1
|
Sun R, Zhang M, Li B, Jiang S, Yu W, Yang L, Han Y, Zhong Z, Zhao W. A Novel Bromophenol Compound from Leathesia nana Inhibits Breast Cancer in a Direct Tumor Killing and Immunotherapy Manner. Molecules 2023; 28:5349. [PMID: 37513222 PMCID: PMC10385854 DOI: 10.3390/molecules28145349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Considering the resistance and toxicity of traditional chemotherapeutic drugs, seeking potential candidate for treating breast cancer effectively is a clinical problem that should be solved urgently. Natural products have attracted extensive attention, owing to their multi-target advantages and low toxicity. In the current study, the effects of XK-81, a novel bromophenol compound extracted from Leathesia nana, on breast cancer, and its underlying mechanisms, were explored. Firstly, data from in vitro experiments indicated that 4T-1, one of common mouse breast cancer cell lines, was a XK-81-susceptible cell line, and ferroptosis was the major death manner in response to XK-81 treatment, which was evidenced by increasing intracellular Fe2+ and ROS level with condensed mitochondrial membrane densities, as well as decreasing the protein expressions of SLC7A11 and GPX4. In vivo, XK-81 suppressed the growth of 4T-1 breast-tumor in both BALB/C mice and zebrafish. Obviously, XK-81 decreased the protein expression of SLC7A11 and GPX4 in tumor tissues, hinting at the occurrence of ferroptosis. Moreover, XK-81 increased CD8+ T cells and NK cells numbers and regulated M1/M2 macrophage ratio in tumor tissues, indicating XK-81's immunotherapeutic effect. Additionally, the secretions of immune-related cytokines, including TNF-α, IL-1β, and IL-12, were elevated with XK-81 stimulation in RAW 264.7 cells. Intriguingly, compared with doxorubicin-induced heart damage, XK-81 demonstrated the therapeutic advantage of little cardiotoxicity on the heart. XK-81 demonstrated potential antitumor advantage by both directly inducing ferroptosis-mediated death of tumor cells and immunization.
Collapse
Affiliation(s)
- Ruochen Sun
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Mi Zhang
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Bufan Li
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Shan Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wanpeng Yu
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Lina Yang
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Yantao Han
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wenwen Zhao
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| |
Collapse
|
2
|
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Song H, Yang J, Hao X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154810. [PMID: 37075623 DOI: 10.1016/j.phymed.2023.154810] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS Crude extracts and 7 main bioactive phytochemicals (curcumol, β-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China.
| |
Collapse
|
3
|
Wu C, Sun C, Han X, Ye Y, Qin Y, Liu S. Sanyin Formula Enhances the Therapeutic Efficacy of Paclitaxel in Triple-Negative Breast Cancer Metastases through the JAK/STAT3 Pathway in Mice. Pharmaceuticals (Basel) 2022; 16:9. [PMID: 36678509 PMCID: PMC9867389 DOI: 10.3390/ph16010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sanyin formula (SYF) is used as a complementary treatment for triple-negative breast cancer (TNBC). The purpose of this study was to identify the potential functional components and clarify the underlying molecular mechanisms of SYF in TNBC. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to identify the main components of SYF extracts. Network pharmacology and bioinformatic analyses were carried out to identify potential candidate targets of SYF in TNBC. Cell proliferation was determined with a Celigo imaging cytometer. Wound-healing and Transwell assays were adopted to evaluate cell migration. A Transwell cell-invasion assay was performed with Matrigel-coated membranes. In vivo bioluminescence imaging (BLI) and pathological analyses illustrated the effect of SYF on cancer cell metastasis in tumour-bearing mice. The inhibitory mechanism of SYF was investigated via quantitative PCR (qPCR) and Western blotting. We found that 3,4-dihydroxyphenyllactic acid, kaempferol, p-coumaric acid, and vanillic acid may be the active components of SYF. Molecular docking confirmed that kaempferol, p-coumaric acid, vanillic acid, and 3,4-dihydroxyphenyllactic acid bound stably to proteins such as AKR1C3, MMPs, and STAT3. SYF extract suppressed TNBC cell proliferation, migration, invasion, and metastasis by inhibiting JAK/STAT3 signalling and then regulating downstream genes, such as MMP-2/MMP-9. SYF regulates the expression of genes involved in cell proliferation, migration, and invasion by regulating the JAK/STAT3 signalling pathway and finally inhibits tumour cell metastasis in TNBC. The present study clarifies the mechanism by which SYF inhibits TNBC metastasis and lays an experimental foundation for the continued clinical development of SYF targeting the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Chenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Liu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
4
|
Cipriano RR, Maia BHLNS, Deschamps C. Chemical variability of essential oils of Eugenia uniflora L. genotypes and their antioxidant activity. AN ACAD BRAS CIENC 2021; 93:e20181299. [PMID: 33909815 DOI: 10.1590/0001-3765202120181299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
Eugenia uniflora, known as the "Brazilian cherry", is an economically important neotropical Myrtaceae in the cosmetics and pharmaceutical industries due the production of essential oils with antioxidant activity. On account of its significant genetic variability, genotype evaluations are needed in order to identify genetic features related to the essential oil production that meet the industry requirements. The main objective of the present study was to evaluate the yield, composition, and antioxidant activity of essential oils isolated from the leaves of 36 genotypes of E. uniflora. Essential oil samples were obtained by hydrodistillation, and their composition was determined by gas chromatography coupled with mass spectrometry. A variation of 0.22% to 1.68% in the essential oil yield was observed, in which 78 compounds, namely oxygenated sesquiterpenes, were identified. According to the cluster analysis of the major compounds, six groups were revealed. The observed diversity demonstrates the genetic variability of the species. Also, the antioxidant activity was affected by the composition of the essential oils, ranging from 176.66 to 867.57 µM TEAC.
Collapse
Affiliation(s)
- Roger R Cipriano
- Programa de Pós-Graduação em Agronomia/Produção Vegetal, Universidade Federal do Paraná, Setor de Ciências Agrárias, Departamento de Fitotecnia e Fitossanitarismo, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| | - Beatriz H L N S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Química, Centro Politécnico, Av. Cel. Francisco H. Santos, 100, Jardim das Américas, 81531-980 Curitiba, PR, Brazil
| | - Cícero Deschamps
- Programa de Pós-Graduação em Agronomia/Produção Vegetal, Universidade Federal do Paraná, Setor de Ciências Agrárias, Departamento de Fitotecnia e Fitossanitarismo, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| |
Collapse
|
5
|
Chen Y, Zhu Z, Chen J, Zheng Y, Limsila B, Lu M, Gao T, Yang Q, Fu C, Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 2021; 138:111350. [PMID: 33721752 DOI: 10.1016/j.biopha.2021.111350] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, β-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (β-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Yi Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yongfeng Zheng
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Boonjai Limsila
- Institute of Thai-Chinese Medicine Department of Thai Traditional and Alternative Medicines, Ministry of Public Health, Bangkok 11000, Thailand
| | - Meigui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Tianhui Gao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chaomei Fu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Wan Liao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
6
|
Li C, Dong C, Fu J, Xie J, Lai S, Wang H, Chen R, Kang J. The racemic trimeric quinone and polycyclic quinones isolated from the aerial parts of Morinda umbellata L. PHYTOCHEMISTRY 2021; 183:112622. [PMID: 33418168 DOI: 10.1016/j.phytochem.2020.112622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Four undescribed racemic quinones, umbellatas Q-T, were isolated from the aerial parts of Morinda umbellata L. All enantiomers were separated on a chiral HPLC column, and their structures were elucidated by UV spectroscopy, IR spectroscopy, HR-ESI-MS, 1D and 2D NMR spectroscopy, DP4+ NMR calculations, ECD spectroscopy, and X-ray diffraction. Three of the racemes are polycyclic anthraquinones, and one is a rare racemic trimer of naphthoquinone-bisnaphthohydroquinones. (+)-Umbellata S exhibited potent cytotoxicity (IC50: 6.2-9.3 μM) against the A2780, HeLa, H7420, Ketr3 and SW 1990 human cancer cell lines.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Chaoxuan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, 613 W. Huangpu Avenue, Guangzhou, Guangdong Province, 510630, China
| | - Jia Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Jun Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Shengtian Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China.
| |
Collapse
|
7
|
Rahmani A, Zavvar Mousavi H, Salehi R, Bagheri A. Novel pH-sensitive and biodegradable micelles for the combined delivery of doxorubicin and conferone to induce apoptosis in MDA-MB-231 breast cancer cell line. RSC Adv 2020; 10:29228-29246. [PMID: 35521092 PMCID: PMC9055950 DOI: 10.1039/d0ra03467c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
pH-sensitive micelles are desirable for co-drug delivery in cancer chemotherapy. Herein, a novel, very pH-sensitive and biodegradable citric acid grafted poly maleate-block-poly lactic-co-glycolic acid was synthesized and assembled as micelles via ultrasonication. The engineered homogeneous nanomicelles were used for the first time for doxorubicin and conferone combination chemotherapy in the MDA-MB-231 breast cancer cell line. The physicochemical properties of the micelles were investigated via 13CNMR, 1HNMR, FTIR, CHNS, DSC, SEM, and DLS-zeta analysis, and the in vitro degradation of the synthetic copolymer was investigated to confirm its biodegradability. The critical micelle concentration (CMC) value of the micelles was determined using pyrene as a probe and a spectrofluorometer. The drug release process was studied in acidic and neutral pH. The anti-tumoral properties of the dual drug-loaded micelles were investigated via MTT assay, cell cycle, and apoptosis experiments. The apoptosis was confirmed by Annexin-V, qRT-PCR and western blotting. The particle size (51.9 nm), zeta potential (-6.57 mV) and CMC (1.793 μg mL-1) of the co-drug loaded micelles were in the acceptable range for electrostatic stability. The uptake of the co-drug loaded micelles in the MDA-MB-231 cell line and spheroids was 97% and 36.1%, respectively. The cell cycle and apoptosis tests revealed that the cells treated with the co-drug-loaded micelles showed the highest amount of apoptosis (95.35%) in comparison to the single drug-loaded micelles and free drugs. Reverse transcription PCR (RT-PCR) showed that the expression levels of the proapoptotic genes were significantly up-regulated in the presence of the co-drug loaded micelles versus the single-drug loaded micelles and free drugs. Western blotting revealed that the co-drug-loaded micelles promoted apoptosis via the caspase-dependent pathway. Our findings confirmed that the pH-responsive biodegradable micelles containing doxorubicin and conferone are novel and effective for combination chemotherapy and offer a promising strategy for future in vivo studies.
Collapse
Affiliation(s)
- Akram Rahmani
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
| | - Hassan Zavvar Mousavi
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
- Department of Chemistry, Faculty of Science, University of Guilan P.O. Box 41335-1914 Rasht Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Ahmad Bagheri
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
| |
Collapse
|
8
|
Pisani M, Quassinti L, Bramucci M, Galassi R, Maggi F, Rossi B, Damin A, Carloni P, Astolfi P. Nanostructured liquid crystalline particles as delivery vectors for isofuranodiene: Characterization and in-vitro anticancer activity. Colloids Surf B Biointerfaces 2020; 192:111050. [PMID: 32344164 DOI: 10.1016/j.colsurfb.2020.111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/24/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
Isofuranodiene is an oxygenated sesquiterpene containing a furan ring isolated from the essential oil of Smyrnium olusatrum L. (Apiaceae) owning notable anticancer activity. Despite its biological potential, the high lipophilicity along with a relatively low stability due to Cope rearrangement giving rise to a less active compound, make the perspective of its therapeutical use unlikely. On this basis, in the present work we evaluated bulk and dispersed non lamellar liquid crystalline phases as effective delivery vectors for isofuranodiene, and capable of preserving its structure and enhancing the biological activity. Small-angle X-ray scattering, dynamic light scattering, and UV resonance Raman spectroscopy were used to characterize the nanosystems in an integrated experimental approach. Encapsulation of isofuranodiene in the lipid matrix resulted in a transition from a cubic Im3m to a reversed hexagonal phase because of the highly lipophilic character of the drug, as obtained in SAXS measurements, and in significant shifts in the components of the Raman spectrum of isofuranodiene. The anticancer activity of isofuranodiene-loaded lipidic nanoparticles was assessed on MDA-MB 231 cell line by MTT assay and was found to be higher than that of pristine isofuranodiene.
Collapse
Affiliation(s)
- Michela Pisani
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Marche Polythecnic University, Via Brecce Bianche 12, I- 60131 Ancona, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Barbara Rossi
- Elettra - Synchrotron Trieste S.C.p.A., S.S. 14 - Km 163.5, Basovizza, I-34149, Trieste, Italy.
| | - Alessandro Damin
- Department of Chemistry, NIS Centre and INSTM Reference Centre University of Turin, Via G. Quarello 15, I-10135 Turin, Italy.
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences - D3A, Marche Polythecnic University, Via Brecce Bianche, I- 60131 Ancona, Italy.
| | - Paola Astolfi
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Marche Polythecnic University, Via Brecce Bianche 12, I- 60131 Ancona, Italy.
| |
Collapse
|
9
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
10
|
Zhong Z, Zhang Q, Tao H, Sang W, Cui L, Qiang W, Cheang WS, Hu Y, Yu H, Wang Y. Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations. Chin Med 2019; 14:35. [PMID: 31572487 PMCID: PMC6757439 DOI: 10.1186/s13020-019-0260-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sigesbeckia glabrescens Makino (SG) is one of the important plant origins of Sigesbeckiae herba and has been widely used for the treatment of chronic inflammatory diseases in China. However, the underlying anti-inflammatory mechanism of SG is rarely investigated and reported. There are more than 40 kinds of chemical constituents in SG, but the action of the bioactive compounds of SG is still unclear. Therefore, we aimed to systemically investigate the mechanisms behind the anti-inflammatory properties of SG by combining in vitro and in silico investigations. METHODS Cytotoxicity was measured using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Nitric oxide (NO) release was detected using the Griess assay. The secretion of pro-inflammatory cytokines and the expression of relevant proteins were assessed using ELISA kits and Western blots, respectively. Molecular docking was performed and scored using AutoDock via a comparison with the molecular docking of N-acetyl-d-glucosamine (NAG). RESULTS In lipopolysaccharides (LPS)-stimulated macrophages, SG significantly inhibited NO, MCP-1, and IL-6 secretion; iNOS expression; and NF-κB activation but did not significantly affect MAPK signalling (p38, ERK, and JNK). Moreover, the results from the molecular docking prediction suggested that over 10 compounds in SG could likely target TLR4, p105, and p65. CONCLUSIONS These findings suggest that the anti-inflammatory effects of SG are highly related to the inactivation of NF-κB. Moreover, this study provides a novel approach to investigate the effects of herbal medicine using combined in vitro and in silico investigations.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Qianru Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou China
| | - Hongxun Tao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Wei Sang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Wenan Qiang
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL USA
- Devision of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
- HKBU Shenzhen Research Center, Shenzhen, Guangdong China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
11
|
Zhu XY, Guo DW, Lao QC, Xu YQ, Meng ZK, Xia B, Yang H, Li CQ, Li P. Sensitization and synergistic anti-cancer effects of Furanodiene identified in zebrafish models. Sci Rep 2019; 9:4541. [PMID: 30872660 PMCID: PMC6418268 DOI: 10.1038/s41598-019-40866-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022] Open
Abstract
Furanodiene is a natural terpenoid isolated from Rhizoma Curcumae, a well-known Chinese medicinal herb that presents anticancer effects in various types of cancer cell lines. In this study, we have successfully established zebrafish xenografts with 5 various human cancer cell lines; and validated these models with anti-cancer drugs used clinically for treating human cancer patients. We found that Furanodiene was therapeutically effective for human JF 305 pancreatic cancer cells and MCF-7 breast cancer cells xenotranplanted into zebrafish. Furanodiene showed a markedly synergistic anti-cancer effect when used in combination with 5-FU (5-Fluorouracil) for both human breast cancer MDA-MB-231 cells and human liver cancer BEL-7402 cells xenotransplanted into zebrafish. Unexpectedly, Furanodiene reversed multiple drug resistance in the zebrafish xenotransplanted with cis-Platinum-resistant human non-small cell lung cancer cells and Adriamycin-resistant human breast cancer cells. Furanodiene played its anti-cancer effects through anti-angiogenesis and inducing ROS production, DNA strand breaks and apoptosis. Furanodiene suppresseed efflux transporter Pgp (P-glycoprotein) function and reduced Pgp protein level, but no effect on Pgp related gene (MDR1) expression. These results suggest sensitizition and synergistic anti-cancer effects of Furanodiene that is worthy of a further investigation.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China.,Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Dian-Wu Guo
- Minsheng Biopharma Research Institute, F8, building F, No. 1378 Wenyixi Road, Yuhang Zone, Hangzhou City, Zhejiang Province, 310011, P. R. China
| | - Qiao-Cong Lao
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Yi-Qiao Xu
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Zhao-Ke Meng
- Minsheng Biopharma Research Institute, F8, building F, No. 1378 Wenyixi Road, Yuhang Zone, Hangzhou City, Zhejiang Province, 310011, P. R. China
| | - Bo Xia
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China.
| |
Collapse
|
12
|
Zhong Z, Yu H, Wang S, Wang Y, Cui L. Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin Med 2018; 13:44. [PMID: 30181769 PMCID: PMC6114245 DOI: 10.1186/s13020-018-0203-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023] Open
Abstract
Background Chemotherapy is a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur with chemotherapy in clinic, resulting in poor prognosis and recurrence. Nowadays, Chinese medicine may shed light on design of new therapeutic modes to overcome chemo-resistance. Although Rhizoma Curcumae possesses anti-cancer activities in various types of cancers, the effects and underlying mechanisms of its bioactive components against chemo-resistance are not clear. Therefore, the present study aims to explore the potential effects of Rhizoma Curcumae on doxorubicin-resistant breast cancer cells. Methods The expression and function of ABC transporters in doxorubicin-resistant MCF-7 breast cancer cells were measured by western blotting and flow cytometry. Cell viability was detected using MTT assay. The combination index was analyzed using the CalcuSyn program (Biosoft, Ferguson, MO), based on the Chou–Talalay method. Results In our present study, P-gp was overexpressed at protein level in doxorubicin-resistant MCF-7 cell line, but short of MRP1 and BCRP1. Essential oil of Rhizoma Curcumae and the main bioactive components were assessed on doxorubicin-resistant MCF-7 cell line. We found that the essential oil and furanodiene both display powerful inhibitory effects on cell viability, but neither of these is the specific inhibitor of ABC transporters. Moreover, furanodiene fails to enhance the efficacy of doxorubicin to improve multidrug resistance. Conclusion Overall, our findings fill the gaps of the researches on chemo-resistance improvement of Rhizoma Curcumae and are also beneficial for Rhizoma Curcumae being developed as a promising natural product for cancer adjuvant therapy in the future. Electronic supplementary material The online version of this article (10.1186/s13020-018-0203-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Haibing Yu
- 3School of Public Health, Guangdong Medical University, Dongguan, Guangdong China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Liao Cui
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong China
| |
Collapse
|
13
|
Antitumor Mechanisms of Curcumae Rhizoma Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4509892. [PMID: 29636777 PMCID: PMC5832109 DOI: 10.1155/2018/4509892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
Abstract
Curcumae Rhizoma, a traditional Chinese medication, is commonly used in both traditional treatment and modern clinical care. Its anticancer effects have attracted a great deal of attention, but the mechanisms of action remain obscure. In this study, we screened for the active compounds of Curcumae Rhizoma using a drug-likeness approach. Candidate protein targets with functions related to cancer were predicted by reverse docking and then checked by manual search of the PubMed database. Potential target genes were uploaded to the GeneMANIA server and DAVID 6.8 database for analysis. Finally, compound-target, target-pathway, and compound-target-pathway networks were constructed using Cytoscape 3.3. The results revealed that the anticancer activity of Curcumae Rhizoma potentially involves 13 active compounds, 33 potential targets, and 31 signaling pathways, thus constituting a “multiple compounds, multiple targets, and multiple pathways” network corresponding to the concept of systematic actions in TCM. These findings provide an overview of the anticancer action of Curcumae Rhizoma from a network perspective, as well as setting an example for future studies of other materials used in TCM.
Collapse
|
14
|
Kong Q, Ma Y, Yu J, Chen X. Predicted molecular targets and pathways for germacrone, curdione, and furanodiene in the treatment of breast cancer using a bioinformatics approach. Sci Rep 2017; 7:15543. [PMID: 29138518 PMCID: PMC5686110 DOI: 10.1038/s41598-017-15812-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Germacrone, curdione, and furanodiene have been shown to be useful in the treatment of breast cancer but the pharmacological mechanism of action is unclear. In this paper, we explored a new method to study the molecular network and function of Traditional Chinese Medicine (TCM) herbs and their corresponding ingredients with bioinformatics tools, including PubChem Compound Database, BATMAN-TCM, SystemsDock, Coremine Medical, Gene ontology, and KEGG. Eleven targeted genes/proteins, 4 key pathways, and 10 biological processes were identified to participate in the mechanism of action in treating breast cancer with germacrone, curdione, and furanodiene. The information achieved by the bioinformatics tools was useful to interpretation the molecular mechanism for the treatment of germacrone, curdione, and furanodiene on breast cancers.
Collapse
Affiliation(s)
- Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine; Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| | - Yong Ma
- Department of Urology, Shanxian Central Hospital, Heze, Shandong, 274300, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| |
Collapse
|
15
|
Zhong ZF, Yu HB, Wang CM, Qiang WA, Wang SP, Zhang JM, Yu H, Cui L, Wu T, Li DQ, Wang YT. Furanodiene Induces Extrinsic and Intrinsic Apoptosis in Doxorubicin-Resistant MCF-7 Breast Cancer Cells via NF-κB-Independent Mechanism. Front Pharmacol 2017; 8:648. [PMID: 28959205 PMCID: PMC5603666 DOI: 10.3389/fphar.2017.00648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is used as a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur when chemotherapy is used clinically, resulting in poor prognosis and recurrence. Currently, Chinese medicine may provide insight into the design of new therapies to overcome chemo-resistance. Furanodiene, as a heat-sensitive sesquiterpene, is isolated from the essential oil of Rhizoma Curcumae. Even though mounting evidence claiming that furanodiene possesses anti-cancer activities in various types of cancers, the underlying mechanisms against chemo-resistant cancer are not fully clear. Our study found that furanodiene could display anti-cancer effects by inhibiting cell viability, inducing cell cytotoxicity, and suppressing cell proliferation in doxorubicin-resistant MCF-7 breast cancer cells. Furthermore, furanodiene preferentially causes apoptosis by interfering with intrinsic/extrinsic-dependent and NF-κB-independent pathways in doxorubicin-resistant MCF-7 cells. These observations also prompt that furanodiene may be developed as a promising natural product for multidrug-resistant cancer therapy in the future.
Collapse
Affiliation(s)
- Zhang-Feng Zhong
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical UniversityZhanjiang, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| | - Hai-Bing Yu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical UniversityZhanjiang, China
| | - Chun-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, ChicagoIL, United States.,Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, EvanstonIL, United States
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| | - Jin-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical UniversityZhanjiang, China
| | - Tie Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical UniversityZhanjiang, China
| | - De-Qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacao, China
| |
Collapse
|
16
|
Ludwig JM, Gai Y, Sun L, Xiang G, Zeng D, Kim HS. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment - An in vitro evaluation. Mol Oncol 2016; 10:1133-45. [PMID: 27262893 DOI: 10.1016/j.molonc.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
Treatment of unresectable primary cancer and their distant metastases, with the liver representing one of the most frequent location, is still plagued by insufficient treatment success and poor survival rates. The Sigma-2 receptor is preferentially expressed on many tumor cells making it an appealing target for therapy. Thus, we developed a potential targeted drug conjugate consisting of the Sigma-2 receptor ligand SW43 and Doxorubicin (SW43-DOX) for systemic cancer therapy and for locoregional treatment of primary and secondary liver malignancies when loaded onto drug-eluting bead (DEB) which was compared in vitro to the treatment with Doxorubicin alone. SW43-DOX binds specifically to the Sigma-2 receptor expressed on hepatocellular (Hep G2, Hep 3B), pancreatic (Panc-1) and colorectal (HT-29) carcinoma cell lines with high affinity and subsequent early specific internalization. Free SW43-DOX showed superior concentration and time depended cancer toxicity than treatment with Doxorubicin alone. Action mechanisms analysis revealed an apoptotic cell death with increased caspase 3/7 activation and reactive oxygen species (ROS) production. Only ROS scavenging with α-Tocopherol, but not the caspase inhibition (Z-VAD-FMK), partly reverted the effect. SW43-DOX could successfully be loaded onto DEB and showed prolonged eluting kinetics compared to Doxorubicin. SW43-DOX loaded DEB vs. Doxorubicin loaded DEB showed a significantly greater time dependent toxicity in all cell lines. In conclusion, the novel conjugate SW43-DOX ± loading onto DEB is a promising drug delivery platform for targeted systemic and locoregional cancer therapy.
Collapse
Affiliation(s)
- Johannes M Ludwig
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA; Interventional Oncology Translational Laboratory, University of Pittsburgh School of Medicine, Presbyterian South Tower, 200 Lothrop Street, Pittsburgh, PA 15213-3553, USA
| | - Yongkang Gai
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Lingyi Sun
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Dexing Zeng
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh School of Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Hyun S Kim
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA; Interventional Oncology Translational Laboratory, University of Pittsburgh School of Medicine, Presbyterian South Tower, 200 Lothrop Street, Pittsburgh, PA 15213-3553, USA; Yale Cancer Center, Yale School of Medicine, New Haven, 330 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Zhong ZF, Tan W, Qiang WW, Scofield VL, Tian K, Wang CM, Qiang WA, Wang YT. Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner. MOLECULAR BIOSYSTEMS 2016; 12:1626-37. [DOI: 10.1039/c6mb00003g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Furanodiene is a bioactive sesquiterpene isolated from the spice-producing Curcuma wenyujin plant (Y. H. Chen and C. Ling) (C. wenyujin), which is a commonly prescribed herb used in clinical cancer therapy by modern practitioners of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhang-Feng Zhong
- Institute of Chinese Medical Sciences
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Avenida da Universidade
- Taipa
| | - Wen Tan
- School of Pharmacy
- Lanzhou University
- Lanzhou
- China
| | - William W. Qiang
- Institute of Chinese Medical Sciences
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Avenida da Universidade
- Taipa
| | - Virginia L. Scofield
- Department of Biomedical Sciences
- School of Medicine
- University of Texas Rio Grande Valley
- Edinburg
- USA
| | - Ke Tian
- School of Chinese Medicine
- Hong Kong Baptist University
- Hong Kong 999077
- China
- Division of Reproductive Science in Medicine
| | - Chun-Ming Wang
- Institute of Chinese Medical Sciences
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Avenida da Universidade
- Taipa
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine
- Department of Obstetrics and Gynecology
- Feinberg School of Medicine at Northwestern University
- Chicago
- USA
| | - Yi-Tao Wang
- Institute of Chinese Medical Sciences
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Avenida da Universidade
- Taipa
| |
Collapse
|