1
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Manisha DS, Ratheesh AK, Benny S, Presanna AT. Heterocyclic and non-heterocyclic arena of monocarboxylate transporter inhibitors to battle tumorigenesis. Chem Biol Drug Des 2023; 102:1604-1617. [PMID: 37688395 DOI: 10.1111/cbdd.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Monocarboxylate transporters (MCTs) have gained significant attention in cancer research due to their critical role in tumour metabolism. MCTs are legends for transporting lactate molecules in cancer cells, an oncometabolite and waste product of glycolysis, acting as an indispensable factor of tumour proliferation. Targeting MCTs with inhibitors has emerged as a promising strategy to combat tumorigenesis. This article summarizes the most recent research on MCT inhibitors in preventing carcinogenesis, covering both heterocyclic and non-heterocyclic compounds. Heterocyclic and non-heterocyclic compounds such as pteridine, pyrazole, indole, flavonoids, coumarin derivatives and cyanoacetic acid derivatives have been reported as potent MCT inhibitors. We examine the molecular underpinnings of MCTs in cancer metabolism, the design and synthesis of heterocyclic and non-heterocyclic MCT inhibitors, their impact on tumour cells and the microenvironment and their potential as therapeutic agents. Moreover, we explore the challenges associated with MCT inhibitor development and propose future directions for advancing this field. This write-up aims to provide researchers, scientists and clinicians with a comprehensive understanding of the heterocyclic and non-heterocyclic MCT inhibitors and their potential in combating tumorigenesis.
Collapse
Affiliation(s)
- Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Anandu Kizhakkedath Ratheesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Aneesh Thankappan Presanna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| |
Collapse
|
3
|
Everaerts K, Thapaliya P, Pape N, Durry S, Eitelmann S, Roussa E, Ullah G, Rose CR. Inward Operation of Sodium-Bicarbonate Cotransporter 1 Promotes Astrocytic Na + Loading and Loss of ATP in Mouse Neocortex during Brief Chemical Ischemia. Cells 2023; 12:2675. [PMID: 38067105 PMCID: PMC10705779 DOI: 10.3390/cells12232675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.
Collapse
Affiliation(s)
- Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Pawan Thapaliya
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Simone Durry
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany;
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| |
Collapse
|
4
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
5
|
Hammers DE, Donahue DL, Tucker Z, Ashfeld BL, Ploplis VA, Castellino FJ, Lee SW. Streptolysin S targets the sodium-bicarbonate cotransporter NBCn1 to induce inflammation and cytotoxicity in human keratinocytes during Group A Streptococcal infection. Front Cell Infect Microbiol 2022; 12:1002230. [PMID: 36389147 PMCID: PMC9663810 DOI: 10.3389/fcimb.2022.1002230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Group A <i>Streptococcus</i> (GAS, <i>Streptococcus pyogenes</i>) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence <i>in vivo</i>. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.
Collapse
Affiliation(s)
- Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary D. Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Shaun W. Lee,
| |
Collapse
|
6
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
7
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
8
|
Xu D, Wu J, Dong L, Luo W, Li L, Tang D, Liu J. Serpinc1 Acts as a Tumor Suppressor in Hepatocellular Carcinoma Through Inducing Apoptosis and Blocking Macrophage Polarization in an Ubiquitin-Proteasome Manner. Front Oncol 2021; 11:738607. [PMID: 34881176 PMCID: PMC8645897 DOI: 10.3389/fonc.2021.738607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Serpinc1 is a serine protease inhibitor in the coagulation cascade, but its role in tumor biology remains obscure. Here, we report an unexpected role of serpinc1 in suppression of hepatocellular carcinoma (HCC). In HCC patients, the mRNA and protein expression of serpinc1 is upregulated, which is negatively correlated with tumor grade, and has a better prognosis than patients with low serpinc1. In addition, patients with high expression of serpinc1 generally have a better tumor immune microenvironment, accompanied by changes in multiple immune cells and mediators. In particular, tumor-promoting M2 macrophages are negatively correlated with serpinc1 expression and the prognosis of HCC patients. In vitro experiments further show that overexpression of serpinc1 inhibits the growth of HCC cells (HepG2 and SMMC7721) by inducing apoptosis. Accordingly, cell co-culture experiments reveal the direct role of serpinc1-overexpressed HCC cells in inhibiting the formation of M2 macrophages. Subsequent unbiased quantitative proteomic and ubiquitinome analyses identify that multiple poly-ubiquitination of proteins involved in signal pathways (such as autophagy, apoptosis, lactate metabolism, and VEGF signaling) are regulated by serpinc1. Overall, these findings establish a serpinc1-dependent ubiquitin-proteasome system to control apoptosis and antitumor immunity.
Collapse
Affiliation(s)
- Dacai Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Jiawen Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenwen Luo
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanying Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Du L, Zahra A, Jia M, Wang Q, Wu J. Understanding the Functional Expression of Na+-Coupled SLC4 Transporters in the Renal and Nervous Systems: A Review. Brain Sci 2021; 11:1276. [PMID: 34679341 PMCID: PMC8534249 DOI: 10.3390/brainsci11101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Acid-base homeostasis is crucial for numerous physiological processes. Na+/HCO3- cotransporters (NBCs) belong to the solute carrier 4 (SLC4) family, which regulates intracellular pH as well as HCO3- absorption and secretion. However, knowledge of the structural functions of these proteins remains limited. Electrogenic NBC (NBCe-1) is thought to be the primary factor promoting the precise acid-base equilibrium in distinct cell types for filtration and reabsorption, as well as the function of neurons and glia. NBC dysregulation is strongly linked to several diseases. As such, the need for special drugs that interfere with the transmission function of NBC is becoming increasingly urgent. In this review, we focus on the structural and functional characteristics of NBCe1, and discuss the roles of NBCe1 in the kidney, central nervous system (CNS), and related disorders, we also summarize the research on NBC inhibitors. NBCe1 and the related pathways should be further investigated, so that new medications may be developed to address the related conditions.
Collapse
Affiliation(s)
- Le Du
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Health Science Center, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
10
|
Zhao W, Zhang L, Ermilov LG, Colmenares Aguilar MG, Linden DR, Eisenman ST, Romero MF, Farrugia G, Sha L, Gibbons SJ. Bicarbonate ion transport by the electrogenic Na + /HCO 3- cotransporter, NBCe1, is required for normal electrical slow-wave activity in mouse small intestine. Neurogastroenterol Motil 2021; 33:e14149. [PMID: 33837991 PMCID: PMC8485339 DOI: 10.1111/nmo.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Normal gastrointestinal motility depends on electrical slow-wave activity generated by interstitial cells of Cajal (ICC) in the tunica muscularis of the gastrointestinal tract. A requirement for HCO3- in extracellular solutions used to record slow waves indicates a role for HCO3- transport in ICC pacemaking. The Slc4a4 gene transcript encoding the electrogenic Na+ /HCO3- cotransporter, NBCe1, is enriched in mouse small intestinal myenteric region ICC (ICC-MY) that generate slow waves. This study aimed to determine how extracellular HCO3- concentrations affect electrical activity in mouse small intestine and to determine the contribution of NBCe1 activity to these effects. METHODS Immunohistochemistry and sharp electrode electrical recordings were used. KEY RESULTS The NBCe1 immunoreactivity was localized to ICC-MY of the tunica muscularis. In sharp electrode electrical recordings, removal of HCO3- from extracellular solutions caused significant, reversible, depolarization of the smooth muscle and a reduction in slow-wave amplitude and frequency. In 100 mM HCO3- , the muscle hyperpolarized and slow wave amplitude and frequency increased. The effects of replacing extracellular Na+ with Li+ , an ion that does not support NBCe1 activity, were similar to, but larger than, the effects of removing HCO3- . There were no additional changes to electrical activity when HCO3- was removed from Li+ containing solutions. The Na+ /HCO3- cotransport inhibitor, S-0859 (30µM) significantly reduced the effect of removing HCO3- on electrical activity. CONCLUSIONS & INFERENCES These studies demonstrate a major role for Na+ /HCO3- cotransport by NBCe1 in electrical activity of mouse small intestine and indicated that regulation of intracellular acid:base homeostasis contributes to generation of normal pacemaker activity in the gastrointestinal tract.
Collapse
Affiliation(s)
- Wenchang Zhao
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Liwen Zhang
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Leonid G. Ermilov
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Maria Gabriela Colmenares Aguilar
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - David R. Linden
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Seth T. Eisenman
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Michael F. Romero
- Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Lei Sha
- Neuroendocrine Pharmacology, China Medical University, Shenyang, Liaoning Province, P. R. China.,Corresponding Authors: Simon J Gibbons, Ph.D., Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA. . Telephone: +1 507 284 9652, Lei Sha, M.D., China Medical University, 77 Pu He Road, Shenbei New District, Shenyang, Liaoning Province, P. R. China, 110122, , . Telephone: +86 18900911003
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Rochester, Minnesota, USA.,Physiology and Biomedical Engineering, Rochester, Minnesota, USA.,Corresponding Authors: Simon J Gibbons, Ph.D., Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA. . Telephone: +1 507 284 9652, Lei Sha, M.D., China Medical University, 77 Pu He Road, Shenbei New District, Shenyang, Liaoning Province, P. R. China, 110122, , . Telephone: +86 18900911003
| |
Collapse
|
11
|
Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3. Oncol Rep 2021; 46:129. [PMID: 34013380 PMCID: PMC8144930 DOI: 10.3892/or.2021.8080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Studies on cultured cancer cells or cell lines have revealed multiple acid extrusion mechanisms and their involvement in cancer cell growth and progression. In the present study, the role of the sodium bicarbonate transporters (NBCs) in prostate cancer cell proliferation and viability was examined. qPCR revealed heterogeneous expression of five NBC isoforms in human prostate cancer cell lines LNCaP, PC3, 22RV1, C4-2, DU145, and the prostate cell line RWPE-1. In fluorescence pH measurement of LNCaP cells, which predominantly express NBCe1, Na+ and HCO3–-mediated acid extrusion was identified by bath ion replacement and sensitivity to the NBC inhibitor S0859. NBCe1 knockdown using siRNA oligonucleotides decreased the number of viable cells, and pharmacological inhibition with S0859 (50 µM) resulted in a similar decrease. NBCe1 knockdown and inhibition also increased cell death, but this effect was small and slow. In PC3 cells, which express all NBC isoforms, NBCe1 knockdown decreased viable cell number and increased cell death. The effects of NBCe1 knockdown were comparable to those by S0859, indicating that NBCe1 among NBCs primarily contributes to PC3 cell proliferation and viability. S0859 inhibition also decreased the formation of cell spheres in 3D cultures. Immunohistochemistry of human prostate cancer tissue microarrays revealed NBCe1 localization to the glandular epithelial cells in prostate tissue and robust expression in acinar and duct adenocarcinoma. In conclusion, our study demonstrates that NBCe1 regulates acid extrusion in prostate cancer cells and inhibiting or abolishing this transporter decreases cancer cell proliferation.
Collapse
|
12
|
Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents. Drug Discov Today 2021; 26:836-844. [DOI: 10.1016/j.drudis.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
|
13
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
14
|
Chen Z, Chen L, Chen K, Lin H, Shen M, Chen L, Zhu H, Zhu Y, Wang Q, Xi F, Huang X, Wang Y, Liao W, Bin J, Asakura M, Liu J, Kitakaze M, Liao Y. Overexpression of Na +-HCO 3- cotransporter contributes to the exacerbation of cardiac remodeling in mice with myocardial infarction by increasing intracellular calcium overload. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165623. [PMID: 31778748 DOI: 10.1016/j.bbadis.2019.165623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
The role of the cardiac isoform of the electrogenic sodium-bicarbonate ion cotransporter (NBCe1) in cardiac remodeling is not fully understood. The aim of this study was to assess the effects of NBCe1 overexpression on cardiac remodeling induced by myocardial infarction (MI) in mice. We generated NBCe1 transgenic (Tg) mice and NBCe1 overexpressing adult mouse ventricular myocytes (AMVMs) to investigate the role of NBCe1 on post-MI remodeling and calcium kinetics. Tg mice showed a markedly higher mortality rate and larger infarct size after MI. At 6 weeks after MI, the maximum rising rates of left ventricular pressure (dp/dt), contractility index, and the exponential time constant of relaxation (τ) were markedly lower, and there was higher cardiomyocyte apoptosis, in Tg mice compared with WT mice. In cultured AMVMs, overexpression of NBCe1 decreased sarcomere shortening and calcium amplitude. In WT AMVMs, the rates of the rise and decay phase of calcium transients, indicated by the rising time (Tpeak, time to peak) and decay time constant (τd), and the number of apoptotic cells, were increased following hypoxia, while overexpression of NBCe1 further increased Tpeak and cellular apoptosis, but not τd. Intracellular resting calcium and sodium concentrations were significantly increased following both hypoxia and NBCe1 overexpression. Co-treatment with S0859, an NBCe1 antagonist, blocked the hypoxia-induced increase in Tpeak, τd, intracellular resting calcium and sodium concentrations, and apoptosis in cardiomyocytes. These findings indicate that NBCe1 overexpression promotes cardiac remodeling by increasing intracellular calcium overload. Therefore, NBCe1 should be a potential target for treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hailin Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fang Xi
- Department of Military Preventive Medicine, Frontier Medical Training Brigade, Army Medical University, Hutubi, Xinjiang 831200, China
| | - Xiaobo Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuegang Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Masanori Asakura
- Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Masafumi Kitakaze
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Loonat AA, Curtis MK, Richards MA, Nunez-Alonso G, Michl J, Swietach P. A high-throughput ratiometric method for imaging hypertrophic growth in cultured primary cardiac myocytes. J Mol Cell Cardiol 2019; 130:184-196. [PMID: 30986378 PMCID: PMC6520438 DOI: 10.1016/j.yjmcc.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Maladaptive hypertrophy of cardiac myocytes increases the risk of heart failure. The underlying signaling can be triggered and interrogated in cultured neonatal ventricular myocytes (NRVMs) using sophisticated pharmacological and genetic techniques. However, the methods for quantifying cell growth are, by comparison, inadequate. The lack of quantitative, calibratable and computationally-inexpensive high-throughput technology has limited the scope for using cultured myocytes in large-scale analyses. We present a ratiometric method for quantifying the hypertrophic growth of cultured myocytes, compatible with high-throughput imaging platforms. Protein biomass was assayed from sulforhodamine B (SRB) fluorescence, and image analysis calculated the quotient of signal from extra-nuclear and nuclear regions. The former readout relates to hypertrophic growth, whereas the latter is a reference for correcting protein-independent (e.g. equipment-related) variables. This ratiometric measure, when normalized to the number of cells, provides a robust quantification of cellular hypertrophy. The method was tested by comparing the efficacy of various chemical agonists to evoke hypertrophy, and verified using independent assays (myocyte area, transcripts of markers). The method's high resolving power and wide dynamic range were confirmed by the ability to generate concentration-response curves, track the time-course of hypertrophic responses with fine temporal resolution, describe drug/agonist interactions, and screen for novel anti-hypertrophic agents. The method can be implemented as an end-point in protocols investigating hypertrophy, and is compatible with automated plate-reader platforms for generating high-throughput data, thereby reducing investigator-bias. Finally, the computationally-minimal workflow required for obtaining measurements makes the method simple to implement in most laboratories. Maladaptive hypertrophy of myocytes can lead to heart failure. Common methods for tracking growth in cultured myocytes are inadequate. We design and test a method for tracking myocyte hypertrophy in vitro. The method provides a ratiometric index of growth for high throughput analyses. Using the method, we characterize further details of (anti)hypertrophic responses.
Collapse
Affiliation(s)
- Aminah A Loonat
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - M Kate Curtis
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Mark A Richards
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Graciela Nunez-Alonso
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Johanna Michl
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Pawel Swietach
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
16
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
17
|
Köhler S, Winkler U, Sicker M, Hirrlinger J. NBCe1 mediates the regulation of the NADH/NAD + redox state in cortical astrocytes by neuronal signals. Glia 2018; 66:2233-2245. [PMID: 30208253 DOI: 10.1002/glia.23504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes are a glial cell type, which is indispensable for brain energy metabolism. Within cells, the NADH/NAD+ redox state is a crucial node in metabolism connecting catabolic pathways to oxidative phosphorylation and ATP production in mitochondria. To characterize the dynamics of the intracellular NADH/NAD+ redox state in cortical astrocytes Peredox, a genetically encoded sensor for the NADH/NAD+ redox state, was expressed in cultured cortical astrocytes as well as in cortical astrocytes in acutely isolated brain slices. Calibration of the sensor in cultured astrocytes revealed a mean basal cytosolic NADH/NAD+ redox ratio of about 0.01; however, with a broad distribution and heterogeneity in the cell population, which was mirrored by a heterogeneous basal cellular concentration of lactate. Inhibition of glucose uptake decreased the NADH/NAD+ redox state while inhibition of lactate dehydrogenase or of lactate release resulted in an increase in the NADH/NAD+ redox ratio. Furthermore, the NADH/NAD+ redox state was regulated by the extracellular concentration of K+ , and application of the neurotransmitters ATP or glutamate increased the NADH/NAD+ redox state dependent on purinergic receptors and glutamate uptake, respectively. This regulation by K+ , ATP, and glutamate involved NBCe1 mediated sodium-bicarbonate transport. These results demonstrate that the NADH/NAD+ redox state in astrocytes is a metabolic node regulated by neuronal signals reflecting physiological activity, most likely contributing to adjust astrocytic metabolism to energy demand of the brain.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
18
|
Noor ZN, Deitmer JW, Theparambil SM. Cytosolic sodium regulation in mouse cortical astrocytes and its dependence on potassium and bicarbonate. J Cell Physiol 2018; 234:89-99. [PMID: 30132845 DOI: 10.1002/jcp.26824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Sodium plays a major role in different astrocytic functions, including maintenance of ion homeostasis and uptake of neurotransmitters and metabolites, which are mediated by different Na+ -coupled transporters. In the current study, the role of an electrogenic sodium-bicarbonate cotransporter (NBCe1), a sodium-potassium-chloride transporter 1 (NKCC1) and sodium-potassium ATPase (Na+ -K+ -ATPase) for the maintenance of [Na+ ]i was investigated in cultured astrocytes of wild-type (WT) and of NBCe1-deficient (NBCe1-KO) mice using the Na+ -sensitive dye, asante sodium green-2. Our results suggest that cytosolic Na+ was higher in the presence of CO2 /HCO3 - (15 mM) than CO2 /HCO3 - -free, HEPES-buffered solution in WT, but not in NBCe1-KO astrocytes (12 mM). Surprisingly, there was a strong dependence of cytosolic [Na+ ] on the extracellular [HCO3 - ] attributable to NBCe1 activity. Pharmacological blockage of NKCC1 with bumetanide led to a robust drop in cytosolic Na+ in both WT and NBCe1-KO astrocytes by up to 6 mM. There was a strong dependence of the cytosolic [Na+ ] on the extracellular [K+ ]. Inhibition of the Na+ -K+ -ATPase led to larger increase in cytosolic Na+ , both in the absence of K+ as compared with the presence of ouabain and in NBCe1-KO astrocytes as compared with WT astrocytes. Our results show that cytosolic Na+ in mouse cortical astrocytes can vary considerably and depends greatly on the concentrations of HCO3 - and K+ , attributable to the activity of the Na+ -K+ -ATPase, of NBCe1 and NKCC1.
Collapse
Affiliation(s)
- Zinnia N Noor
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
19
|
Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife 2018; 7:35176. [PMID: 29809145 PMCID: PMC5986270 DOI: 10.7554/elife.35176] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
Many tumor cells produce vast amounts of lactate and acid, which have to be removed from the cell to prevent intracellular lactacidosis and suffocation of metabolism. In the present study, we show that proton-driven lactate flux is enhanced by the intracellular carbonic anhydrase CAII, which is colocalized with the monocarboxylate transporter MCT1 in MCF-7 breast cancer cells. Co-expression of MCTs with various CAII mutants in Xenopus oocytes demonstrated that CAII facilitates MCT transport activity in a process involving CAII-Glu69 and CAII-Asp72, which could function as surface proton antennae for the enzyme. CAII-Glu69 and CAII-Asp72 seem to mediate proton transfer between enzyme and transporter, but CAII-His64, the central residue of the enzyme's intramolecular proton shuttle, is not involved in proton shuttling between the two proteins. Instead, this residue mediates binding between MCT and CAII. Taken together, the results suggest that CAII features a moiety that exclusively mediates proton exchange with the MCT to facilitate transport activity.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Somayeh Jamali
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Samantha Ames
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Silke Langer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 2017; 43:66-73. [PMID: 28137473 DOI: 10.1016/j.semcancer.2017.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.
Collapse
|
21
|
Yao H, Azad P, Zhao HW, Wang J, Poulsen O, Freitas BC, Muotri AR, Haddad GG. The Na +/HCO 3- co-transporter is protective during ischemia in astrocytes. Neuroscience 2016; 339:329-337. [PMID: 27717805 DOI: 10.1016/j.neuroscience.2016.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 02/03/2023]
Abstract
The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood-brain barrier, synaptic transmission, and electrolyte balance in the human brain. Nevertheless, the role of NBC in the ischemic astrocyte death has not been well understood. In this work, we obtained skin biopsies from healthy human subjects and had their fibroblasts grown in culture and reprogrammed into human-induced pluripotent stem cells (hiPSCs). These hiPSCs were further differentiated into neuroprogenitor cells (NPCs) and then into human astrocytes. These astrocytes express GFAP and S100β and readily propagate calcium waves upon mechanical stimulation. Using pH-sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] and qPCR technique, we have confirmed that these astrocytes express functional NBC including electrogenic NBC (NBCe). In addition, astrocytes exposed to an ischemic solution (IS) that mimics the ischemic penumbral environment enhanced both mRNA and protein expression level of NBCe1 in astrocytes. Using IS and a generic NBC blocker S0859, we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30μM S0859 induced a 97.5±1.6% (n=10) cell death in IS-treated astrocytes, which is significantly higher than 43.6±4.5%, (n=10) in the control group treated with IS alone. In summary, a NBC blocker exaggerates IS-induced cell death, suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment.
Collapse
Affiliation(s)
- Hang Yao
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Priti Azad
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Huiwen W Zhao
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Juan Wang
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Orit Poulsen
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Beatriz C Freitas
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, United States
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, United States
| | - Gabriel G Haddad
- Departments of Pediatrics & Neuroscience, University of California-San Diego, La Jolla, CA 92093, United States; Rady Children's Hospital-San Diego, San Diego, CA 92123, United States.
| |
Collapse
|
22
|
McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G, Seden P, Jones D, Bridges E, Wigfield S, Li JL, Russell A, Swietach P, Harris AL. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth. Cancer Res 2016; 76:3744-55. [PMID: 27197160 DOI: 10.1158/0008-5472.can-15-1862] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/25/2016] [Indexed: 11/16/2022]
Abstract
Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom. Cancer Biology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ioanna Ledaki
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Cameron Snell
- Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dean Singleton
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Graham Steers
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Peter Seden
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom. Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Dylan Jones
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Simon Wigfield
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Ji-Liang Li
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Angela Russell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom. Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom.
| |
Collapse
|
23
|
Andersen AP, Flinck M, Oernbo EK, Pedersen NB, Viuff BM, Pedersen SF. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer 2016; 15:45. [PMID: 27266704 PMCID: PMC4896021 DOI: 10.1186/s12943-016-0528-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background The 3-dimensional (3D) microenvironment of breast carcinomas is characterized by profoundly altered pH homeostasis, reflecting increased metabolic acid production and a confined extracellular space characterized by poor diffusion, yet the relative contributions of specific pH-regulatory transporters to 3D growth are poorly understood. The aim of this work was to determine how 3D spheroid growth of breast cancer cells impacts the expression and spatial organization of major acid extruding proteins, and how these proteins in turn are required for spheroid growth. Methods MCF-7 (Luminal-A) and MDA-MB-231 (Triple-negative) human breast cancer cells were grown as ~700-950 μm diameter spheroids, which were subjected to Western blotting for relevant transporters (2- and 3D growth), quantitative immunohistochemical analysis, and spheroid growth assays. Individual transporter contributions were assessed (i) pharmacologically, (ii) by stable shRNA- and transient siRNA-mediated knockdown, and (iii) by CRISPR/Cas9 knockout. Results In MCF-7 spheroids, expression of the lactate-H+ cotransporter MCT1 (SLC16A1) increased from the spheroid periphery to its core, the Na+,HCO3− cotransporter NBCn1 (SLC4A7) was most highly expressed at the periphery, and the Na+/H+ exchanger NHE1 (SLC9A1) and MCT4 (SLC16A3) were evenly distributed. A similar pattern was seen in MDA-MB-231 spheroids, except that these cells do not express MCT1. The relative total expression of NBCn1 and NHE1 was decreased in 3D compared to 2D, while that of MCT1 and MCT4 was unaltered. Inhibition of MCT1 (AR-C155858) attenuated MCF-7 spheroid growth and this was exacerbated by addition of S0859, an inhibitor of Na+,HCO3− cotransporters and MCTs. The pharmacological data was recapitulated by stable knockdown of MCT1 or NBCn1, whereas knockdown of MCT4 had no effect. CRISPR/Cas9 knockout of NHE1, but neither partial NHE1 knockdown nor the NHE1 inhibitor cariporide, inhibited MCF-7 spheroid growth. In contrast, growth of MDA-MB-231 spheroids was inhibited by stable or transient NHE1 knockdown and by NHE1 knockout, but not by knockdown of NBCn1 or MCT4. Conclusions This work demonstrates the distinct expression and localization patterns of four major acid-extruding transporters in 3D spheroids of human breast cancer cells and reveals that 3D growth is dependent on these transporters in a cell type-dependent manner, with potentially important implications for breast cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0528-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Poder Andersen
- Department of Biology, Section for Cell Biology and Physiology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Mette Flinck
- Department of Biology, Section for Cell Biology and Physiology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Eva Kjer Oernbo
- Department of Biology, Section for Cell Biology and Physiology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Nis Borbye Pedersen
- Department of Biology, Section for Cell Biology and Physiology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Birgitte Martine Viuff
- Department of Veterinary Disease Biology, Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Department of Biology, Section for Cell Biology and Physiology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
24
|
Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol Aspects Med 2016; 47-48:3-14. [DOI: 10.1016/j.mam.2015.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
26
|
Theparambil SM, Naoshin Z, Thyssen A, Deitmer JW. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes. J Physiol 2015; 593:3533-47. [PMID: 25990710 DOI: 10.1113/jp270086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/17/2015] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The regulation of H(+) i from cytosolic alkalosis has generally been attributed to the activity of Cl(-) -coupled acid loaders/base extruders in most cell types, including brain cells. The present study demonstrates that outwardly-directed sodium bicarbonate cotransport via electrogenic sodium bicarbonate cotransporter 1 (NBCe1) mediates the major fraction of H(+) i regulation from cytosolic alkalosis in mouse cortical astrocytes. Cl(-) -coupled acid-loading transporters play only a minor role in the regulation of H(+) i from alkalosis in mouse cortical astrocytes. NBCe1-mediated H(+) i regulation from alkalosis was dominant, with the support of intracellular carbonic anhydrase II, even when the intra- and extracellular [HCO3 (-) ] was very low (<1mM), as in nominally CO2 /HCO3 (-) free condition. A reversed NBCe1 in astrocytes may also be significant for stabilizing extracellular pH in brain tissue. ABSTRACT Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl(-) coupled acid loaders/base extruders such as Cl(-) /HCO3 (-) or Cl(-) /OH(-) exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2 /HCO3 (-) or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H(+) or Na(+) using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na(+) and HCO3 (-) . After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2 /HCO3 (-) . Increasing the extracellular K(+) concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3 (-) ] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Department of General Zoology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Zinnia Naoshin
- Department of General Zoology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anne Thyssen
- Department of General Zoology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Department of General Zoology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|