1
|
Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv 2023; 20:905-919. [PMID: 37249548 DOI: 10.1080/17425247.2023.2219053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Glaucoma is a group of progressive optic neuropathies resulting in irreversible blindness. It is associated with an elevation of intraocular pressure (>21 mm Hg) and optic nerve damage. Reduction of the intraocular pressure (IOP) through the administration of ocular hypotensive eye drops is one of the most common therapeutic strategies. Patient adherence to conventional eye drops remains a major obstacle in preventing glaucoma progression. Additional problems emerge from inadequate patient education as well as local and systemic side effects associated with adminstering ocular hypotensive drugs. AREAS COVERED Sustained-release drug delivery systems for glaucoma treatment are classified into extraocular systems including wearable ocular surface devices or multi-use (immediate-release) eye formulations (such as aqueous solutions, gels; ocular inserts, contact lenses, periocular rings, or punctual plugs) and intraocular drug delivery systems (such as intraocular implants, and microspheres for supraciliary drug delivery). EXPERT OPINION Sustained release platforms for the delivery of ocular hypotensive drugs (small molecules and biologics) may improve patient adherence and prevent vision loss. Such innovations will only be widely adopted when efficacy and safety has been established through large-scale trials. Sustained release drug delivery can improve glaucoma treatment adherence and reverse/prevent vision deterioration. It is expected that these approaches will improve clinical management and prognosis of glaucoma.
Collapse
Affiliation(s)
- Zinah K Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Ian G Beadham
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Sianne L Schwikkard
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Gao XR, Chiariglione M, Choquet H, Arch AJ. 10 Years of GWAS in intraocular pressure. Front Genet 2023; 14:1130106. [PMID: 37124618 PMCID: PMC10130654 DOI: 10.3389/fgene.2023.1130106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Intraocular pressure (IOP) is the only modifiable risk factor for glaucoma, the leading cause of irreversible blindness worldwide. In this review, we summarize the findings of genome-wide association studies (GWASs) of IOP published in the past 10 years and prior to December 2022. Over 190 genetic loci and candidate genes associated with IOP have been uncovered through GWASs, although most of these studies were conducted in subjects of European and Asian ancestries. We also discuss how these common variants have been used to derive polygenic risk scores for predicting IOP and glaucoma, and to infer causal relationship with other traits and conditions through Mendelian randomization. Additionally, we summarize the findings from a recent large-scale exome-wide association study (ExWAS) that identified rare variants associated with IOP in 40 novel genes, six of which are drug targets for clinical treatment or are being evaluated in clinical trials. Finally, we discuss the need for future genetic studies of IOP to include individuals from understudied populations, including Latinos and Africans, in order to fully characterize the genetic architecture of IOP.
Collapse
Affiliation(s)
- Xiaoyi Raymond Gao
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- Division of Human Genetics, The Ohio State University, Columbus, OH, United States
| | - Marion Chiariglione
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Alexander J. Arch
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Chan D, Won GJ, Read AT, Ethier CR, Thackaberry E, Crowell SR, Booler H, Bantseev V, Sivak JM. Application of an organotypic ocular perfusion model to assess intravitreal drug distribution in human and animal eyes. J R Soc Interface 2022; 19:20210734. [PMID: 35078337 PMCID: PMC8790337 DOI: 10.1098/rsif.2021.0734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intravitreal (ITV) drug delivery is a new cornerstone for retinal therapeutics. Yet, predicting the disposition of formulations in the human eye remains a major translational hurdle. A prominent, but poorly understood, issue in pre-clinical ITV toxicity studies is unintended particle movements to the anterior chamber (AC). These particles can accumulate in the AC to dangerously raise intraocular pressure. Yet, anatomical differences, and the inability to obtain equivalent human data, make investigating this issue extremely challenging. We have developed an organotypic perfusion strategy to re-establish intraocular fluid flow, while maintaining homeostatic pressure and pH. Here, we used this approach with suitably sized microbeads to profile anterior and posterior ITV particle movements in live versus perfused porcine eyes, and in human donor eyes. Small-molecule suspensions were then tested with the system after exhibiting differing behaviours in vivo. Aggregate particle size is supported as an important determinant of particle movements in the human eye, and we note these data are consistent with a poroelastic model of bidirectional vitreous transport. Together, this approach uses ocular fluid dynamics to permit, to our knowledge, the first direct comparisons between particle behaviours from human ITV injections and animal models, with potential to speed pre-clinical development of retinal therapeutics.
Collapse
Affiliation(s)
- D. Chan
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - G. J. Won
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - A. T. Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - C. R. Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - E. Thackaberry
- Safety Assessment, Genentech Inc., San Francisco, CA, USA
| | - S. R. Crowell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (PTPK) Genentech Inc., San Francisco, CA, USA
| | - H. Booler
- Safety Assessment, Genentech Inc., San Francisco, CA, USA
| | - V. Bantseev
- Safety Assessment, Genentech Inc., San Francisco, CA, USA
| | - J. M. Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Effects of Nonporous Silica Nanoparticles on Human Trabecular Meshwork Cells. J Glaucoma 2021; 30:195-202. [PMID: 33086260 DOI: 10.1097/ijg.0000000000001709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
PRECIS Silica nanoparticles (SiNPs), which are potential drug carriers for glaucoma treatment, may induce mild dose-dependent cytotoxicity but not so severe as to compromise a mammalian target of rapamycin (mTOR) pathway in immortalized trabecular meshwork (TM) cells. PURPOSE Nanoparticle-based ophthalmic drug delivery is a promising field of drug development. In this study, we evaluated the effect of nonporous SiNPs on human TM cells. METHODS TM cells were exposed to different concentrations (0 to 100 µg/mL) of SiNPs (50, 100, and 150 nm) for up to 48 hours. Transmission electron microscopy confirmed the intracellular distribution of SiNPs. Cellular viability assay, reactive oxygen species generation, autophagy, and activation of the mTOR pathway were evaluated. Histologic analysis of the TM structure was performed after intracameral injection of SiNPs (0.05 mL of 200 µg/mL concentration) in rabbits. RESULTS SiNPs were taken up by TM cells and localized in the cytoplasm. Neither nuclear entry nor mitochondrial damage was observed. SiNPs induced a mild but dose-dependent increase of lactate dehydrogenase. However, neither increase of intracellular reactive oxygen species levels nor apoptosis was observed after SiNPs exposure. Significant coactivation of autophagy and the mTOR pathway were observed with exposure to SiNPs. Aqueous plexus structure was well maintained without inflammation in rabbits after SiNPs exposure. CONCLUSIONS SiNPs induce mild and dose-dependent cytotoxicity in TM cells. However, the toxicity level is not enough to compromise the mTOR pathway of TM cells and histologic structure of the aqueous plexus tissue.
Collapse
|
5
|
Cai ZY, Fu MD, Liu K, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14:1260-1273. [PMID: 34414093 DOI: 10.18240/ijo.2021.08.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related eye diseases, including cataract, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD), are the leading causes of vision loss in the world. Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye. The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body. This pathway is also active in the development of age-related eye diseases. A variety of drugs have been shown to treat age-related eye diseases through the Keap1-Nrf2-ARE (Kelch-like ECH-Associating protein 1- nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway. This review describes the role of oxidative stress in the development of age-related eye diseases, the function and regulation of the Keap1-Nrf2-ARE pathway, and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.
Collapse
Affiliation(s)
- Zi-Yan Cai
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Meng-Die Fu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ke Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Xuan-Chu Duan
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha 410011, Hunan Province, China
| |
Collapse
|
6
|
Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G. Glaucoma - Next Generation Therapeutics: Impossible to Possible. Pharm Res 2018; 36:25. [PMID: 30547244 DOI: 10.1007/s11095-018-2557-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.
Collapse
Affiliation(s)
- Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research (NIBR),, Cambridge, Massachusetts, USA
| | - Rebecca Stacy
- Translational Medicine, Ophthalmology, NIBR, Cambridge, Massachusetts, USA
| | - Nalini Rangaswamy
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Chad Bigelow
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Cynthia L Grosskreutz
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Ganesh Prasanna
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
7
|
Ehara T, Adams CM, Bevan D, Ji N, Meredith EL, Belanger DB, Powers J, Kato M, Solovay C, Liu D, Capparelli M, Bolduc P, Grob JE, Daniels MH, Ferrara L, Yang L, Li B, Towler CS, Stacy RC, Prasanna G, Mogi M. The Discovery of ( S)-1-(6-(3-((4-(1-(Cyclopropanecarbonyl)piperidin-4-yl)-2-methylphenyl)amino)-2,3-dihydro-1 H-inden-4-yl)pyridin-2-yl)-5-methyl-1 H-pyrazole-4-carboxylic Acid, a Soluble Guanylate Cyclase Activator Specifically Designed for Topical Ocular Delivery as a Therapy for Glaucoma. J Med Chem 2018; 61:2552-2570. [PMID: 29498522 DOI: 10.1021/acs.jmedchem.8b00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Soluble guanylate cyclase (sGC), the endogenous receptor for nitric oxide (NO), has been implicated in several diseases associated with oxidative stress. In a pathological oxidative environment, the heme group of sGC can be oxidized becoming unresponsive to NO leading to a loss in the ability to catalyze the production of cGMP. Recently a dysfunctional sGC/NO/cGMP pathway has been implicated in contributing to elevated intraocular pressure associated with glaucoma. Herein we describe the discovery of molecules specifically designed for topical ocular administration, which can activate oxidized sGC restoring the ability to catalyze the production of cGMP. These efforts culminated in the identification of compound (+)-23, which robustly lowers intraocular pressure in a cynomolgus model of elevated intraocular pressure over 24 h after a single topical ocular drop and has been selected for clinical evaluation.
Collapse
Affiliation(s)
- Takeru Ehara
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Christopher M Adams
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Doug Bevan
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Nan Ji
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Erik L Meredith
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - David B Belanger
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - James Powers
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Mitsunori Kato
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Catherine Solovay
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Donglei Liu
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Michael Capparelli
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Philippe Bolduc
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan E Grob
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Matthew H Daniels
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Luciana Ferrara
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Louis Yang
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Byron Li
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Christopher S Towler
- Chemical and Pharmaceutical Profiling , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Rebecca C Stacy
- Translational Medicine , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Ganesh Prasanna
- Ophthalmology Research , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| | - Muneto Mogi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research, Inc. , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
8
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 PMCID: PMC5963639 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
9
|
Kim JW. Comparative Study of the Effects of Trabecular Meshwork Outflow Drugs on the Permeability and Nitric Oxide Production in Trabecular Meshwork Cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2017; 31:452-459. [PMID: 28914001 PMCID: PMC5636722 DOI: 10.3341/kjo.2017.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To compare the effects of the barrier function in human trabecular meshwork (TM) cells monolayer and the production of nitric oxide (NO) between trabecular outflow drugs, Rho-associated kinase (ROCK) inhibitors, adenosine, and statin. METHODS Primary cultured TM cells were exposed to 10 or 25 μM Y-27632, 0.1 or 1 μM N6-cyclohexyladenosine (CHA), or 15 or 30 μM simvastatin for 24 hours. NO production and expression of endothelial nitric oxide synthase mRNA were measured by Griess assay and reverse transcription polymerase chain reaction, respectively. Barrier functions of the TM cell monolayer were measured by carboxyfluorescein and trans-endothelial electrical resistance. The expression of matrix metalloproteinase-2 mRNA was assessed with reverse transcription polymerase chain reaction. RESULTS In TM cells, treatment with each drug increased endothelial nitric oxide synthase mRNA expression. Treatment with 25 μM Y-27632 and 1.0 μM CHA increased NO production significantly (p = 0.035 and p = 0.043, respectively). Treatment with each drug increased the permeability (all p = 0.001) and decreased the trans-endothelial electron resistance of the TM cell monolayer. Treatment with 0.1 μM and 1.0 μM CHA significantly increased matrix metalloproteinase-2 mRNA expression, but simvastatin inhibited its expression. CONCLUSIONS Since treatment with ROCK inhibitor more greatly increased NO production and permeability than did adenosine or statin, ROCK inhibitor seems to be more effective for lowering intraocular pressure.
Collapse
Affiliation(s)
- Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea.
| |
Collapse
|
10
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Epigenetics and Signaling Pathways in Glaucoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5712341. [PMID: 28210622 PMCID: PMC5292191 DOI: 10.1155/2017/5712341] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. This neurodegenerative disease becomes more prevalent with aging, but predisposing genetic and environmental factors also contribute to increased risk. Emerging evidence now suggests that epigenetics may also be involved, which provides potential new therapeutic targets. These three factors work through several pathways, including TGF-β, MAP kinase, Rho kinase, BDNF, JNK, PI-3/Akt, PTEN, Bcl-2, Caspase, and Calcium-Calpain signaling. Together, these pathways result in the upregulation of proapoptotic gene expression, the downregulation of neuroprotective and prosurvival factors, and the generation of fibrosis at the trabecular meshwork, which may block aqueous humor drainage. Novel therapeutic agents targeting these pathway members have shown preliminary success in animal models and even human trials, demonstrating that they may eventually be used to preserve retinal neurons and vision.
Collapse
|
12
|
Borrás T. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs. Asia Pac J Ophthalmol (Phila) 2017; 6:80-93. [PMID: 28161916 PMCID: PMC6005701 DOI: 10.22608/apo.2016126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|