1
|
Collier L, Seah C, Hicks EM, Holtzheimer PE, Krystal JH, Girgenti MJ, Huckins LM, Johnston KJA. The impact of chronic pain on brain gene expression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307630. [PMID: 38826319 PMCID: PMC11142271 DOI: 10.1101/2024.05.20.24307630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Chronic pain affects one fifth of American adults, contributing significant public health burden. Chronic pain mechanisms can be further understood through investigating brain gene expression. Methods We tested differentially expressed genes (DEGs) in chronic pain, migraine, lifetime fentanyl and oxymorphone use, and with chronic pain genetic risk in four brain regions (dACC, DLPFC, MeA, BLA) and imputed cell type expression data from 304 postmortem donors. We compared findings across traits and with independent transcriptomics resources, and performed gene-set enrichment. Results We identified two chronic pain DEGs: B4GALT and VEGFB in bulk dACC. We found over 2000 (primarily BLA microglia) chronic pain cell type DEGs. Findings were enriched for mouse microglia pain genes, and for hypoxia and immune response. Cross-trait DEG overlap was minimal. Conclusions Chronic pain-associated gene expression is heterogeneous across cell type, largely distinct from that in pain-related traits, and shows BLA microglia are a key cell type.
Collapse
Affiliation(s)
- Lily Collier
- Department of Biological Sciences, Columbia University, New York City, NY
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Carina Seah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Emily M Hicks
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Paul E Holtzheimer
- National Center for PTSD, U.S. Department of Veterans Affairs
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - John H Krystal
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Clinical Neuroscience Division, National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| | - Matthew J Girgenti
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Clinical Neuroscience Division, National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| | - Laura M Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Keira J A Johnston
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| |
Collapse
|
2
|
Jiang L, Hao J, Yang XL, Zhu JX, Wang Y, Huang YL, Sun YE, Mao YT, Ni K, Gu XP, Ma ZL. Basolateral Amygdala Reactive Microglia May Contribute to Synaptic Impairment and Depressive-Like Behavior in Mice with Bone Cancer Pain. Neurochem Res 2022; 47:3454-3463. [PMID: 36002639 DOI: 10.1007/s11064-022-03731-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
Anxiety and depression induced by cancer-related pain disturb quality of life and willingness to survive. As a component of the limbic system, the basolateral amygdala (BLA) is critical for processing negative emotions. The reactive microglial engulfment of synapses may promote depression during adolescence. However, whether microglia phagocytose synapses to mediate cancer pain-induced depression remains unclear. The present study established a bone cancer-pain model to investigate the association between dendritic spine synapses and depressive-like behavior and explore the phagocytic function of microglia in the BLA. We found that tumor-bearing mice experienced postoperative pain-related depression, and their BLAs exhibited reactive microglia, as well as phagocytic synapses. The microglial inhibitor minocycline effectively mitigated depressive behavior, synaptic damage, and the phagocytic function of microglia. Our study implicates microglia-mediated synaptic loss in the BLA may act as the pathological basis of depressive-like behavior in bone cancer pain model.
Collapse
Affiliation(s)
- Li Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jing Hao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xu-Li Yang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ji-Xiang Zhu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu Wang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu-Lin Huang
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yu-E Sun
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan-Ting Mao
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Ni
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Xiao-Ping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Zheng-Liang Ma
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China. .,Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Askari-Zahabi K, Abbasnejad M, Kooshki R, Raoof M, Esmaeili-Mahani S, Pourrahimi AM, Zamyad M. The role of basolateral amygdala orexin 1 receptors on the modulation of pain and psychosocial deficits in nitroglycerin-induced migraine model in adult male rats. Korean J Pain 2022; 35:22-32. [PMID: 34966009 PMCID: PMC8728545 DOI: 10.3344/kjp.2022.35.1.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine headaches have been associated with sensory hyperactivity and anomalies in social/emotional responses. The main objective of this study was to evaluate the potential involvement of orexin 1 receptors (Orx1R) within the basolateral amygdala (BLA) in the modulation of pain and psychosocial dysfunction in a nitroglycerin (NTG)-induced rat model of migraine. Methods Adult male Wistar rats were injected with NTG (5 mg/kg, intraperitoneal) every second day over nine days to induce migraine. The experiments were done in the following six groups (6 rats per group) untreated control, NTG, NTG plus vehicle, and NTG groups that were post-treated with intra-BLA microinjection of Orx1R antagonist SB-334867 (10, 20, and 40 nM). Thermal hyperalgesia was assessed using the hot plate and tail-flick tests. Moreover, the elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behaviors. The animals’ sociability was evaluated using the three-chamber social task. The NTG-induced photophobia was assessed using a light-dark box. Results We observed no change in NTG-induced thermal hyperalgesia following administration of SB-334867 (10, 20, and 40 nM). However, SB-334867 (20 and 40 nM) aggravated the NTG-induced anxiogenic responses in both the EPM and OF tasks. The NTG-induced social impairment was overpowered by SB-334867 at all doses. Time spent in the dark chamber of light-dark box was significantly increased in rats treated with SB-334867 (20 and 40 nM/rat). Conclusions The findings suggest a role for Orx1R within the BLA in control comorbid affective complaints with migraine in rats.
Collapse
Affiliation(s)
- Khadijeh Askari-Zahabi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Mohammad Pourrahimi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Zamyad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Tavassoli M, Ardjmand A. Pentylenetetrazol and Morphine Interaction in a State-dependent Memory Model: Role of CREB Signaling. Basic Clin Neurosci 2021; 11:557-572. [PMID: 33613894 PMCID: PMC7878041 DOI: 10.32598/bcn.11.4.1482.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/20/2018] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: State-dependent (STD) memory is a process, in which the learned information can be optimally retrieved only when the subject is in the state similar to the encoding phase. This phenomenon has been widely studied with morphine. Several studies have reported that Pentylenetetrazole (PTZ) impairs memory in experimental animal models. Due to certain mechanistic interactions between morphine and PTZ, it is hypothesized that PTZ may interfere with the morphine-STD. The cyclic adenosine monophosphate Response Element-Binding (CREB) is considered as the main downstream marker for long-term memory. This study was designed to determine the possible interaction between PTZ and morphine STD and the presumable changes in CREB mRNA. Methods: In an Inhibitory Avoidance (IA) model, posttraining morphine (2.5, 5, and 7.5 mg/ kg-i.p.) was used. The pre-test morphine was evaluated for morphine-induced STD memory. Moreover, the effect of a pre-test PTZ (60 mg/kg-i.p.) was studied along with morphine STD. Locomotion testing was carried out using open-field. Eventually, using real-time-PCR, the CREB mRNA changes in the hippocampus were evaluated. Results: Posttraining MOR (7.5 mg/kg-i.p.) impaired IA memory (P<0.001). The pre-test injection of similar doses of morphine recovered the morphine-induced memory impairment (P<0.001). The pre-test PTZ impaired the IA memory recall (P<0.001); however, the pre-test PTZ along with morphine STD potentiated the morphine-induced STD (P<0.001). Alterations in CREB mRNA were observed in all groups. No difference was seen in the locomotor activity. Conclusion: Presumably, the certain interactive effect of PTZ on morphine-induced STD is mediated through gamma-aminobutyric acid and opioid systems via CREB signaling.
Collapse
Affiliation(s)
- Marziyeh Tavassoli
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Javid H, Rezayof A, Ghasemzadeh Z, Sardari M. The involvement of ventral hippocampal microglial cells, but not cannabinoid CB1 receptors, in morphine-induced analgesia in rats. Acta Neurol Belg 2020; 120:1077-1084. [PMID: 31006075 DOI: 10.1007/s13760-019-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
It is well known that glial cells are involved in pain processing. The purpose of the present study was to investigate the possible involvement of the ventral hippocampal (VH) glial cells in morphine-induced analgesia. A tail-flick apparatus was used to measure pain sensitivity in male Wistar rats that were bilaterally cannulated in the VH by stereotaxic surgery. The results showed that intraperitoneal (i.p.) administration of morphine (2.5-7.5 mg/kg) induced analgesia in a time-dependent manner. The blockade of the VH glial cell activation by bilateral microinjection of a glial inhibitor, minocycline (5-15 µg/rat) into the VH with an ineffective dose of morphine (2.5 mg/kg, i.p) significantly increased morphine analgesia. Considering that the endocannabinoid system via CB1 receptors play a crucial role in pain modulation, we also assessed the possible role of the VH cannabinoid CB1 receptors in the functional interaction between minocycline and morphine in acute pain. Our results indicated that intra-VH injection of the cannabinoid CB1 receptor agonist, arachidonylcyclopropylamide (ACPA; 4-12 ng/rat) had no effect on minocycline-induced potentiation of morphine analgesia. It should be considered that intra-VH microinjection of minocycline or ACPA by itself had no effect on tail-flick latency. Our findings suggest that the activation of the VH microglial cells may be involved in mediating pain sensation, because the inhibition of these cells by intra-VH injection of minocycline could potentiate morphine-induced analgesia. Although endocannabinoids have a regulatory role in glia function, the activation of CB1 receptors could not affect the potentiative effect of minocycline on morphine analgesia.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| |
Collapse
|
6
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
7
|
Seddighfar M, Ghasemzadeh Z, Rezayof A. The blockade of 5-HT1A receptors in the ventral tegmental area inhibited morphine/dextromethorphan-induced analgesia in pain rat models. Brain Res 2019; 1715:27-34. [DOI: 10.1016/j.brainres.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 01/02/2023]
|
8
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
9
|
Catale C, Bussone S, Lo Iacono L, Carola V. Microglial alterations induced by psychoactive drugs: A possible mechanism in substance use disorder? Semin Cell Dev Biol 2019; 94:164-175. [PMID: 31004753 DOI: 10.1016/j.semcdb.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Recently, the xenobiotic hypothesis has implicated the immune system in targeting substances of abuse as foreign molecules and stimulating inflammatory responses. Microglial cells are the resident immune cells of the central nervous system and function in homeostatic surveillance. Microglial changes that are induced by exposure to substances of abuse appear to mediate in part the establishment of addiction and the persistence of drug-mediated biological and behavioral changes. In this context, interest in the study of drug-microglia interactions has increased recently. This review summarizes the most recent preclinical rodent and clinical studies on the interaction between microglia and various classes of drugs of abuse, such as ethanol, psychostimulants, and opioids. The principal biological mechanisms of the communication between substances of abuse and microglia will be described to consider putative mechanisms of the establishment of drug addiction and future potential targets for treating substance use disorder.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy
| | - Silvia Bussone
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy
| | - Luisa Lo Iacono
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
10
|
Filippini HF, Scalzilli PA, Costa KM, Freitas RDS, Campos MM. Activation of trigeminal ganglion satellite glial cells in CFA-induced tooth pulp pain in rats. PLoS One 2018; 13:e0207411. [PMID: 30419075 PMCID: PMC6231674 DOI: 10.1371/journal.pone.0207411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
This study further investigated the mechanisms underlying the rat model of tooth pulp inflammatory pain elicited by complete Freund's adjuvant (CFA), in comparison to other pulpitis models. Pulps of the left maxillary first molars were accessed. In the CFA group, the pulps were exposed, and CFA application was followed by dental sealing. In the open group, the pulps were left exposed to the oral cavity. For the closed group, the pulps were exposed, and the teeth were immediately sealed. Naïve rats were used as negative controls. Several parameters were evaluated at 1, 2, 3 and 8 days. There was no statistical significant difference among the groups when body weight variation, food or water consumption were compared. Analysis of serum cytokines (IL-1β, TNF or IL-6) or differential blood cell counts did not reveal any evidence of systemic inflammation. The CFA group displayed a significant reduction in the locomotor activity (at 1 and 3 days), associated with an increased activation of satellite glial cells in the ipsilateral trigeminal ganglion (TG; for up to 8 days). Amygdala astrocyte activation was unaffected in any experimental groups. We provide novel evidence indicating that CFA-induced pulp inflammation impaired the locomotor activity, with persistent activation of ipsilateral TG satellite cells surrounding sensory neurons, without any evidence of systemic inflammation or amygdala astrogliosis.
Collapse
Affiliation(s)
- Helena F. Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Paulo A. Scalzilli
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Kesiane M. Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Raquel D. S. Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Maria M. Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| |
Collapse
|
11
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Protective effects of atorvastatin against morphine-induced tolerance and dependence in mice. Brain Res 2017; 1657:333-339. [DOI: 10.1016/j.brainres.2016.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/24/2016] [Accepted: 12/28/2016] [Indexed: 01/21/2023]
|