1
|
Sajjaviriya C, Fujianti, Azuma M, Tsuchiya H, Koshimizu TA. Computer vision analysis of mother-infant interaction identified efficient pup retrieval in V1b receptor knockout mice. Peptides 2024; 177:171226. [PMID: 38649033 DOI: 10.1016/j.peptides.2024.171226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Close contact between lactating rodent mothers and their infants is essential for effective nursing. Whether the mother's effort to retrieve the infants to their nest requires the vasopressin-signaling via V1b receptor has not been fully defined. To address this question, V1b receptor knockout (V1bKO) and control mice were analyzed in pup retrieval test. Because an exploring mother in a new test cage randomly accessed to multiple infants in changing backgrounds over time, a computer vision-based deep learning analysis was applied to continuously calculate the distances between the mother and the infants as a parameter of their relationship. In an open-field, a virgin female V1bKO mice entered fewer times into the center area and moved shorter distances than wild-type (WT). While this behavioral pattern persisted in V1bKO mother, the pup retrieval test demonstrated that total distances between a V1bKO mother and infants came closer in a shorter time than with a WT mother. Moreover, in the medial preoptic area, parts of the V1b receptor transcripts were detected in galanin- and c-fos-positive neurons following maternal stimulation by infants. This research highlights the effectiveness of deep learning analysis in evaluating the mother-infant relationship and the critical role of V1b receptor in pup retrieval during the early lactation phase.
Collapse
Affiliation(s)
- Chortip Sajjaviriya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0489, Japan
| | - Fujianti
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0489, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0489, Japan
| | - Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0489, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0489, Japan.
| |
Collapse
|
2
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
3
|
Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric µ-V1b receptor. Sci Rep 2021; 11:15813. [PMID: 34349143 PMCID: PMC8339129 DOI: 10.1038/s41598-021-94894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
During the development of analgesic tolerance to morphine, the V1b vasopressin receptor has been proposed to bind to β-arrestin 2 and the µ-opioid receptor to enable their interaction. However, direct evidence of such a high-order complex is lacking. Using bioluminescent resonance energy transfer between a split Nanoluciferase and the Venus fluorescent protein, the NanoBit-NanoBRET system, we found that β-arrestin 2 closely located near the heteromer µ-V1b receptor in the absence of an agonist and moved closer to the receptor carboxyl-termini upon agonist stimulation. An additive effect of the two agonists for opioid and vasopressin receptors was detected on the NanoBRET between the µ-V1b heteromer and β-arrestin 2. To increase the agonist response of NanoBRET, the ratio of the donor luminophore to the acceptor fluorophore was decreased to the detection limit of luminescence. In the first phase of access, β-arrestin 2 was likely to bind to the unstimulated V1b receptor in both its phosphorylated and unphosphorylated forms. In contrast, the second-phase access of β-arrestin 2 was agonist dependent, indicating a possible pharmacological intervention strategy. Therefore, our efficient method should be useful for evaluating chemicals that directly target the vasopressin binding site in the µ-V1b heteromer to reduce the second-phase access of β-arrestin 2 and thereby to alleviate tolerance to morphine analgesia.
Collapse
|
4
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
5
|
Savić B, Martin A, Mecawi AS, Bukumirić Z, Antunes-Rodrigues J, Murphy D, Šarenac O, Japundžić-Žigon N. Vasopressin and v1br gene expression is increased in the hypothalamic pvn of borderline hypertensive rats. Hypertens Res 2020; 43:1165-1174. [PMID: 32415179 DOI: 10.1038/s41440-020-0469-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Vasopressin (VP) is a neurohypophyseal peptide best known for its role in maintaining osmotic and cardiovascular homeostasis. The main sources of VP are the supraoptic and paraventricular (PVN) nuclei of the hypothalamus, which coexpress the vasopressin V1a and V1b receptors (V1aR and V1bR). Here, we investigated the level of expression of VP and VP receptors in the PVN of borderline hypertensive rats (BHRs), a key integrative nucleus for neuroendocrine cardiovascular control. Experiments were performed in male BHRs and Wistar rats (WRs) equipped with a radiotelemetry device for continuous hemodynamic recording under baseline conditions and after saline load without or with stress. Autonomic control of the circulation was evaluated by spectral analysis of blood pressure (BP) and heart rate (HR) variability and baroreceptor reflex sensitivity (BRS) using the sequence method. Plasma VP was determined by radioimmunoassay, and VP, V1aR, and V1bR gene expression was determined by RT-qPCR. Under baseline conditions, BHRs had higher BP, lower HR, and stronger BRS than WRs. BP and HR variability was unchanged. In the PVN, overexpression of the VP and V1bR genes was found, and plasma VP was increased. Saline load downregulated V1bR mRNA expression without affecting VP mRNA expression or plasma VP and BP. Adding stress increased BP, HR, and low-frequency sympathetic spectral markers and decreased plasma VP without altering the level of expression of VP and VP receptors in the PVN. It follows that overexpression of VP and V1bR in the PVN is a characteristic trait of BHRs and that sympathetic hyperactivity underlies stress-induced hypertension.
Collapse
Affiliation(s)
- Bojana Savić
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Andrew Martin
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Andre Souza Mecawi
- Paulista Medical School, Department of Biophysics, Laboratory of Neuroendocrinology, Federal University of São Paulo, São Paulo, Brazil
| | - Zoran Bukumirić
- Faculty of Medicine, Institute for Medical Statics and Informatics, University of Belgrade, Belgrade, Serbia
| | - José Antunes-Rodrigues
- Faculty of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Olivera Šarenac
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
van Krieken PP, Voznesenskaya A, Dicker A, Xiong Y, Park JH, Lee JI, Ilegems E, Berggren PO. Translational assessment of a genetic engineering methodology to improve islet function for transplantation. EBioMedicine 2019; 45:529-541. [PMID: 31262716 PMCID: PMC6642289 DOI: 10.1016/j.ebiom.2019.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/05/2022] Open
Abstract
Background The functional quality of insulin-secreting islet beta cells is a major factor determining the outcome of clinical transplantations for diabetes. It is therefore of importance to develop methodological strategies aiming at optimizing islet cell function prior to transplantation. In this study we propose a synthetic biology approach to genetically engineer cellular signalling pathways in islet cells. Methods We established a novel procedure to modify islet beta cell function by combining adenovirus-mediated transduction with reaggregation of islet cells into pseudoislets. As a proof-of-concept for the genetic engineering of islets prior to transplantation, this methodology was applied to increase the expression of the V1b receptor specifically in insulin-secreting beta cells. The functional outcomes were assessed in vitro and in vivo following transplantation into the anterior chamber of the eye. Findings Pseudoislets produced from mouse dissociated islet cells displayed basic functions similar to intact native islets in terms of glucose induced intracellular signalling and insulin release, and after transplantation were properly vascularized and contributed to blood glucose homeostasis. The synthetic amplification of the V1b receptor signalling in beta cells successfully modulated pseudoislet function in vitro. Finally, in vivo responses of these pseudoislet grafts to vasopressin allowed evaluation of the potential benefits of this approach in regenerative medicine. Interpretation These results are promising first steps towards the generation of high-quality islets and suggest synthetic biology as an important tool in future clinical islet transplantations. Moreover, the presented methodology might serve as a useful research strategy to dissect cellular signalling mechanisms of relevance for optimal islet function.
Collapse
Affiliation(s)
- Pim P van Krieken
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Voznesenskaya
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Dicker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yan Xiong
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jae Hong Park
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Jeong Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea; Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Imperial College London, Novena Campus, Singapore, Singapore
| |
Collapse
|
7
|
Giesecke T, Himmerkus N, Leipziger J, Bleich M, Koshimizu TA, Fähling M, Smorodchenko A, Shpak J, Knappe C, Isermann J, Ayasse N, Kawahara K, Schmoranzer J, Gimber N, Paliege A, Bachmann S, Mutig K. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J Am Soc Nephrol 2019; 30:946-961. [PMID: 31097611 DOI: 10.1681/asn.2018080816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Antagonists of the V1a vasopressin receptor (V1aR) are emerging as a strategy for slowing progression of CKD. Physiologically, V1aR signaling has been linked with acid-base homeostasis, but more detailed information is needed about renal V1aR distribution and function. METHODS We used a new anti-V1aR antibody and high-resolution microscopy to investigate Va1R distribution in rodent and human kidneys. To investigate whether V1aR activation promotes urinary H+ secretion, we used a V1aR agonist or antagonist to evaluate V1aR function in vasopressin-deficient Brattleboro rats, bladder-catheterized mice, isolated collecting ducts, and cultured inner medullary collecting duct (IMCD) cells. RESULTS Localization of V1aR in rodent and human kidneys produced a basolateral signal in type A intercalated cells (A-ICs) and a perinuclear to subapical signal in type B intercalated cells of connecting tubules and collecting ducts. Treating vasopressin-deficient Brattleboro rats with a V1aR agonist decreased urinary pH and tripled net acid excretion; we observed a similar response in C57BL/6J mice. In contrast, V1aR antagonist did not affect urinary pH in normal or acid-loaded mice. In ex vivo settings, basolateral treatment of isolated perfused medullary collecting ducts with the V1aR agonist or vasopressin increased intracellular calcium levels in ICs and decreased luminal pH, suggesting V1aR-dependent calcium release and stimulation of proton-secreting proteins. Basolateral treatment of IMCD cells with the V1aR agonist increased apical abundance of vacuolar H+-ATPase in A-ICs. CONCLUSIONS Our results show that activation of V1aR contributes to urinary acidification via H+ secretion by A-ICs, which may have clinical implications for pharmacologic targeting of V1aR.
Collapse
Affiliation(s)
- Torsten Giesecke
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Shpak
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Knappe
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Isermann
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Niklas Ayasse
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jan Schmoranzer
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kerim Mutig
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russian Federation
| |
Collapse
|
8
|
Perkovska S, Méjean C, Ayoub MA, Li J, Hemery F, Corbani M, Laguette N, Ventura MA, Orcel H, Durroux T, Mouillac B, Mendre C. V 1b vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic 2018; 19:58-82. [PMID: 29044966 DOI: 10.1111/tra.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
Abstract
The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for β-arrestins 1 and 2, we demonstrated that both β-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-β-arrestin interaction in contrast to a slow and long-lasting β-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with β-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.
Collapse
Affiliation(s)
- Sanja Perkovska
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Catherine Méjean
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Mohammed Akli Ayoub
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan Li
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Floriane Hemery
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maithé Corbani
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nadine Laguette
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Angeles Ventura
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Orcel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Thierry Durroux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Bernard Mouillac
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Christiane Mendre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Bayerl DS, Bosch OJ. Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. GENES BRAIN AND BEHAVIOR 2018; 18:e12517. [DOI: 10.1111/gbb.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Doris S. Bayerl
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| |
Collapse
|
10
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
11
|
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors. Sci Rep 2016; 6:25327. [PMID: 27138239 PMCID: PMC4853784 DOI: 10.1038/srep25327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.
Collapse
|