1
|
Tao H, Shen L. RESEARCH PROGRESS OF CURCUMIN IN THE TREATMENT OF SEPSIS. Shock 2024; 61:805-816. [PMID: 38664750 DOI: 10.1097/shk.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. In recent years, with the increasing research on the epidemiology, and pathogenesis, diagnostic and therapeutic strategies of sepsis, great progress has been made in clinical practice, but there is still a lack of specific and effective treatment plans. Curcuma longa , a leafy plant of the ginger family, which is a common and safe compound, has multiple pharmacological actions, including, but not limited to, scavenging of oxygen free radicals, attenuation of inflammatory response, and antifibrotic effects. Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.
Collapse
|
2
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 PMCID: PMC10062691 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
3
|
Protective Effects of Curcumin on Endothelium: An Updated Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331686 DOI: 10.1007/978-3-030-56153-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Endothelial dysfunction is the common early stage of most cardiovascular afflictions. The endothelium is considered the main mediator of vascular homeostasis via its vasodilator, anti-inflammatory and anticoagulant properties. Among the different endothelial-derived mediators, nitric oxide is produced by nitric oxide synthase and has a critical role in regulating endothelial function. Physiological and pathological processes such as aging and diabetes mellitus are associated with disturbances of endothelial function which, at least at the earliest stage, can be reversed by lifestyle and pharmacological intervention to reduce the risk of incident cardiovascular diseases. Among dietary strategies, curcumin is a cheap and safe nutraceutical polyphenol with proven antioxidant and anti-inflammatory properties. Given the important role of such processes in the development of endothelium dysfunction, a role for curcumin in the prevention or treatment of this condition has been hypothesized. This review summarizes the available literature on the beneficial role of curcumin on vascular endothelial function.
Collapse
|
4
|
A Synthetic Curcuminoid Analogue, 2,6-Bis-4-(Hydroxyl-3-Methoxybenzylidine)-Cyclohexanone (BHMC) Ameliorates Acute Airway Inflammation of Allergic Asthma in Ovalbumin-Sensitized Mice. Mediators Inflamm 2021; 2021:9725903. [PMID: 33883974 PMCID: PMC8041524 DOI: 10.1155/2021/9725903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
2,6-Bis-(4-hydroxyl-3-methoxybenzylidine) cyclohexanone (BHMC), a synthetic curcuminoid analogue, has been shown to exhibit anti-inflammatory properties in cellular models of inflammation and improve the survival of mice from lethal sepsis. We further evaluated the therapeutic effect of BHMC on acute airway inflammation in a mouse model of allergic asthma. Mice were sensitized and challenged with ovalbumin (OVA), followed by intraperitoneal administration of 0.1, 1, and 10 mg/kg of BHMC. Bronchoalveolar lavage fluid, blood, and lung samples were collected, and the respiratory function was measured. OVA sensitization and challenge increased airway hyperresponsiveness (AHR) and pulmonary inflammation. All three doses of BHMC (0.1-10 mg/kg) significantly reduced the number of eosinophils, lymphocytes, macrophages, and neutrophils, as well as the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) as compared to OVA-challenged mice. However, serum level of IgE was not affected. All three doses of BHMC (0.1-10 mg/kg) were effective in suppressing the infiltration of inflammatory cells at the peribronchial and perivascular regions, with the greatest effect observed at 1 mg/kg which was comparable to dexamethasone. Goblet cell hyperplasia was inhibited by 1 and 10 mg/kg of BHMC, while the lowest dose (0.1 mg/kg) had no significant inhibitory effect. These findings demonstrate that BHMC, a synthetic nonsteroidal small molecule, ameliorates acute airway inflammation associated with allergic asthma, primarily by suppressing the release of inflammatory mediators and goblet cell hyperplasia to a lesser extent in acute airway inflammation of allergic asthma.
Collapse
|
5
|
Zhao J, Miao G, Wang T, Li J, Xie L. Urantide attenuates myocardial damage in atherosclerotic rats by regulating the MAPK signalling pathway. Life Sci 2020; 262:118551. [PMID: 33038370 DOI: 10.1016/j.lfs.2020.118551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the effect of urantide on atherosclerotic myocardial injury by antagonizing the urotensin II/urotensin II receptor (UII/UT) system and regulating the mitogen-activated protein kinase (MAPK) signalling pathway. METHODS Atherosclerosis (AS) was established in rats by administering a high-fat diet and an intraperitoneal injection of vitamin D3. The effect of treatment with urantide (30 μg/kg), a UII receptor antagonist, for 3, 7, or 14 days on AS-induced myocardial damage was evaluated. RESULTS The heart of rats with AS exhibited pathological changes suggestive of myocardial injury, and the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) were significantly increased. Additionally, significant increases in the levels of UII, its receptor (G protein-coupled receptor 14, GPR14), p-P38, p-extracellular signal-regulated kinase (ERK) and p-c-Jun N-terminal kinase (JNK) were observed in the heart. Urantide improved pathological changes in the heart of rats with AS and reduced the serum CK and LDH levels. Additionally, the UII antagonist decreased the increased levels of UII, GPR14, p-P38, p-ERK and p-JNK in the heart. CONCLUSIONS Urantide alleviates atherosclerotic myocardial injury by inhibiting the UII-GPR14 interaction and regulating the MAPK signalling pathway. We hypothesized that myocardial injury may be associated with the regulation of the MAPK signalling pathway.
Collapse
Affiliation(s)
- Juan Zhao
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Guangxin Miao
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Tu Wang
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Jian Li
- Chengde Central Hospital, Chengde, Hebei 067000, China.
| | - Lide Xie
- Chengde Medical University, Chengde, Hebei 067000, China.
| |
Collapse
|
6
|
Kong L, Wu P, Li J. miR-331 inhibits CLDN2 expression and may alleviate the vascular endothelial injury induced by sepsis. Exp Ther Med 2020; 20:1343-1352. [PMID: 32742369 PMCID: PMC7388277 DOI: 10.3892/etm.2020.8854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to determine the expression level of claudin-2 (CLDN2) in the peripheral blood of patients with sepsis, and to investigate its potential function and mechanism of action in vascular endothelial injury. A total of 25 patients with sepsis were included in the present study. Reverse transcription-quantitative PCR was used to determine CLDN2 levels in peripheral blood. HUVECs stably expressing CLDN2 were prepared and Cell Counting Kit-8, flow cytometry and Transwell assays were performed to study the proliferation, apoptosis and migration of HUVECs, respectively. Using bioinformatics, microRNA (miR) molecules that interact with CLDN2 were predicted. A dual luciferase reporter assay was used to test whether miR-331 regulated CLDN2. Western blotting was employed to determine CLDN2 protein expression. In addition, in vitro transfection of HUVECs with miR-331 mimics was performed to test the rescue effects of miR-331 on the cell function changes induced by CLDN2. The results indicated that elevated CLDN2 expression altered the proliferation and cell cycle of peripheral vascular endothelial cells. CLDN2 overexpression inhibited HUVEC proliferation via mechanisms not associated with the cell cycle. CLDN2 mRNA levels in the peripheral blood of patients with sepsis were significantly higher than those in healthy subjects. Upregulated CLDN2 expression promoted the apoptosis of HUVECs, but reduced their proliferation and migration. Notably, miR-331 was able to bind with CLDN2 mRNA and regulate its expression. Upregulation of miR-331 expression inhibited the expression of CLDN2 and restored nearly normal proliferation, apoptosis and migration to HUVECs. The present study demonstrated that CLDN2 expression is elevated in peripheral blood from patients with sepsis, and promotes the injury of vascular endothelial cells. In addition, miR-331 participates in the direct regulation of CLDN2, and upregulation of miR-331 expression inhibits the expression of CLDN2 and restores cellular functions to HUVECs.
Collapse
Affiliation(s)
- Lingchen Kong
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Peng Wu
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jianzhong Li
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
7
|
Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B, Jamialahmadi T, Asgary S, Sahebkar A. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Ther Med 2020; 49:102322. [DOI: 10.1016/j.ctim.2020.102322] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
|
8
|
Chen XP, Li Y, Zhang Y, Li GW. Formulation, Characterization And Evaluation Of Curcumin- Loaded PLGA- TPGS Nanoparticles For Liver Cancer Treatment. Drug Des Devel Ther 2019; 13:3569-3578. [PMID: 31802845 PMCID: PMC6801559 DOI: 10.2147/dddt.s211748] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver cancer is a major health problem facing mankind. Currently, the focus of research is to improve the treatment of liver cancer using a variety of treatment options such as providing chemotherapy drugs through nanocarriers. PURPOSE The aim of this study was to prepare a curcumin-loaded (PLGA/TPGS) NPs delivery system by the emulsification-solvent evaporation method in order to achieve synergistic antitumor activity against liver cancer. METHODS Curcumin-loaded (PLGA/TPGS) NPs were prepared by the emulsification and solvent evaporation method. The physical and chemical characteristics of NPs such as size, morphology, and release profiles were discussed. In vitro and in vivo studies were carried out to evaluate its anti-tumor activity in target cells. RESULTS Curcumin-loaded (PLGA/TPGS) NPs could be successfully internalized by HepG2 cells and play a synergistic role in inhibiting the growth of hepatocellular carcinoma cells. They exhibited high target organ accumulation, superior antitumor efficiency, and lower toxicity in vivo. CONCLUSION The present study indicates that the curcumin-loaded (PLGA/TPGS) NPs provide a promising platform for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiao-ping Chen
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yi Li
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yu Zhang
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Gao-wei Li
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.
Collapse
Affiliation(s)
- Ting Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Mohd Aluwi MFF, Rullah K, Haque MA, Yamin BM, Ahmad W, Amjad MW, Leong SW, Fahmizar NA, Jalil J, Abas F, Ismail NH, Jantan I, Lam KW. Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2025-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33:55-63. [DOI: 10.1016/j.cytogfr.2016.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
|
12
|
Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL. Barrier protective effects of 2,4,6-trihydroxy-3-geranyl acetophenone on lipopolysaccharides-stimulated inflammatory responses in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:248-255. [PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/06/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
PHARMOCOLOGICAL RELEVANCE 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases. AIM OF THE STUDY Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated. RESULTS It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs. CONCLUSION As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Nazmi Firdaus Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chean Hui Ng
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia.
| |
Collapse
|
13
|
Mohd Aluwi MFF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, Mohd Faudzi SM, Jalil J, Abas F, Mohd Fauzi N, Ismail NH, Jantan I, Lam KW. Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorg Med Chem Lett 2016; 26:2531-2538. [DOI: 10.1016/j.bmcl.2016.03.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/21/2016] [Accepted: 03/25/2016] [Indexed: 12/19/2022]
|