1
|
Xu C, Wu Y, Yang S, Zhao X, Zhang H, Yan Y, Zhao J, Wei W, Meng Q, Wang Y, Zhang R. Inhibition of DJ-1 induces TFAM secretion from cancer cells to suppress tumor growth via promoting M1 macrophage polarization. Cell Signal 2025; 131:111765. [PMID: 40147549 DOI: 10.1016/j.cellsig.2025.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
DJ-1, also known as PARK7 (Parkinson's disease protein 7), which is involved in cell viability, apoptosis, transcriptional regulation, and oxidative stress adaptation, is also involved in the pathogenesis of various human diseases including carcinogenesis. Here, we aimed to determine the novel mechanism by which DJ-1 inhibition suppresses tumor growth. Our results showed that DJ-1 knockdown in cancer cells promoted the secretion of a significantly larger amount of mitochondrial transcription factor A (TFAM) into the cell culture medium. DJ-1 knockdown promotes p53 translocation to the mitochondria and stimulates the intrinsic mitochondrial apoptosis pathway, resulting in TFAM release. Moreover, DJ-1 knockdown induced the downregulation of sirtuin 3 (SIRT3), which increased the acetylation of TFAM and triggered its release. Furthermore, we found that extracellular TFAM played a critical role in antitumor activity by upregulating the expression of chemokine (CC motif) ligand 4 (CCL4) and chemokine (C-X-C motif) ligand 5 (CXCL5) in cancer cells, contributing to the promotion of M1 macrophage polarization in the tumor microenvironment (TME). Finally, we confirmed that the DJ-1 inhibitor suppressed tumor growth by increasing TFAM release from cancer cells and M1 macrophage polarization in vivo. These findings indicate that the depletion of DJ-1 stimulates apoptosis-dependent TFAM secretion that triggers M1 macrophage polarization, indicating a new therapeutic strategy by interfering with the DJ-1 function in cancer therapy.
Collapse
Affiliation(s)
- Caiqi Xu
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Yaoyao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Sui Yang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Xuechun Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Yunwen Yan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Jiemin Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Qian Meng
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China.
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 of Shushanhu Road, Hefei, PR China.
| | - Rui Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China.
| |
Collapse
|
2
|
Zhang H, Lin A, Cai C, Liu Y, Fang Y, Luo P, Jiang A, Wang L. Advancements in RNA-Targeted Therapies for Renal Cell Carcinoma. Eur J Pharmacol 2025:177788. [PMID: 40449649 DOI: 10.1016/j.ejphar.2025.177788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/17/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Renal cell carcinoma (RCC) represents a malignant neoplasm characterized by elevated mortality rates, primarily attributed to its resistance to conventional therapeutic interventions. Recent advancements in RNA-targeted therapeutic strategies, such as antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), aptamers, messenger RNAs (mRNAs), microRNAs (miRNAs), short hairpin RNAs (shRNAs), CRISPR/Cas9, and single-guide RNAs (sgRNAs), have shown promising efficacy in preclinical RCC models, owing to their high specificity and effectiveness. This review aims to elucidate the potential of these innovative therapeutic modalities in enhancing the efficacy of targeted therapies, overcoming drug resistance, and improving responses to immunotherapy, while also addressing their roles in RCC progression. Furthermore, the discussion emphasizes the importance of developing personalized medicine strategies to optimize patient outcomes, alongside the potential for advancing delivery mechanisms and integrating these therapeutic approaches with existing treatment modalities to maximize their efficacy.
Collapse
Affiliation(s)
- Hanzhong Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Karimova D, Rostami E, Chubarev VN, Tarasov VV, Schiöth HB, Rask-Andersen M. Advances in development of biomarkers for brain damage and ischemia. Mol Biol Rep 2024; 51:803. [PMID: 39001884 PMCID: PMC11246271 DOI: 10.1007/s11033-024-09708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Acquired brain injury is an urgent situation that requires rapid diagnosis and treatment. Magnetic resonance imaging (MRI) and computed tomography (CT) are required for accurate diagnosis. However, these methods are costly and require substantial infrastructure and specialized staff. Circulatory biomarkers of acute brain injury may help in the management of patients with acute cerebrovascular events and prevent poor outcome and mortality. The purpose of this review is to provide an overview of the development of potential biomarkers of brain damage to increase diagnostic possibilities. For this purpose, we searched the PubMed database of studies on the diagnostic potential of brain injury biomarkers. We also accessed information from Clinicaltrials.gov to identify any clinical trials of biomarker measurements for the diagnosis of brain damage. In total, we present 41 proteins, enzymes and hormones that have been considered as biomarkers for brain injury, of which 20 have been studied in clinical trials. Several microRNAs have also emerged as potential clinical biomarkers for early diagnosis. Combining multiple biomarkers in a panel, along with other parameters, is yielding promising outcomes.
Collapse
Affiliation(s)
- Diana Karimova
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Schiavoni V, Emanuelli M, Campagna R, Cecati M, Sartini D, Milanese G, Galosi AB, Pozzi V, Salvolini E. Paraoxonase-2 shRNA-mediated gene silencing suppresses proliferation and migration, while promotes chemosensitivity in clear cell renal cell carcinoma cell lines. J Cell Biochem 2024; 125:e30572. [PMID: 38706121 DOI: 10.1002/jcb.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common subtype of renal tumor. Despite recent advances in identifying novel target molecules, the prognosis of patients with ccRCC continues to be poor, mainly due to the lack of sensitivity to chemo- and radiotherapy and because of one-third of renal cell carcinoma patients displays metastatic disease at diagnosis. Thus, identifying new molecules for early detection and for developing effective targeted therapies is mandatory. In this work, we focused on paraoxonase-2 (PON2), an intracellular membrane-bound enzyme ubiquitously expressed in human tissues, whose upregulation has been reported in a variety of malignancies, thus suggesting its possible role in cancer cell survival and proliferation. To investigate PON2 involvement in tumor cell metabolism, human ccRCC cell lines were transfected with plasmid vectors coding short harpin RNAs targeting PON2 transcript and the impact of PON2 silencing on cell viability, migration, and response to chemotherapeutic treatment was then explored. Our results showed that PON2 downregulation was able to trigger a decrease in proliferation and migration of ccRCC cells, as well as an enhancement of cell sensitivity to chemotherapy. Thus, taken together, data reported in this study suggest that the enzyme may represent an interesting therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Ma Y, Song Y, Wang J, Shi X, Yuan Z, Li S, Li H, Chen Z, Li S. Discovery of novel covalent inhibitors of DJ-1 through hybrid virtual screening. Future Med Chem 2024; 16:665-677. [PMID: 38390730 DOI: 10.4155/fmc-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Background: DJ-1 is a ubiquitously expressed protein with multiple functions. Its overexpression has been associated with the occurrence of several cancers, positioning DJ-1 as a promising therapeutic target for cancer treatment. Methods: To find novel inhibitors of DJ-1, we employed a hybrid virtual screening strategy that combines structure-based and ligand-based virtual screening on a comprehensive compound library. Results: In silico study identified six hit compounds as potential DJ-1 inhibitors that were assessed in vitro at the cellular level. Compound 797780-71-3 exhibited antiproliferation activity in ACHN cells with an IC50 value of 12.18 μM and was able to inhibit the Wnt signaling pathway. This study discovers a novel covalent inhibitor for DJ-1 and paves the way for further optimization.
Collapse
Affiliation(s)
- Yanyu Ma
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yidan Song
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Junyi Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Xiayu Shi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shuang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
- Innovation Center for AI & Drug Discovery, East China Normal University, Shanghai, 200062, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai, China
- Innovation Center for AI & Drug Discovery, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
FXR1 facilitates axitinib resistance in clear cell renal cell carcinoma via regulating KEAP1/Nrf2 signaling pathway. Anticancer Drugs 2023; 34:248-256. [PMID: 36730618 DOI: 10.1097/cad.0000000000001416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axitinib is emerging as a first-line combination treatment drug for metastatic renal cell carcinoma, but the acquired resistance significantly bothers the treatment efficacy. This article is to investigate the impact of fragile X mental retardation autosomal homolog 1 (FXR1) and its mechanistic involvement with Kelch-like epoxy chloropropan-associated protein 1 (KEAP1)/NF-E2-related factor 2 (Nrf2) pathway on cell resistance to axitinib in clear cell renal cell carcinoma (ccRCC). Establishment of axitinib resistance cells (786-O, Caki-1, 786-O/axitinib, or Caki-1/axitinib) was made, and the cells were then transfected with sh-FXR1, or co-transfected with sh-FXR1 and sh-KEAP1. The quantitative real-time PCR (qRT-PCR) and western blotting assays were employed to measure the expression of FXR1, KEAP1, Nrf2, LC3 II/I, Beclin 1, p62, MDR-1, and MRP-1. In addition, the binding between FXR1 and KEAP1 was verified by RNA-immunoprecipitation and RNA pull-down assays, and FXR1-dependent KEAP1 mRNA degradation was determined. Herein, FXR1 was demonstrated to be overexpressed in ccRCC cells, and showed higher expression in 786-O/axitinib and Caki-1/axitinib cells. Mechanistically, FXR1 enriched KEAP1 mRNA, and pulled downed by biotinylated KEAP1 probes. Results of RNA stability assay reveled that KEAP mRNA stability was suppressed by FXR1. Furthermore, knockdown of FXR1 promoted cell apoptosis and showed a restrained feature on cell resistance to axitinib. Of note, KEAP1 knockdown suppressed cell autophagy, oxidative stress, resistance to axitinib, and promoted apoptosis, despite FXR1 was downregulated in ccRCC cells. In conclusion, FXR1 played an encouraging role in ccRCC cell resistance to axitinib by modulating KEAP/Nrf2 pathway.
Collapse
|
7
|
Matsukawa T, Doi T, Obayashi K, Sumida K, Fujimoto N, Endo M. ANGPTL8 links inflammation and poor differentiation, which are characteristics of malignant renal cell carcinoma. Cancer Sci 2022; 114:1410-1422. [PMID: 36529524 PMCID: PMC10067409 DOI: 10.1111/cas.15700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is observed in many tumors, which affects metastasis, infiltration, and immune escape and causes poor differentiation of the cancer cells. However, the molecular basis underlying the relationship between inflammation and poor differentiation in tumors has not been identified. In this study, we demonstrate that angiopoietin-like protein-8 (ANGPTL8), which is induced by stress stimuli such as inflammation, is involved in the maintenance of the undifferentiated state of clear cell renal cell carcinoma (ccRCC) cells. ANGPTL8 is also involved in the production of chemokines that attract immune suppressor cells to the tumor microenvironment. ANGPTL8 sustains the continuous production of chemokines by activating the NF-κB signaling pathway and maintains the undifferentiated state of ccRCC cells. Finally, ANGPTL8 is induced by STAT3 signaling, which is activated by immune cells in the tumor microenvironment. These results support a role for ANGPTL8 in determining the properties of ccRCC by hampering tumor cell differentiation and establishing the tumor microenvironment.
Collapse
Affiliation(s)
- Takuo Matsukawa
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Urology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiro Sumida
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
8
|
Jia Y, Kim RQ, Kooij R, Ovaa H, Sapmaz A, Geurink PP. Chemical Toolkit for PARK7: Potent, Selective, and High-Throughput. J Med Chem 2022; 65:13288-13304. [PMID: 36149939 PMCID: PMC9574860 DOI: 10.1021/acs.jmedchem.2c01113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multifunctional human Parkinson's disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson's disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components. The selective PARK7 submicromolar inhibitor with a cyanimide reactive group covalently modifies the active site Cys106. Installment of different dyes onto the inhibitor delivered two PARK7 probes. The Rhodamine110 probe provides a high-throughput screening compatible FP assay, showcased by screening a compound library (8000 molecules). The SulfoCy5-equipped probe is a valuable tool to assess the effect of PARK7 inhibitors in a cell lysate. Our work creates new possibilities to explore PARK7 function in a physiologically relevant setting and develop new and improved PARK7 inhibitors.
Collapse
Affiliation(s)
- Yuqing Jia
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Robbert Q Kim
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Raymond Kooij
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
9
|
Minami T, Inoue M, Sawada N, Yamaji T, Iwasaki M, Tsugane S. Alcohol consumption, tobacco smoking, and subsequent risk of renal cell carcinoma: The JPHC study. Cancer Sci 2021; 112:5068-5077. [PMID: 34490717 PMCID: PMC8645753 DOI: 10.1111/cas.15129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/20/2023] Open
Abstract
The effects of alcohol consumption and tobacco smoking on renal cell carcinoma (RCC) incidence have not been well‐investigated in Asian populations. Here, we evaluated these effects in a large Japanese prospective cohort. We collected data on eligible participants in the Japan Public Health Center‐based Prospective Study, and undertook multivariable‐adjusted Cox proportional hazards regression to estimate hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) of RCC incidence. We identified 340 cases (230 men and 110 women) among the 105 663 eligible participants (50 262 men and 55 741 women), who were followed for an average of 19.1 years, with a cumulative total of 2 020 364 person‐years. A slightly inverse but nonsignificant association was observed between alcohol drinking and RCC incidence. In contrast, the risk of RCC was increased in those with heavy smoking (≥40 pack‐years) when men and women were combined (HR 1.50; 95% CI, 1.01‐2.25). We identified no significant association between alcohol consumption and RCC incidence. In contrast, heavy smoking (≥40 pack‐years) was associated with a significant increase in incidence. Using a large prospective cohort in Japan, we evaluated the effects of alcohol consumption and tobacco smoking on renal cell carcinoma (RCC). Our analyses showed no significant association between alcohol consumption and RCC incidence. In contrast, heavy smoking (≥40 pack‐years) was associated with a significant increase in incidence.![]()
Collapse
Affiliation(s)
- Tetsuji Minami
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.,Division of Social Medicine, Department of Cancer Epidemiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.,Division of Social Medicine, Department of Cancer Epidemiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
10
|
Chen XB, Zhu HY, Bao K, Jiang L, Zhu H, Ying MD, He QJ, Yang B, Sheng R, Cao J. Bis-isatin derivatives: design, synthesis, and biological activity evaluation as potent dimeric DJ-1 inhibitors. Acta Pharmacol Sin 2021; 42:1160-1170. [PMID: 33495517 PMCID: PMC8209122 DOI: 10.1038/s41401-020-00600-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
The PARK7 gene (encode DJ-1 protein) was first discovered as an oncogene and later found to be a causative gene for autosomal recessive early onset Parkinson's disease. DJ-1 has been proposed as a potential therapeutic anticancer target due to its pivotal role in tumorigenesis and cancer progression. Based on the homodimer structure of DJ-1, a series of bis-isatin derivatives with different length linkers were designed, synthesized, and evaluated as dimeric inhibitors targeting DJ-1 homodimer. Among them, DM10 with alkylene chain of C10 displayed the most potent inhibitory activity against DJ-1 deglycase. We further demonstrated that DM10 bound covalently to the homodimer of DJ-1. In human cancer cell lines H1299, MDA-MB-231, BEL7402, and 786-O, DM10 (2.5-20 μM) inhibited the cell growth in a concentration-dependent manner showing better anticancer effects compared with the positive control drug STK793590. In nude mice bearing H1299 cell xenograft, intratumor injection of DM10 (15 mg/kg) produced significantly potent tumor growth inhibition when compared with that caused by STK793590 (30 mg/kg). Moreover, we found that DM10 could significantly enhance N-(4-hydroxyphenyl)retinamide-based apoptosis and erastin-based ferroptosis in H1299 cells. In conclusion, DM10 is identified as a potent inhibitor targeting DJ-1 homodimer with the potential as sensitizing agent for other anticancer drugs, which might provide synergistical therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Bing Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Ying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kun Bao
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
- Cancer Center of Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Rong Sheng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center of Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Wang W, Gan Z, Liu Q, Yan S, Mulati R, Wang Y. Silencing of the chemokine CXC receptor 4 (CXCR4) hampers cancer progression and increases cisplatin (DDP)-sensitivity in clear cell renal cell carcinoma (ccRCC). Bioengineered 2021; 12:2957-2969. [PMID: 34180759 PMCID: PMC8806489 DOI: 10.1080/21655979.2021.1943112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aberrant expression of the chemokine CXC receptor 4 (CXCR4) is closely associated with cancer progression and drug-resistance in multiple cancers, and we first investigated the role of CXCR4 in regulating cancer pathogenesis and cisplatin (DDP)-resistance in clear cell renal cell carcinoma (ccRCC) in the present study. Here, we identified that CXCR4 acted as an oncogene to promote cancer progression and genetically silencing of CXCR4 increased cisplatin (DDP)-sensitivity in ccRCC in vitro and in vivo. Functionally, analysis from the clinical and cellular data indicated that CXCR4 was significantly upregulated in ccRCC tissues and cells, compared to their normal counterparts. Next, the loss-of-function experiments validated that knock-down of CXCR4 suppressed cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in ccRCC cells, while CXCR4 overexpression had opposite effects on the above cellular functions. Consistently, the xenograft tumor-bearing mice models were established, and the results supported that knock-down of CXCR4 inhibited tumor growth and the expression levels of Ki67 protein in vivo. In addition, the ccRCC cells were exposed to DDP treatment, and we surprisingly found that upregulation of CXCR4 increased DDP-resistance in ccRCC cells, and conversely, CXCR4 ablation sensitized ccRCC cells to DDP stimulation. Taken together, we concluded that CXCR4 ablation hindered cancer progression and enhanced DDP-sensitivity in ccRCC, and the present study identified a novel therapeutic biomarker for ccRCC.
Collapse
Affiliation(s)
- Wenguang Wang
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhilu Gan
- Department of Urology, The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qiang Liu
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shenshen Yan
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rexiti Mulati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yujie Wang
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Leeds J, Scindia Y, Loi V, Wlazlo E, Ghias E, Cechova S, Portilla D, Ledesma J, Swaminathan S. Protective role of DJ-1 in endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F654-F663. [PMID: 32715759 DOI: 10.1152/ajprenal.00064.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis and an important cause of morbidity and mortality worldwide. A cornerstone of sepsis-associated AKI is dysregulated inflammation, leading to increased tissue oxidative stress and free radical formation, which leads to multiple forms of cell death. DJ-1 is a peroxiredoxin protein with multiple functions, including its ability to control cellular oxidative stress. Although DJ-1 is expressed prominently by renal tubules, its role in AKI has not been investigated. In the present study, we examined the effect of DJ-1 deficiency in a murine model of endotoxin-induced AKI. Endotoxemia induced greater kidney injury in DJ-1-deficient mice. Furthermore, DJ-1 deficiency increased renal oxidative stress associated with increased renal tubular apoptosis and with expression of death domain-associated protein (DAXX). Similar to the in vivo model, in vitro experiments using a medullary collecting duct cell line (mIMCD3) and cytotoxic serum showed that serum obtained from wild-type mice resulted in increased expression of s100A8/s100A9, DAXX, and apoptosis in DJ-1-deficient mIMCD3 cells. Our findings demonstrate a novel renal protective role for renal tubular DJ-1 during endotoxemia through control of oxidative stress, renal inflammation, and DAXX-dependent apoptosis.
Collapse
Affiliation(s)
- Joseph Leeds
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Yogesh Scindia
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Valentina Loi
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia.,Department of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | - Ewa Wlazlo
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Elizabeth Ghias
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Sylvia Cechova
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Didier Portilla
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Jonathan Ledesma
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | | |
Collapse
|
13
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
14
|
Xu L, Lee JR, Hao S, Ling XB, Brooks JD, Wang SX, Gambhir SS. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies. PLoS One 2019; 14:e0221051. [PMID: 31404106 PMCID: PMC6690541 DOI: 10.1371/journal.pone.0221051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To develop a magneto-nanosensor (MNS) based multiplex assay to measure protein and autoantibody biomarkers from human serum for prostate cancer (CaP) diagnosis. Materials and methods A 4-panel MNS autoantibody assay and a MNS protein assay were developed and optimized in our labs. Using these assays, serum concentration of six biomarkers including prostate-specific antigen (PSA) protein, free/total PSA ratio, as well as four autoantibodies against Parkinson disease 7 (PARK7), TAR DNA-binding protein 43 (TARDBP), Talin 1 (TLN1), and Caldesmon 1 (CALD1) and were analyzed. Human serum samples from 99 patients (50 with non-cancer and 49 with clinically localized CaP) were evaluated. Results The MNS assay showed excellent performance characteristics and no cross-reactivity. All autoantibody assays showed a statistically significant difference between CaP and non-cancer samples except for PARK7. The most significant difference was the combination of the four autoantibodies as a panel in addition to the free/total PSA ratio. This combination had the highest area under the curve (AUC)– 0.916 in ROC analysis. Conclusions Our results suggest that this autoantibody panel along with PSA and free PSA have potential to segregate patients without cancer from those with prostate cancer with higher sensitivity and specificity than PSA alone.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Shiying Hao
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - Xuefeng Bruce Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shan X. Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Shang S, Yang J, Jazaeri AA, Duval AJ, Tufan T, Lopes Fischer N, Benamar M, Guessous F, Lee I, Campbell RM, Ebert PJ, Abbas T, Landen CN, Difeo A, Scacheri PC, Adli M. Chemotherapy-Induced Distal Enhancers Drive Transcriptional Programs to Maintain the Chemoresistant State in Ovarian Cancer. Cancer Res 2019; 79:4599-4611. [PMID: 31358529 DOI: 10.1158/0008-5472.can-19-0215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Chemoresistance is driven by unique regulatory networks in the genome that are distinct from those necessary for cancer development. Here, we investigate the contribution of enhancer elements to cisplatin resistance in ovarian cancers. Epigenome profiling of multiple cellular models of chemoresistance identified unique sets of distal enhancers, super-enhancers (SE), and their gene targets that coordinate and maintain the transcriptional program of the platinum-resistant state in ovarian cancer. Pharmacologic inhibition of distal enhancers through small-molecule epigenetic inhibitors suppressed the expression of their target genes and restored cisplatin sensitivity in vitro and in vivo. In addition to known drivers of chemoresistance, our findings identified SOX9 as a critical SE-regulated transcription factor that plays a critical role in acquiring and maintaining the chemoresistant state in ovarian cancer. The approach and findings presented here suggest that integrative analysis of epigenome and transcriptional programs could identify targetable key drivers of chemoresistance in cancers. SIGNIFICANCE: Integrative genome-wide epigenomic and transcriptomic analyses of platinum-sensitive and -resistant ovarian lines identify key distal regulatory regions and associated master regulator transcription factors that can be targeted by small-molecule epigenetic inhibitors.
Collapse
Affiliation(s)
- Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander James Duval
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Natasha Lopes Fischer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Fadila Guessous
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Inyoung Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert M Campbell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Philip J Ebert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Analisa Difeo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
16
|
Zhu Y, Dong S, Zhu Y, Zhao Y, Xu Y. Identification of cancer prognosis-associated lncRNAs based on the miRNA-TF co-regulatory motifs and dosage sensitivity. Mol Omics 2019; 15:361-373. [DOI: 10.1039/c9mo00089e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By integrating dosage sensitivity and motif regulation data, we established a framework and identified a total of 33 cancer prognosis-associated lncRNAs.
Collapse
Affiliation(s)
- Yinling Zhu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Siyao Dong
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yanjiao Zhu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yichuan Zhao
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Yan Xu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| |
Collapse
|
17
|
DJ-1 Alters Epirubicin-induced Apoptosis via Modulating Epirubicinactivated Autophagy in Human Gastric Cancer Cells. Curr Med Sci 2018; 38:1018-1024. [PMID: 30536064 DOI: 10.1007/s11596-018-1978-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Epirubicin, which is a conventional chemotherapeutic drug for gastric cancer, has innate and adaptive chemoresistance. Recent studies revealed that epirubicin could induce autophagy as a defensive mechanism in drug resistance of mammary carcinoma. Another study implied that DJ-1 may be a chemoresistance-related gene. But the association between DJ-1 and drug resistance of epirubicin in gastric cancer is still ambiguous. In the present report, we explored whether and how DJ-1 conduced to epirubicin-induced apoptosis in gastric cancer. Epirubicin dose-dependently increased the expression of DJ-1 and induced autophagy. Knockdown of DJ-1 notably enhanced epirubicin-induced cell apoptosis, whereas overexpression of DJ-1 attenuated epirubicin-induced cell apoptosis. Further studies revealed that down-regulation of DJ-1 modulated epirubicinactivated autophagy which augmented epirubicin-induced apoptosis. In conclusion, our results validated that DJ-1 reduced epirubicin-induced apoptosis in gastric cancer cells via modulating epirubicin-activated autophagy.
Collapse
|
18
|
Gladitz J, Klink B, Seifert M. Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion. Acta Neuropathol Commun 2018; 6:49. [PMID: 29890994 PMCID: PMC5996550 DOI: 10.1186/s40478-018-0544-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
Oligodendrogliomas are primary human brain tumors with a characteristic 1p/19q co-deletion of important prognostic relevance, but little is known about the pathology of this chromosomal mutation. We developed a network-based approach to identify novel cancer gene candidates in the region of the 1p/19q co-deletion. Gene regulatory networks were learned from gene expression and copy number data of 178 oligodendrogliomas and further used to quantify putative impacts of differentially expressed genes of the 1p/19q region on cancer-relevant pathways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong impact on metabolic pathways widespread across the region of the 1p/19 co-deletion. Many of these candidates (e.g. ELTD1, SDHB, SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely to push, whereas others (e.g. CAP1, HBXIP, KLK6, PARK7, PTAFR) might counteract oligodendroglioma development. For example, ELTD1, a functionally validated glioblastoma oncogene located on 1p, was overexpressed. Further, the known glioblastoma tumor suppressor SLC17A7 located on 19q was underexpressed. Moreover, known epigenetic alterations triggered by mutated SDHB in paragangliomas suggest that underexpressed SDHB in oligodendrogliomas may support and possibly enhance the epigenetic reprogramming induced by the IDH-mutation. We further analyzed rarely observed deletions and duplications of chromosomal arms within oligodendroglioma subcohorts identifying putative oncogenes and tumor suppressors that possibly influence the development of oligodendroglioma subgroups. Our in-depth computational study contributes to a better understanding of the pathology of the 1p/19q co-deletion and other chromosomal arm mutations. This might open opportunities for functional validations and new therapeutic strategies.
Collapse
|
19
|
Mingina T, Zhao M. Role of PARK7 and NDKA in stroke management: a review of PARK7 and NDKA as stroke biomarkers. Biomark Med 2018; 12:419-425. [PMID: 29697269 DOI: 10.2217/bmm-2018-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM Biomarkers are molecules measured in plasma, serum or other body fluids to characterize a disease. PARK7 and NDKA roles in the management of stroke are still on study. Therefore, their potentials need to be developed in totality. The aim of this review is to demonstrate that PARK7 and NDKA could present more clinical important information as biomarkers for management of stroke disease. Main contents: Four main aspects of PARK7 and NDKA are exploited in this review. First, their diagnostic value is discussed in order to demonstrate their possible role as stroke diagnosis markers. Second, this article will exploit the correlation of both markers with time, by showing their dynamic changes in serum and plasma. Third, it describes the observed relationship of their levels with NIH Stroke Scale. The last aspect visits the possibility of their implementation in stroke therapy. CONCLUSION This article explores recent findings and proposes the potential roles that PARK7 and NDKA play in the management of acute stroke disease.
Collapse
Affiliation(s)
- Tulantched Mingina
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 11004, PR China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 11004, PR China
| |
Collapse
|
20
|
Kawate T, Tsuchiya B, Iwaya K. Expression of DJ-1 in Cancer Cells: Its Correlation with Clinical Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:45-59. [PMID: 29147902 DOI: 10.1007/978-981-10-6583-5_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upregulation of DJ-1 mRNA is commonly observed in various human cancers such as ductal carcinoma of the breast, non-small cell carcinoma of the lung, pancreatic duct adenocarcinoma, urinary transitional cell carcinoma, and gynecologic carcinoma. At the protein level, intensity and intracellular localization of DJ-1 expression is varied, and the DJ-1 protein regulates cancer progression, clinical aggressiveness, differentiation, cancer cell morphology, and drug sensitivity. Thus, DJ-1 plays a critical role in cancer. Although DJ-1 has an important role within cancer cells, cancer cells secrete DJ-1 outside the cells. DJ-1 may serve as a tumor marker that can be detected from an early stage in the blood, secretory fluids, ascites, or pleural effusion.
Collapse
Affiliation(s)
- Takahiko Kawate
- Department of Breast Oncology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Benio Tsuchiya
- Department of Pathology, School of Allied Health Sciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Keiichi Iwaya
- Department of Pathology, Kyoundo Hospital, Sasaki Institute, 101-0062 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|
22
|
Kim DK, Beaven MA, Kulinski JM, Desai A, Bandara G, Bai Y, Prussin C, Schwartz LB, Komarow H, Metcalfe DD, Olivera A. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis. PLoS One 2016; 11:e0162831. [PMID: 27611333 PMCID: PMC5017616 DOI: 10.1371/journal.pone.0162831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph M. Kulinski
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avanti Desai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Calman Prussin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hirsh Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|