1
|
Islam S, Shahzad SA, Ismail T, Sherani UAS, Khan KM, Fatima N, Khan SA, Mannan A. Exploring the antimicrobial and cytotoxic potential of novel chloroquine analogues. Future Med Chem 2024; 16:737-749. [PMID: 38456272 PMCID: PMC11221543 DOI: 10.4155/fmc-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Aim: To synthesize novel chloroquine analogues and evaluate them for antimicrobial and cytotoxic potential. Methods: Novel analogues were synthesized from chloroquine by nucleophilic substitution reaction at the 4-amino position. Results: Analogue CS1 showed maximum antimicrobial potential (30.3 ± 0.15 mm zone) against Pseudomonas aeruginosa and produced a 19.2 ± 0.21 mm zone against Candida albicans, while CS0 produced no zone at the same concentration. Analogue CS9 has excellent cytotoxic potential (HeLa cell line), showing 100% inhibition (IC50 = 8.9 ± 1.2 μg/ml), compared with CS0 (61.9% inhibition at 30 μg/ml). Conclusion: These synthesized chloroquine analogues have excellent activity against different microbial strains and cervical cancer cell lines (HeLa) compared with their parent molecule.
Collapse
Affiliation(s)
- Shamsul Islam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Usman AS Sherani
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Kashif M Khan
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shujaat A Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
2
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Poje G, Pessanha de Carvalho L, Held J, Moita D, Prudêncio M, Perković I, Tandarić T, Vianello R, Rajić Z. Design and synthesis of harmiquins, harmine and chloroquine hybrids as potent antiplasmodial agents. Eur J Med Chem 2022; 238:114408. [DOI: 10.1016/j.ejmech.2022.114408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
4
|
Oguike OE, Ugwuishiwu CH, Asogwa CN, Nnadi CO, Obonga WO, Attama AA. Systematic review on the application of machine learning to quantitative structure-activity relationship modeling against Plasmodium falciparum. Mol Divers 2022; 26:3447-3462. [PMID: 35064444 PMCID: PMC8782692 DOI: 10.1007/s11030-022-10380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Malaria accounts for over two million deaths globally. To flatten this curve, there is a need to develop new and high potent drugs against Plasmodium falciparum. Some major challenges include the dearth of suitable animal models for anti-P. falciparum assays, resistance to first-line drugs, lack of vaccines and the complex life cycle of Plasmodium. Gladly, newer approaches to antimalarial drug discovery have emerged due to the release of large datasets by pharmaceutical companies. This review provides insights into these new approaches to drug discovery covering different machine learning tools, which enhance the development of new compounds. It provides a systematic review on the use and prospects of machine learning in predicting, classifying and clustering IC50 values of bioactive compounds against P. falciparum. The authors identified many machine learning tools yet to be applied for this purpose. However, Random Forest and Support Vector Machines have been extensively applied though on a limited dataset of compounds.
Collapse
Affiliation(s)
- Osondu Everestus Oguike
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chikodili Helen Ugwuishiwu
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Caroline Ngozi Asogwa
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Okeke Nnadi
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria. .,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Wilfred Ofem Obonga
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
5
|
Grønningsæter IS, Reikvam H, Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Selheim F, Berven FS, Tvedt TH, Bruserud Ø, Hatfield KJ. Effects of the Autophagy-Inhibiting Agent Chloroquine on Acute Myeloid Leukemia Cells; Characterization of Patient Heterogeneity. J Pers Med 2021; 11:jpm11080779. [PMID: 34442423 PMCID: PMC8399694 DOI: 10.3390/jpm11080779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.
Collapse
Affiliation(s)
- Ida Sofie Grønningsæter
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Akershus University Hospital, N-1478 Lørenskog, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
| | - Sushma Bartaula-Brevik
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; (M.H.-V.); (F.S.); (F.S.B.)
- The Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Tor Henrik Tvedt
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Hematology, Oslo University Hospital—The National Hospital, N-0372 Oslo, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: (Ø.B.); (K.J.H.)
| | - Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (I.S.G.); (H.R.); (E.A.); (S.B.-B.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009 Bergen, Norway
- Correspondence: (Ø.B.); (K.J.H.)
| |
Collapse
|
6
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Steenkamp V. Synthesis, antibacterial, and cytotoxicity evaluation of oleanolic acid-4-aminoquinoline based hybrid compounds. ACTA ACUST UNITED AC 2021; 16:122-136. [PMID: 33568035 DOI: 10.2174/1574891x16666210210165547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
AIM To prepare a class of oleanolic-based compounds. BACKGROUND Conventional drugs used to treat infectious diseases suffer from limitations such as drug toxicity and drug resistance. The resistance of microbes to antimicrobial agents is a significant challenge in treating microbial infections. Combining two or more drugs with different modes of action to treat microbial infections results in a delay in developing drug resistance by the microbes. However, it is challenging to select the appropriate choice of drugs for combination therapy due to the differences in stability and pharmacokinetic profile of the drugs.Therefore, developing hybrid compounds using the existing drugs is a promising approach to design effective antimicrobial agents. OBJECTIVES To prepare oleanolic-based hybrid compounds followed by characterization, in vitro antibacterial, and cytotoxicity evaluation. METHODS Oleanolic acid-4-aminoquinoline-based hybrid compounds weresynthesized via esterification and amidation. The compounds werecharacterized using FTIR, NMR, and UHPLC-HRMS. Oleanolic acid was isolated from the flower buds of Syszygium aromaticum (L.) Merr. & L.M.Perry, a specie from Kingdom Plantae, order Mytales in Myrtaceae family. Their antibacterial and cytotoxicity activity was determined against selected strains of bacteria assessed using the microdilution assay and sulforhodamine B assay against selected cancer cell lines. RESULTS The synthesized hybrid compounds exhibited significant antibacterial activity against the Gram-positive bacteria Enterococcus faecalis (ATCC13047), Bacillus subtilis (ATCC19659), Staphylococcus aureus as well as Gram-negative bacteria,Klebsiella oxytoca (ATCC8724), Escherischia coli (ATCC25922), and Proteus vulgaris (ATCC6380)with minimum inhibitory concentrations of 1.25 mg/mLcompared to oleanolic acid (2.5 mg/mL). Compounds 13 and 14 displayed significant cytotoxic effectsin vitro against the cancer cell lines (MCF-7 and DU 145) compared to the oleanolic acid (IC50 ˃ 200 µM). CONCLUSION The present study revealed that the modification of C28 of OA enhanced its biological properties.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Opeoluwa O Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape. South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of Witwatersrand, Johannesburg. South Africa
| | - Y T Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - D T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg. South Africa
| | - V Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria. South Africa
| |
Collapse
|
7
|
Aboutabl ME, Hamed AR, Hamissa MF, Ahmed EK. Anti-Inflammatory and Analgesic Activities of 7-Chloro-4-(Piperazin-1-yl) Quinoline Derivative Mediated by Suppression of InflammatoryMediators Expression in Both RAW 264.7 and Mouse Models. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: 4-Aminoquinoline derivatives possess various potential biological properties.The introduction of additional piperazine heterocyclic pharmacophoric moiety tends to haveprofound impact in increasing the activity. The present work was undertaken to investigate thein-vitro and in-vivo anti-inflammatory activity as well as the peripheral and central analgesicactivities of compound 1-(4-(7-chloroquinoline-4-yl)piperazin-1-yl)-2-(4-phenylpiperazin-1-yl)ethanone (5) in experimental models. Methods: The percentage inhibition of the lipopolysaccharide induced NO release of 7-chloro-4-(piperazin-1-yl)quinoline derivatives 1-9 was determined in RAW 264.7 murine macrophagemodel. Western blot analysis was performed to evaluate the effect of compound 5 on proteinexpression of inducible nitric oxide synthase (iNOS). Gene expression of inflammatory markerswas evaluated using real-time polymerase chain reaction. The peripheral and central analgesicactivities of compound 5 were evaluated in mice using writhing and hot-plate tests, respectively.Anti-inflammatory activity was assessed using carrageenan-induced paw edema assay in miceand serum NO and COX-2 levels were measured. Results: Compound 5 demonstrated the highest NO inhibitory activity that was accompaniedby inhibition of iNOS protein expression and decreased gene expression levels of inflammatorymarkers. It revealed a potential peripheral analgesic effect through inhibition of abdominalwrithing in mice treated with doses of 15 and 30 mg/kg and its effect was comparable to diclofenacsodium. Compound 5 possessed an analgesic activity starting from 15 min post administrationand reached its peak at 45 min which was significantly higher than that of tramadol hydrochloridesuggesting its potential as central analgesic agent. It also showed percentage of inhibition ofedema of 34, 50 and 64% at 1, 2, and 3 h respectively, post carrageenan challenge together with asignificant decrease in serum NO and COX-2 levels. Conclusion: The remarkable anti-inflammatory and analgesic activities of compound 5 couldbe attributed to the advantageous introduction of the heterocyclic 7-chloro-4-(piperazin1-yl)quinoline scaffold incorporated with N-phenylpiperzine functional groups linked together withthe ethanone pharmacophoric chain.
Collapse
Affiliation(s)
- Mona Elsayed Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed Ragab Hamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Emad Khairy Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| |
Collapse
|
8
|
Zhou Y, Li X, Chen K, Ba Q, Zhang X, Li J, Wang J, Wang H, Liu H. Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers. Eur J Med Chem 2020; 211:113000. [PMID: 33261896 DOI: 10.1016/j.ejmech.2020.113000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
An increasing number of artemisinin (ARS) and its derivatives have been reported for their potential therapeutic value of human cancer. However, their therapeutic potencies are limited owing to their poor pharmacokinetic profiles. Our previous studies showed that a lead compound ARS4 originated from incorporating the pharmacophore of the approved chemotherapeutic agent melphalan into the basic skeleton of artemisinin with a succinic linker exhibited an excellent toxicity to human ovarian cancer cells and low cytotoxicity to normal cells. The mechanism studies demonstrated that it inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis and inhibition of migration. Meanwhile, it exhibited excellent antitumor activities in animal models. Herein, further structure optimization for this lead compound ARS4 was performed and nineteen novel derivatives were designed and synthesized. Among them, compounds 10-12, 15, 16, 18 and 19 demonstrated powerful cytotoxic effects against human liver cancer and ovarian cancer cell lines, with their IC50s below 0.86 μM against Hep3B and A2780 cell lines, which are superior to that of ARS4. Four compounds (11, 15, 16 and 18) were selected to further evaluate their antitumor activities in in vitro and in vivo ovarian and liver cancer models, the results indicated that compound 18 exhibited the best therapeutic effect, not only effectively inhibited the growth of 7404 xenograft and Huh7 xenograft, but also presented a good dose-dependent inhibition toward the growth of A2780 xenograft. Overall, based on these positive results, these novel chemical structures may provide a new inspiration for the discovery of novel antitumor agents originated from artemisinin scaffolds.
Collapse
Affiliation(s)
- Yu Zhou
- Chinese Academy of Sciences, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, PR China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, PR China
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Kerong Chen
- Chinese Academy of Sciences, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, PR China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xu Zhang
- Chinese Academy of Sciences, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, PR China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jinfang Wang
- Chinese Academy of Sciences, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, PR China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, PR China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Hong Liu
- Chinese Academy of Sciences, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai, PR China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
9
|
EJEROMEDOGHENE O, ODERİNDE O, EGEJURU G, ADEWUYİ S. Chitosan-drug encapsulation as a potential candidate for COVID-19 drug delivery systems: A review. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.773780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Diener M, Adamcik J, Mezzenga R. Formation of Higher Structural Levels in λ-Carrageenan Induced by the Antimalarial Drug Chloroquine. ACS Macro Lett 2020; 9:1310-1317. [PMID: 35638640 DOI: 10.1021/acsmacrolett.0c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The linear polysaccharide λ-carrageenan is the only one among the carrageenans not forming secondary, tertiary, and quaternary structures in the presence of inorganic ions. Chloroquine (CQ) is a well-established antimalaria drug also recently discussed in therapeutics against the COVID-19 pandemic. The interaction of this polysaccharide-ionic drug pair was investigated by combining UV-vis spectrophotometry and atomic force microscopy (AFM) imaging. A decrease of the UV peak assigned to free CQ and the occurrence of isosbestic points indicate the formation of complexes. High-resolution AFM height images revealed an increasing height of the single polysaccharide chains in the random coil state upon addition of CQ, indicating the formation of a secondary structure, followed by higher hierarchical aggregates. The disappearance of higher-ordered structures and the recovery of polysaccharide chains with primary structure were observed by introducing inorganic cations (Na+, K+, Ca2+), replacing the condensed CQ and paving the way to reversible ion-induced drug release.
Collapse
Affiliation(s)
- Michael Diener
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Jozef Adamcik
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland.,Department of Materials, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Fayyazi N, Esmaeili S, Taheri S, Ribeiro FF, Scotti MT, Scotti L, Ghasemi JB, Saghaei L, Fassihi A. Pharmacophore Modeling, Synthesis, Scaffold Hopping and Biological β- Hematin Inhibition Interaction Studies for Anti-malaria Compounds. Curr Top Med Chem 2020; 19:2743-2765. [DOI: 10.2174/1568026619666191116160326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Backgound:Exploring potent compounds is critical to generating multi-target drug discovery. Hematin crystallization is an important mechanism of malaria.Methods:A series of chloroquine analogues were designed using a repositioning approach to develop new anticancer compounds. Protein-ligand interaction fingerprints and ADMET descriptors were used to assess docking performance in virtual screenings to design chloroquine hybrid β-hematin inhibitors. A PLS algorithm was applied to correlate the molecular descriptors to IC50 values. The modeling presented excellent predictive power with correlation coefficients for calibration and cross-validation of r2 = 0.93 and q2 = 0.72. Using the model, a series of 4-aminoquinlin hybrids were synthesized and evaluated for their biological activity as an external test series. These compounds were evaluated for cytotoxic cell lines and β-hematin inhibition.Results:The target compounds exhibited high β-hematin inhibition activity and were 3-9 times more active than the positive control. Furthermore, all the compounds exhibited moderate to high cytotoxic activity. The most potent compound in the dataset was docked with hemoglobin and its pharmacophore features were generated. These features were used as input to the Pharmit server for screening of six databases.Conclusion:The compound with the best score from ChEMBL was 2016904, previously reported as a VEGFR-2 inhibitor. The 11 compounds selected presented the best Gold scores with drug-like properties and can be used for drug development.
Collapse
Affiliation(s)
- Neda Fayyazi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| | - Somayeh Esmaeili
- Traditional Medicine and Medical Material Research Center (TMRC), Shahid beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Taheri
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Frederico F. Ribeiro
- Synthesis and Drug Delivery Laboratory, Biological Sciences Department, Paraíba State University, João Pessoa, Brazil
| | | | | | - Jahan B. Ghasemi
- College of Sciences, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Tibon NS, Ng CH, Cheong SL. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur J Med Chem 2019; 188:111983. [PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
Collapse
Affiliation(s)
- Natasha Stella Tibon
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chew Hee Ng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Viswas RS, Pundir S, Lee H. Design and synthesis of 4-piperazinyl quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid pharmacophore approach. J Enzyme Inhib Med Chem 2019; 34:620-630. [PMID: 30727782 PMCID: PMC6366420 DOI: 10.1080/14756366.2019.1571055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
In an attempt to improve anti-breast cancer activity, a new series of 4-piperazinylquinoline derivatives based on the urea/thiourea scaffold were designed and synthesised by a pharmacophore hybrid approach. We then examined for their antiproliferative effects on three human breast tumor cell lines, MDA-MB231, MDA-MB468 and MCF7, and two non-cancer breast epithelial cell lines, 184B5 and MCF10A. Among those 26 novel compounds examined, 5, 9, 17, 18, 21, 23 and 29 showed significantly improved antiproliferative activity on breast cancer cells. Compound 23 (4-(7-chloro-quinolin-4-yl)-piperazine-1-carbothioic acid (2-morpholin-4-yl-ethyl)-amide) (RL-15) is especially desirable, since its antigrowth/cell-killing activity is 7-11 fold higher on cancer than non-cancer cells. Data from cell biological studies demonstrated that cancer cells compromised plasma membrane integrity in the presence of compound 23. The cancer cell-specific property of compound 23 shown in cell culture stands in vivo test, this compound can be an excellent lead for effective and safe anticancer drug.
Collapse
Affiliation(s)
| | - Sheetal Pundir
- Health Sciences North Research Institute, Sudbury, Canada
| | - Hoyun Lee
- Health Sciences North Research Institute, Sudbury, Canada
- Department of Medicine, The University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Carramiñana V, Ochoa de Retana AM, de Los Santos JM, Palacios F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur J Med Chem 2019; 185:111771. [PMID: 31671309 DOI: 10.1016/j.ejmech.2019.111771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
This work describes a straightforward diastereoselective synthetic access to azirino[2,1-b]benzo[e][1,3]oxazines containing phosphorus substituents such as phosphonate or phosphine oxide, by means of nucleophilic addition of functionalized phenols to the C-N double bond of 2H-azirine derivatives. In addition, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549) and human embryonic kidney (HEK293) was also screened. Some azirino[2,1-b]benzo[e][1,3]oxazines 4 and 6 exhibited very good activity against the A549 cell line in vitro. Furthermore, selectivity towards cancer cell (A549) over (HEK293), and non-malignant cells (MCR-5) has been detected.
Collapse
Affiliation(s)
- Victor Carramiñana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| |
Collapse
|
16
|
Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 2018; 83:526-534. [PMID: 30469145 DOI: 10.1016/j.bioorg.2018.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
As a part of our project aimed at developing new safe chemotherapeutic agents against tropical diseases, a series of aryl derivatives of 2- and 3-aminoquinoline, some of them new compounds, was designed, synthesized, and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas' disease), and Leishmania mexicana, the etiological agent of Leishmaniasis. Some of them showed a remarkable activity as parasite growth inhibitors. Fluorine-containing derivatives 11b and 11c were more than twice more potent than geneticin against intracellular promastigote form of Leishmania mexicana exhibiting both IC50 values of 41.9 μM. The IC50 values corresponding to fluorine and chlorine derivatives 11b-d were in the same order than benznidazole against epimastigote form. These drugs are interesting examples of effective antiparasitic agents with outstanding potential not only as lead drugs but also to be used for further in vivo studies. In addition, the obtained compounds showed no toxicity in Vero cells, which makes them good candidates to control tropical diseases. Regarding the probable mode of action, assayed quinoline derivatives interacted with hemin, inhibiting its degradation and generating oxidative stress that is not counteracted by the antioxidant defense system of the parasite.
Collapse
Affiliation(s)
- Santiago N Chanquia
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Facundo Larregui
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Vanesa Puente
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina
| | - Carlos Labriola
- Instituto de Investigaciones Bioquímicas, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Elisa Lombardo
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina.
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
17
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
18
|
Ruberte AC, Plano D, Encío I, Aydillo C, Sharma AK, Sanmartín C. Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. Eur J Med Chem 2018; 157:14-27. [PMID: 30071406 DOI: 10.1016/j.ejmech.2018.07.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
Twenty-seven novel benzo[c][1,2,5]selenadiazole-5-carboxylic acid (BSCA) derivatives were designed and synthesized. Anti-proliferative activity of these structures was tested in vitro against a panel of five human cancer cell lines, including prostate (PC-3), colon (HT-29), leukemia (CCRF-CEM), lung (HTB-54) and breast (MCF-7). Four compounds (5, 6, 7 and 19) showed potent inhibitory activity with GI50 values below 10 μM in at least one of the cancer cell lines. The selectivity of these compounds was further examined in two non-malignant cell lines derived from breast (184B5) and lung (BEAS-2B). Compound 7 exhibited promising anti-proliferative activity (GI50 = 3.7 μM) in MCF-7 cells, together with high selectivity index (SI > 27.1). The induction of cell death by compound 7 was independent of the apoptotic process and it did not affect cell cycle progression either. Likewise, radical scavenging properties of the new selenadiazole derivatives were confirmed by testing their ability to scavenge DPPH radicals. Four compounds (1, 2, 8 and 9) showed potent radical scavenging activity, compound 9 being the most effective. Overall, while compound 7 was identified as the most cell growth inhibitory agent and selectively toxic to cancer cells, compound 9 proved to be the most potent antioxidant among the selenadiazole derivatives synthesized. This series of compounds can serve as an excellent scaffold to achieve new and potent antioxidant compounds useful for several diseases, i.e. cancer, neurodegenerative, heart diseases and leishmaniasis, considering the high radical scavenging activity and low toxicity showed by most of the compounds.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain; Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| |
Collapse
|
19
|
Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V, Tsiourvas D. A Triphenylphosphonium-Functionalized Mitochondriotropic Nanocarrier for Efficient Co-Delivery of Doxorubicin and Chloroquine and Enhanced Antineoplastic Activity. Pharmaceuticals (Basel) 2017; 10:E91. [PMID: 29160846 PMCID: PMC5748647 DOI: 10.3390/ph10040091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 μΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.
Collapse
Affiliation(s)
- Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Spiros A Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear and Radiological Sciences and Technology Energy and Safety, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vassilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
20
|
Tao R, Wang ZF, Qiu W, He YF, Yan WQ, Sun WY, Li HJ. Role of S100A3 in human hepatocellular carcinoma and the anticancer effect of sodium cantharidinate. Exp Ther Med 2017; 13:2812-2818. [PMID: 28588665 PMCID: PMC5450779 DOI: 10.3892/etm.2017.4294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
The fifth most common cancer worldwide is hepatocellular carcinoma (HCC), which has an annual mortality rate of ~800,000. Although surgical procedures for HCC, such as hepatic resection and liver transplantation, have progressed and the outcomes of patients have improved, HCC is still characterized by frequent recurrence, even after liver transplantation. In the present study the expression of the protein coding gene, S100 calcium binding protein A3 (S100A3), was observed in 62 HCC tissues and tumor-surrounding tissues. The present study indicated that S100A3 activation was involved in tumorigenesis and tumor aggressiveness. The protein and mRNA expression levels of S100A3 in the human HCC cell line (HepG2) were investigated using western blotting and reverse transcription-quantitative polymerase chain reaction analysis, respectively. The function of sodium cantharidinate in inducing HCC cell apoptosis was also investigated. Sodium cantharidinate inhibited the protein and gene expression of S100A3 in HepG2 cells in vitro. These data suggested that S100A3 has an important role in human HCC. The present study indicates that the functional properties of sodium cantharidinate are promising for the development of a novel drug that may control the expression of S100A3 and improve the treatment of human HCC in the near future.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhong-Feng Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Qiu
- Department of Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu-Fang He
- Institute of Phytochemistry, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130012, P.R. China
| | - Wei-Qun Yan
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wen-Yi Sun
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Antinarelli LMR, Souza IDO, Glanzmann N, Almeida ADC, Porcino GN, Vasconcelos EG, da Silva AD, Coimbra ES. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp Parasitol 2016; 171:10-16. [DOI: 10.1016/j.exppara.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
22
|
Li X, Zhou Y, Liu Y, Zhang X, Chen T, Chen K, Ba Q, Li J, Liu H, Wang H. Preclinical Efficacy and Safety Assessment of Artemisinin-Chemotherapeutic Agent Conjugates for Ovarian Cancer. EBioMedicine 2016; 14:44-54. [PMID: 27939426 PMCID: PMC5161434 DOI: 10.1016/j.ebiom.2016.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023] Open
Abstract
Artemisinin (ARS) and its derivatives, which are clinically used antimalarial agents, have shown antitumor activities. Their therapeutic potencies, however, are limited by their low solubility and poor bioavailability. Here, through a pharmacophore hybridization strategy, we synthesized ARS-drug conjugates, in which the marketed chemotherapeutic agents chlorambucil, melphalan, flutamide, aminoglutethimide, and doxifluridine, were separately bonded to Dihydroartemisinin (DHA) through various linkages. Of these, the artemisinin-melphalan conjugate, ARS4, exhibited most toxicity to human ovarian cancer cells but had low cytotoxicity to normal cells. ARS4 inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis, and inhibition of migration; these effects were stronger than those of its parent drugs, DHA and melphalan. Furthermore, ARS4 modulated the expression of proteins involved in cell cycle progression, apoptosis, and the epithelial–mesenchymal transition (EMT). Moreover, in mice, ARS4 inhibited growth and intraperitoneal dissemination and metastasis of ovarian cancer cells without observable toxic effects. Our results provide a basis for development of the compound as a chemotherapeutic agent. Research in context Artemisinin compounds have recently received attention as anticancer agents because of their clinical safety profiles and broad efficacy. However, their therapeutic potencies are limited by low solubility and poor bioavailability. Here, we report that ARS4, an artemisinin-melphalan conjugate, possesses marked in-vitro and in-vivo antitumor activity against ovarian cancer, the effects of which are stronger than those for its parent drugs, Dihydroartemisinin and melphalan. In mice, ARS4 inhibits localized growth of ovarian cancer cells and intraperitoneal dissemination and metastasis without appreciable host toxicity. Thus, for patients with ovarian cancer, ARS4 is a promising chemotherapeutic agent. Artemisinin-drug conjugates were designed via pharmacophore hybridization strategy ARS4 induced apoptosis of ovarian cancer cells and cell cycle arrest and reversed the EMT polarity In mice, ARS4 inhibited growth and intraperitoneal dissemination of ovarian cancer cells with no appreciable host toxicity
Collapse
Affiliation(s)
- Xiaoguang Li
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanling Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu Zhang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kerong Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qian Ba
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingquan Li
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Wang
- School of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
23
|
Chloroquine inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by disrupting mTOR and p38-MAPK activation. Antiviral Res 2016; 133:223-33. [PMID: 27521848 DOI: 10.1016/j.antiviral.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Lytic infection is essential for the persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV), and inhibiting KSHV lytic replication may effectively prevent the occurrence of KSHV-related diseases. Chloroquine (CQ), a well-known antimalarial drug and autophagy inhibitor, exerts broad-spectrum antiviral effects and shows anti-cancer therapeutic potential. However, the ability of CQ and its derivatives to control infection of oncogenic γ-herpesvirus remains undefined. Here we reveal that CQ suppresses KSHV lytic gene expression and virion production, and shows cytotoxicity toward KSHV lytically infected B cells at clinically acceptable doses. CQ suppresses mTOR and p38-MAPK pathway activation during KSHV lytic replication but not latent infection. Furthermore, CQ blocks Epstein-Barr virus (EBV) lytic replication via a distinct mechanism that is invoked to block virion production but does not affect viral gene expression. These results suggest that CQ is an effective antiviral drug against KSHV lytic infection. Our findings indicate that CQ treatment should be considered for controlling KSHV-related diseases, particularly for primary use in co-infection of KSHV with malaria.
Collapse
|
24
|
Yu F, Li J, Xie Y, Sleightholm RL, Oupický D. Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. J Control Release 2016; 244:347-356. [PMID: 27473763 DOI: 10.1016/j.jconrel.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Chloroquine (CQ) is a widely used antimalarial drug with emerging potential in anticancer therapies due to its apparent inhibitory effects on CXCR4 chemokine receptor, autophagy, and cholesterol metabolism. This study reports on polymeric CQ (pCQ) as a macromolecular drug with antimetastatic activity. The pCQ polymers were synthesized by copolymerization of methacryloylated hydroxy-CQ (HCQ) and N-(2-hydroxypropyl)methacrylamide (HPMA). The results show that pCQ is significantly more effective in inhibiting cancer cell migration and invasion when compared with the parent HCQ. The proposed mechanism of action at least partially relies on the ability of pCQ to inhibit cell migration mediated by the CXCR4/CXCL12 pathway. The pCQ also demonstrates superior inhibitory activity over HCQ when tested in a mouse model of experimental lung metastasis. Lastly, pCQ shows the ability to efficiently translocate to the cytoplasm while exhibiting lower cytotoxicity than HCQ. Overall, this study supports pCQ as a promising polymeric drug platform suitable for use in combination antimetastatic strategies and potential use in cytoplasmic drug delivery.
Collapse
Affiliation(s)
- Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard L Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|