1
|
Dorofeikova M, Borkar CD, Weissmuller K, Smith-Osborne L, Basavanhalli S, Bean E, Smith A, Duong A, Resendez A, Fadok JP. Effects of footshock stress on social behavior and neuronal activation in the medial prefrontal cortex and amygdala of male and female mice. PLoS One 2023; 18:e0281388. [PMID: 36757923 PMCID: PMC9910713 DOI: 10.1371/journal.pone.0281388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023] Open
Abstract
Social behavior is complex and fundamental, and its deficits are common pathological features for several psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Acute stress may have a negative impact on social behavior, and these effects can vary based on sex. The aim of this study was to explore the effect of acute footshock stress, using analogous parameters to those commonly used in fear conditioning assays, on the sociability of male and female C57BL/6J mice in a standard social approach test. Animals were divided into two main groups of footshock stress (22 male, 24 female) and context exposed control (23 male and 22 female). Each group had mice that were treated intraperitoneally with either the benzodiazepine-alprazolam (control: 10 male, 10 female; stress: 11 male, 11 female), or vehicle (control: 13 male, 12 female; stress: 11 male, 13 female). In all groups, neuronal activation during social approach was assessed using immunohistochemistry against the immediate early gene product cFos. Although footshock stress did not significantly alter sociability or latency to approach a social stimulus, it did increase defensive tail-rattling behavior specifically in males (p = 0.0022). This stress-induced increase in tail-rattling was alleviated by alprazolam (p = 0.03), yet alprazolam had no effect on female tail-rattling behavior in the stress group. Alprazolam lowered cFos expression in the medial prefrontal cortex (p = 0.001 infralimbic area, p = 0.02 prelimbic area), and social approach induced sex-dependent differences in cFos activation in the ventromedial intercalated cell clusters (p = 0.04). Social approach following stress-induced cFos expression was positively correlated with latency to approach and negatively correlated with sociability in the prelimbic area and multiple amygdala subregions (all p < 0.05). Collectively, our results suggest that acute footshock stress induces sex-dependent alterations in defensiveness and differential patterns of cFos activation during social approach.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Chandrashekhar D. Borkar
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | | | - Lydia Smith-Osborne
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane National Primate Research Center, Covington, LA, United States of America
| | - Samhita Basavanhalli
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Erin Bean
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Avery Smith
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Anh Duong
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Kaur S, Bali A, Singh N, Jaggi AS. Demystifying the dual role of the angiotensin system in neuropathic pain. Neuropeptides 2022; 94:102260. [PMID: 35660757 DOI: 10.1016/j.npep.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022]
Abstract
Neuropathic Pain is caused by damage to a nerve or disease of the somatosensory nervous system. Apart from the blood pressure regulating actions of angiotensin ligands, studies have shown that it also modulates neuropathic pain. In the animal models including surgical, chemotherapeutic, and retroviral-induced neuropathic pain, an increase in the levels of angiotensin II has been identified and it has been proposed that an increase in angiotensin II may participate in the induction of neuropathic pain. The pain-inducing actions of the angiotensin system are primarily due to the activation of AT1 and AT2 receptors, which trigger the diverse molecular mechanisms including the induction of neuroinflammation to initiate and maintain the state of neuropathic pain. On the other hand, the pain attenuating action of the angiotensin system has been attributed to decreasing in the levels of Ang(1-7), and Ang IV and an increase in the levels of bradykinin. Ang(1-7) may attenuate neuropathic pain via activation of the spinal Mas receptor. However, the detailed molecular mechanism involved in Ang(1-7) and Ang IV-mediated pain attenuating actions needs to be explored. The present review discusses the dual role of angiotensin ligands in neuropathic pain along with the possible mechanisms involved in inducing or attenuating the state of neuropathic pain.
Collapse
Affiliation(s)
- Sahibpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India.
| |
Collapse
|
3
|
Kaur R, Jaggi AS, Bali A. Investigating the role of nitric oxide in stress adaptive process in electric foot shock stress-subjected mice. Int J Neurosci 2020; 131:116-127. [PMID: 32083948 DOI: 10.1080/00207454.2020.1733560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM The present study was designed to investigate the role of nitric oxide (NO) in the non-development of stress adaptation in high-intensity foot-shock stress (HIFS) subjected mice. METHODS Mice were subjected to low-intensity shocks (LIFS i.e. 0.5 mA) or HIFS (1.5 mA) for 5 days. Stress-induced behavioral changes were assessed by actophotometer, hole board, open field and social interaction tests. Biochemically, the serum corticosterone levels were measured as a marker of stress. L-arginine (100 mg/kg and 300 mg/kg), as NO donor, and L-NAME (10 mg/kg and 30 mg/kg), as nitric oxide synthase (NOS) inhibitor, were employed as pharmacological agents. RESULTS A single exposure of LIFS and HIFS produced behavioral and biochemical alterations. However, there was the restoration of behavioral and biochemical alterations on 5th day in response to repeated LIFS exposure suggesting the development of stress adaptation. However, no stress adaptation was observed in HIFS subjected mice. Administration of L-arginine (300 mg/kg) abolished the stress adaptive response in LIFS-subjected mice, while L-NAME (30 mg/kg) induced the development of stress adaptation in HIFS subjected mice. CONCLUSION It is concluded that an increase in the NO release may possibly impede the process of stress adaptation in HIFS-subjected mice.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Pharmacology, Akal College of Pharmacy and Technical Education Mastuana Sahib, Sangrur, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Anjana Bali
- Department of Pharmacology, Akal College of Pharmacy and Technical Education Mastuana Sahib, Sangrur, India
| |
Collapse
|
4
|
Kaur S, Singh N, Jaggi AS. Opening of T-type Ca2+ channels and activation of HCN channels contribute in stress adaptation in cold water immersion stress-subjected mice. Life Sci 2019; 232:116605. [DOI: 10.1016/j.lfs.2019.116605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
|
6
|
Bali A, Jaggi AS. Anti-stress effects of a GSK-3β inhibitor, AR-A014418, in immobilization stress of variable duration in mice. J Basic Clin Physiol Pharmacol 2018; 28:315-325. [PMID: 28590916 DOI: 10.1515/jbcpp-2016-0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/25/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The present study was designed to explore the anti-stress role of AR-A014418, a selective glycogen synthase kinase-3β inhibitor (GSK-3β), on changes provoked by immobilization stress of varying duration. METHODS Acute stress of varying degree was induced by subjecting mice to immobilization stress of short duration (30 min) or long duration (120 min). Thereafter, these animals were exposed to the same stressor for 5 days to induce stress adaptation. The behavioral alterations were assessed using an actophotometer, a hole-board, and the open field and social interaction tests. The serum corticosterone levels were assessed as markers of the hypothalamic-pituitary-adrenal (HPA) axis activity. The levels of total GSK-3β and p-GSK-3β-S9 were determined in the prefrontal cortex. RESULTS A single exposure to short or long immobilization stress produced behavioral and biochemical changes and the levels of p-GSK-3β-S9 decreased without affecting the total GSK-3β levels in the brain. However, repeated exposure to both short and long stress reversed the behavioral and biochemical changes along with the normalization of p-GSK-3β-S9 levels. The administration of AR-A014418, a selective GSK-3β inhibitor, diminished acute stress-induced behavioral and biochemical changes. Furthermore, AR-A014418 normalized acute stress-induced alterations in p-GSK-3β-S9 levels without changing total GSK-3β levels. CONCLUSIONS Our study suggests that acute stress-induced decrease in p-GSK-3β-S9 levels in the brain contributes to the development of behavioral and biochemical alterations and the normalization of GSK-3β signaling may contribute to stress adaptive behavior in mice which have been subjected to repeated immobilization stress.
Collapse
|
7
|
Investigations on GSK-3β/NF-kB signaling in stress and stress adaptive behavior in electric foot shock subjected mice. Behav Brain Res 2016; 302:1-10. [PMID: 26778780 DOI: 10.1016/j.bbr.2016.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
Abstract
The present study was designed to explore the role of GSK-3β and NF-kB signaling in electric foot shock-induced stress and stress adaptation. Mice were subjected to foot shocks of 0.5mA intensity and 1s duration of 1h to produce acute stress. Animals were exposed to the same stressor for 5 days to induce stress adaptation. The behavioral alterations were assessed using the actophotometer, hole board, open field and social interaction tests. The serum corticosterone levels were assessed as a marker of the HPA axis. The levels of total GSK-3β, p-GSK-3β-S9 and p-NF-kB were determined in the hippocampus, frontal cortex and amygdala. Acute electric foot shock stress produced behavioral and biochemical changes; decreased the levels of p-GSK-3β-S9, produced no change in total GSK-3β levels and increased p-NF-kB levels in the brain. However, repeated exposure of foot shock stress restored the behavioral and biochemical changes along with normalization of p-GSK-3β-S9 and p-NF-kB levels. Administration of AR-A01, a selective GSK-3β inhibitor, or diethyldithiocarbamic acid (DDTC), a selective NF-kB inhibitor, diminished acute stress-induced behavioral and biochemical changes. Furthermore, AR-A014418 normalized acute stress-induced alterations in p-GSK-3β-S9 and p-NF-kB levels, however, DDTC selectively restored NF-kB levels without any change in p-GSK-3β-S9 levels. It probably suggests that NF-kB is a downstream mediator of the GSK-3 signaling cascade. It may conclude that acute stress associated decrease in p-GSK-3β-S9 and increase in p-NF-kB levels in the brain contribute in the development of behavioral and biochemical alterations and normalization of GSK-3β/NF-kB signaling may contribute in stress adaptive behavior in response to repeated electric foot shock-subjected mice.
Collapse
|