1
|
Karati D, Meur S, Das S, Adak A, Mukherjee S. Peptide-based drugs in immunotherapy: current advances and future prospects. Med Oncol 2025; 42:177. [PMID: 40266466 DOI: 10.1007/s12032-025-02739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
In immunotherapy, peptide-based medications are showing great promise as a new class of therapies that can be used to treat autoimmune diseases, cancer, and other immune-related conditions. Peptides are being created for use in immunotherapy as vaccines, immunological modulators, and adjuvants because of their capacity to precisely alter immune responses. They can imitate endogenous signals or interact with immune cells, improving the body's capacity to identify and combat malignancies or reestablishing immunological tolerance in autoimmune disorders. Notably, peptide-based treatments have demonstrated promise in promoting tumor-specific immune responses and improving the effectiveness of already available immunotherapies, such as immune checkpoint inhibitors. Notwithstanding its potential, peptide-based medications' clinical translation is fraught with difficulties, such as those pertaining to immunogenicity, bioavailability, and peptide stability. Overcoming these obstacles has been made possible by developments in peptide engineering, including pharmacokinetic optimization, receptor-binding affinity enhancement, and the creation of innovative delivery systems. The targeted distribution and effectiveness of peptide medications can be improved by using liposomes, nanoparticles, and other delivery methods, increasing their therapeutic utility. With an emphasis on recent scientific developments, mechanisms of action, and therapeutic uses, this review examines the present status of peptide-based medications in immunotherapy. We also look at the obstacles that still need to be overcome in order to get peptide-based treatments from the lab to the clinic and offer suggestions for future research initiatives. By tackling these important problems, we hope to demonstrate how peptide-based medications have the ability to revolutionize immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University-TIU, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Soumi Das
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Arpan Adak
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
2
|
Song Y, Wang Z, Ji H, Jiang Z, Li X, Du Z, Wei S, Sun Y. Fatty acid modification of casein bioactive peptides nano-assemblies, synthesis, characterization and anticarcinogenic effect. Int J Biol Macromol 2024; 254:127718. [PMID: 37918594 DOI: 10.1016/j.ijbiomac.2023.127718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
In this study, the nano-assemblies of bovine casein hydrolyzed peptides (HP) modified by fatty acids with various alkyl chain lengths (C8, C10, C12 and C14) were synthesized. The physicochemical properties of HP-C8-HP-C14 nano-assemblies were characterized using spectra, laser particle size analyzer, contact angle meter, scanning electron microscope (SEM) and cryo-transmission electron microscope (Cryo-TEM). HP-C8 and HP-C10 self-assembled into a hollow cube cage with an average size of ~500 nm, and the assembly of HP-C12 showed a flower-shaped morphology with more dispersed behavior, and droplet size was observed as ~20 nm. The in vitro cytotoxicity against human breast cancer cells MCF-7 was tested using CCK-8 assay and flow cytometry analysis. HP-C12 showed the highest cytotoxicity for MCF-7 cells with an inhibition rate of 66.03 % ± 0.35 % with an IC50 value of 7.4 μM among HP-Cn. HP-C8, HP-C10 and HP-C12 significantly affected on the migration, invasion and apoptosis of MCF-7 cells. The apoptosis mechanism may depend on the upregulation of anti-apoptotic protein Bcl-2 as well as pro-apoptotic proteins Bax and caspase-8. The dead MCF-7 cells were analyzed with UHPLC-MS/MS using untargeted metabolomics, revealing key metabolic pathways.
Collapse
Affiliation(s)
- Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyou Jiang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Ahmad I, Pal S, Singh R, Ahmad K, Dey N, Srivastava A, Ahmad R, Suliman M, Alshahrani MY, Barkat MA, Siddiqui S. Antimicrobial peptide moricin induces ROS mediated caspase-dependent apoptosis in human triple-negative breast cancer via suppression of notch pathway. Cancer Cell Int 2023; 23:121. [PMID: 37344820 DOI: 10.1186/s12935-023-02958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Breast cancer is the world's most prevalent cancer among women. Microorganisms have been the richest source of antibiotics as well as anticancer drugs. Moricin peptides have shown antibacterial properties; however, the anticancer potential and mechanistic insights into moricin peptide-induced cancer cell death have not yet been explored. METHODS An investigation through in silico analysis, analytical methods (Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), mass spectroscopy (MS), circular dichroism (CD), and in vitro studies, has been carried out to delineate the mechanism(s) of moricin-induced cancer cell death. An in-silico analysis was performed to predict the anticancer potential of moricin in cancer cells using Anti CP and ACP servers based on a support vector machine (SVM). Molecular docking was performed to predict the binding interaction between moricin and peptide-related cancer signaling pathway(s) through the HawkDOCK web server. Further, in vitro anticancer activity of moricin was performed against MDA-MB-231 cells. RESULTS In silico observation revealed that moricin is a potential anticancer peptide, and protein-protein docking showed a strong binding interaction between moricin and signaling proteins. CD showed a predominant helical structure of moricin, and the MS result determined the observed molecular weight of moricin is 4544 Da. An in vitro study showed that moricin exposure to MDA-MB-231 cells caused dose dependent inhibition of cell viability with a high generation of reactive oxygen species (ROS). Molecular study revealed that moricin exposure caused downregulation in the expression of Notch-1, NF-ƙB and Bcl2 proteins while upregulating p53, Bax, caspase 3, and caspase 9, which results in caspase-dependent cell death in MDA-MB-231 cells. CONCLUSIONS In conclusion, this study reveals the anticancer potential and underlying mechanism of moricin peptide-induced cell death in triple negative cancer cells, which could be used in the development of an anticancer drug.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India.
| | - Saurabh Pal
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, India.
| | - Khursheed Ahmad
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Nilanjan Dey
- Department of Chemistry, BITS- Pilani Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
| |
Collapse
|
4
|
Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10:200004. [PMID: 32692959 PMCID: PMC7574553 DOI: 10.1098/rsob.200004] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anti-cancer peptides (ACPs) are a series of short peptides composed of 10-60 amino acids that can inhibit tumour cell proliferation or migration, or suppress the formation of tumour blood vessels, and are less likely to cause drug resistance. The aforementioned merits make ACPs the most promising anti-cancer candidate. However, ACPs may be degraded by proteases, or result in cytotoxicity in many cases. To overcome these drawbacks, a plethora of research has focused on reconstruction or modification of ACPs to improve their anti-cancer activity, while reducing their cytotoxicity. The modification of ACPs mainly includes main chain reconstruction and side chain modification. After summarizing the classification and mechanism of action of ACPs, this paper focuses on recent development and progress about their reconstruction and modification. The information collected here may provide some ideas for further research on ACPs, in particular their modification.
Collapse
Affiliation(s)
- Mingfeng Xie
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Dijia Liu
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Yufeng Yang
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China.,Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| |
Collapse
|