paradigm, wherein rewards were delivered after the first but, not after subsequent entries into WM arms (8/12) and never delivered for entries into reference memory (RM) arms (4/12). Mice were then treated with MK-801 (vehicle or 0.3 mg/kg) and nicotine (vehicle, 0.03 or 0.30 mg/kg) in a cross-over design. After a 2-week washout, mice were then retested with MK-801 and the dopamine D2-family receptor agonist bromocriptine (vehicle, 3 or 10 mg/kg). In both experiments, MK-801 reduced WM span and increased RM and WM error rates. Nicotine did not attenuate these deficits. In contrast, a bromocriptine/MK-801 interaction was observed on WM error rate, where bromocriptine attenuated MK-801 induced deficits without affecting MK-801-induced RM errors. Additionally, bromocriptine produced the main effect of slowing latency to collect rewards. Hence, while NMDAr hypofunction-induced deficits in WM was unaffected by nicotine, it was remediated by treatment with the dopamine D2-family agonist bromocriptine. Future studies should determine whether selective activation of dopamine D2, D3, or D4 receptors remediate this NMDAr hypofunction-induced WM deficit.
Collapse
|
7
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
8
|
van Goethem NP, Paes D, Puzzo D, Fedele E, Rebosio C, Gulisano W, Palmeri A, Wennogle LP, Peng Y, Bertrand D, Prickaerts J. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal 2019; 62:109338. [PMID: 31176021 DOI: 10.1016/j.cellsig.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
α7 nicotinic acetylcholine receptors (α7nAChRs) have been targeted to improve cognition in different neurological and psychiatric disorders. Nevertheless, no α7nAChR activating ligand has been clinically approved. Here, we investigated the effects of antagonizing α7nAChRs using the selective antagonist methyllycaconitine (MLA) on receptor activity in vitro and cognitive functioning in vivo. Picomolar concentrations of MLA significantly potentiated receptor responses in electrophysiological experiments mimicking the in vivo situation. Furthermore, microdialysis studies showed that MLA administration substantially increased hippocampal glutamate efflux which is related to memory processes. Accordingly, pre-tetanus administration of low MLA concentrations produced longer lasting potentiation (long-term potentiation, LTP) in studies examining hippocampal plasticity. Moreover, low doses of MLA improved acquisition, but not consolidation memory processes in rats. While the focus to enhance cognition by modulating α7nAChRs lies on agonists and positive modulators, antagonists at low doses should provide a novel approach to improve cognition in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nick P van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Dean Paes
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, Centre of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy; IRCCS Polyclinic Hospital San Martino, 16132 Genoa, Italy
| | - Claudia Rebosio
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, Centre of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | | | - Youyi Peng
- Intra-Cellular Therapies, Inc., New York 10016, United States
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Wazea SA, Wadie W, Bahgat AK, El-Abhar HS. Galantamine anti-colitic effect: Role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep 2018; 8:5110. [PMID: 29572553 PMCID: PMC5865178 DOI: 10.1038/s41598-018-23359-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Vagal stimulation controls systemic inflammation and modulates the immune response in different inflammatory conditions, including inflammatory bowel diseases (IBD). The released acetylcholine binds to alpha-7 nicotinic acetylcholine receptor (α7 nAChR) to suppress pro-inflammatory cytokines. This provides a new range of potential therapeutic approaches for controlling inflammatory responses. The present study aimed to assess whether galantamine (Galan) anti-inflammatory action involves α7 nAChR in a 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of colitis and to estimate its possible molecular pathways. Rats were assigned into normal, TNBS, sulfasalazine (Sulfz), Galan treated (10 mg/kg), methyllycaconitine (MLA; 5.6 mg/kg), and MLA + Galan groups. Drugs were administered orally once per day (11 days) and colitis was induced on the 8th day. Galan reduced the TNBS-induced ulceration, colon mass index, colonic MDA, neutrophils adhesion and infiltration (ICAM-1/MPO), inflammatory mediators (NF-κB, TNF-α, HMGB1, and RAGE), while increased the anti-apoptotic pathway (p-Akt/Bcl-2). Mechanistic study revealed that Galan increased the anti-inflammatory cytokine IL-10, phosphorylated Jak2, while reduced the inflammation controller SOCS3. However, combining MLA with Galan abrogated the beneficial anti-inflammatory/anti-apoptotic signals. The results of the present study indicate that Galan anti-inflammatory/-apoptotic/ -oxidant effects originate from the stimulation of the peripheral α7 nAChR, with the involvement of the Jak2/SOCS3 signaling pathway.
Collapse
Affiliation(s)
- Shakeeb A Wazea
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ashraf K Bahgat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
10
|
Higa KK, Grim A, Kamenski ME, van Enkhuizen J, Zhou X, Li K, Naviaux JC, Wang L, Naviaux RK, Geyer MA, Markou A, Young JW. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice. Psychopharmacology (Berl) 2017; 234:1573-1586. [PMID: 28243714 PMCID: PMC5420484 DOI: 10.1007/s00213-017-4572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
Abstract
RATIONALE Smoking is the leading cause of preventable death in the USA, but quit attempts result in withdrawal-induced cognitive dysfunction and predicts relapse. Greater understanding of the neural mechanism(s) underlying these cognitive deficits is required to develop targeted treatments to aid quit attempts. OBJECTIVES We examined nicotine withdrawal-induced inattention in mice lacking the α7 nicotinic acetylcholine receptor (nAChR) using the five-choice continuous performance test (5C-CPT). METHODS Mice were trained in the 5C-CPT prior to osmotic minipump implantation containing saline or nicotine. Experiment 1 used 40 mg kg-1 day-1 nicotine treatment and tested C57BL/6 mice 4, 28, and 52 h after pump removal. Experiment 2 used 14 and 40 mg kg-1 day-1 nicotine treatment in α7 nAChR knockout (KO) and wildtype (WT) littermates tested 4 h after pump removal. Subsets of WT mice were killed before and after pump removal to assess changes in receptor expression associated with nicotine administration and withdrawal. RESULTS Nicotine withdrawal impaired attention in the 5C-CPT, driven by response inhibition and target detection deficits. The overall attentional deficit was absent in α7 nAChR KO mice despite response disinhibition in these mice. Synaptosomal glutamate mGluR5 and dopamine D4 receptor expression were reduced during chronic nicotine but increased during withdrawal, potentially contributing to cognitive deficits. CONCLUSIONS The α7 nAChR may underlie nicotine withdrawal-induced deficits in target detection but is not required for response disinhibition deficits. Alterations to the glutamatergic and dopaminergic pathways may also contribute to withdrawal-induced attentional deficits, providing novel targets to alleviate the cognitive symptoms of withdrawal during quit attempts.
Collapse
Affiliation(s)
- K K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - A Grim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - M E Kamenski
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - J van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - X Zhou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92037, USA
| | - K Li
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - J C Naviaux
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - L Wang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - R K Naviaux
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - M A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92037, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92037, USA.
| |
Collapse
|
11
|
A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity. Neuropharmacology 2015; 97:457-63. [DOI: 10.1016/j.neuropharm.2015.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
|
12
|
Tanyeri P, Buyukokuroglu ME, Mutlu O, Ulak G, Akar FY, Celikyurt IK, Erden BF. Effects of ziprasidone, SCH23390 and SB277011 on spatial memory in the Morris water maze test in naive and MK-801 treated mice. Pharmacol Biochem Behav 2015; 138:142-7. [PMID: 26394282 DOI: 10.1016/j.pbb.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023]
Abstract
Introduction: Patients with schizophrenia have cognitive dysfunctions; positive psychotic symptoms are the primary purposes for schizophrenia treatment. Improvements in cognitive function should be a characteristic of all newly developed drugs for the treatment of schizophreniawith dementia. Thus,we investigated the effects of the second-generation antipsychotic ziprasidone, dopamine D1 antagonist SCH-23390 and dopamine D3 antagonist SB-277011 on spatial learning and memory. Materials and methods: Male inbred mice were used. The effects of ziprasidone, SCH-23390 and SB-277011 were investigated using the Morris water maze test. Results: Ziprasidone (0.5 and 1mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on the time spent in the target quadrant in naive mice.MK-801 (0.1mg/kg) significantly decreased the time spent in the target quadrant. The time spent in the target quadrant was significantly prolonged by Ziprasidone (0.5 and 1 mg/kg) and SCH-23390 (0.1 mg/kg), but not with SB-277011 (20 mg/kg) in MK-801-treated mice. Ziprasidone (0.5 and 1mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on themean distance to the platformin naivemice.MK-801 significantly increased themean distance to the platform. Ziprasidone (1 mg/kg) and SCH-23390 (0.1 mg/kg) significantly decreased the mean distance to the platform in MK-801-treated mice, but SB-277011 (20 mg/kg) didn't. MK-801 significantly increased the total distance moved. Ziprasidone (0.5 and 1 mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on the total distance moved in naive mice. Ziprasidone (1 mg/kg) and SCH-23390 (0.1 mg/kg) significantly decreased the total distance moved in MK-801-treated mice, but SB-277011 (20 mg/kg) didn't. Conclusions: The second-generation antipsychotic drug ziprasidone and D1 antagonist SCH23390, but not the D3 antagonist SB277011, might be clinically useful for the treatment of cognitive impairments in patients with schizophrenia.
Collapse
Affiliation(s)
- Pelin Tanyeri
- Sakarya University, Faculty of Medicine, Department of Pharmacology, 54100 Sakarya, Turkey.
| | | | - Oguz Mutlu
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | - Güner Ulak
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | - Füruzan Yildiz Akar
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | | | - Bekir Faruk Erden
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| |
Collapse
|
13
|
Dobryakova Y, Gurskaya O, Markevich V. Administration of nicotinic receptor antagonists during the period of memory consolidation affects passive avoidance learning and modulates synaptic efficiency in the CA1 region in vivo. Neuroscience 2015; 284:865-871. [DOI: 10.1016/j.neuroscience.2014.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/12/2014] [Accepted: 10/22/2014] [Indexed: 02/09/2023]
|