1
|
Zhao G, Qi H, Liu M, Zhou T, Chen L, Wu C, Zhang X, Zeng N, Tong Y. Rhoifolin Attenuates Concanavalin A-Induced Autoimmune Hepatitis in Mice via JAKs/STATs Mediated Immune and Apoptotic Processes. ACS OMEGA 2024; 9:43233-43251. [PMID: 39464476 PMCID: PMC11500133 DOI: 10.1021/acsomega.4c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Rhoifolin (ROF) exhibits a diverse range of biological activities, encompassing anticancer, hepatoprotective, antidiabetic, antirheumatic, and antiviral properties. However, the specific protective effects and possible mechanisms of the compound against T-cell-mediated autoimmune hepatitis have not been previously elucidated. In the present study, adult male mice were administered Con A (20 mg/kg, intravenously) for 8 h. In the treated groups, mice were pretreated with ROF daily (20 mg/kg and 40 mg/kg, orally) for 7 days before Con A intoxication. The results showed that ROF significantly decreased serum biochemical indices (ALT, AST, ALP, and LDH) and regulated related oxidative stress indicators (MDA, SOD, and GSH), reduced hepatic necrosis areas and immune cells infiltration, inhibited the release of various inflammatory factors (TNF-α, IFN-γ, IL-2, and IL-17), and improved hepatic tissue apoptosis, thereby alleviating hepatic damage induced by Con A. Additionally, we have also confirmed that ROF efficiently inhibited Th1/Th17 cells polarization via modulation of the JAK2/JAK3/STAT1/STAT3 signaling pathways both in vivo and in vitro. Moreover, the molecular mechanism examination also demonstrated that ROF regulated apoptotic cascade signaling through IL-6/JAK2/STAT1/STAT3 controlling BNIP3 activity in primary hepatocytes. These effects were in good agreement with the bioinformatics analysis of ROF treatment for AIH. In conclusion, our findings provide new insights into the potential use of ROF for AIH therapy, which may result from the specific regulation of the T cell subtype polarization and the apoptosis of liver cells via modulation of the JAKs/STATs signaling pathways.
Collapse
Affiliation(s)
- Ge Zhao
- Department
of Pharmacy, The Affiliated Hospital, Southwest
Medical University, Luzhou, Sichuan 646000, P. R. China
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Hu Qi
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Minghua Liu
- Department
of Pharmacology, School of Pharmacy, Southwest
Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Ting Zhou
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Li Chen
- Department
of Pharmacy, Clinical Medical College and
The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Chunhong Wu
- Information
Centre, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Xiongwei Zhang
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Nan Zeng
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yue Tong
- Department
of Gastroenterology, Xinqiao Hospital, Third
Military Medical University (Army Medical University), Chongqing 400037, P. R. China
| |
Collapse
|
2
|
Wang LW, Li J, Gao LX, Chen FY. A novel dibenzofuran from endophytic fungus Mycosphaerella nawae preferentially inhibits CD4 + T cell activation and proliferation. J Appl Microbiol 2022; 133:3502-3511. [PMID: 35973736 DOI: 10.1111/jam.15782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
AIM To obtain promising immunosuppressants from endophytic fungus. METHODS AND RESULTS The endophytic fungus Mycosphaerella nawae (ZJLQ129) was isolated from the plant Smilax china L. and its secondary metabolites extracted and fractionated through column chromatography. The metabolites were further modified by a derivatization reaction with ammonium hydroxide. After isolation and derivatization, a new dibenzofuran named as (+)isomycousnine enamine (iME) was obtained. The structures of the derivatives were determined based on chemical evidences and extensive spectroscopic methods including 2D-NMR, DEPT and HRESI-MS spectra. The immune activities of iME were first evaluated on the proliferation and cytokines (IL-2 and IFN-γ) production of T and B cells by using MTT and ELISA methods, respectively. Then, its effects on the proliferation of T cell subsets (CD4+ and CD8+ T cells), as well as CD25 and CD69 expressions were also determined by flow cytometry. Finally, by using Cytometric Bead Array (CBA), the impacts of iME on the secretion of Th1/Th2/Th17 cytokines from purified CD4+ T cells were assayed. The results showed that iME not only selectively suppressed the immune responses of T cells, but also preferentially inhibited the activation and proliferation of CD4+ T cells. CONCLUSION A novel dibenzofuran derived from endophytic fungus Mycosphaerella nawae preferentially inhibits CD4+ T cell activation and proliferation. SIGNIFICANCE AND IMPACT OF THE STUDY This work obtained iME, a new dibenzofuran derived from endophytic fungus. iME has the capacity to inhibit CD4+ T cell activation and therefore is a novel potential immunosuppressant for development in the future.
Collapse
Affiliation(s)
- Li-Wei Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, 311121, Hangzhou, China
| | - Jie Li
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, China
| | - Le-Xin Gao
- Savaid Stomatology School, Hangzhou Medical College, 310053, Hangzhou, China
| | - Feng-Yang Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, China
| |
Collapse
|
3
|
Summary of Natural Products Ameliorate Concanavalin A-Induced Liver Injury: Structures, Sources, Pharmacological Effects, and Mechanisms of Action. PLANTS 2021; 10:plants10020228. [PMID: 33503905 PMCID: PMC7910830 DOI: 10.3390/plants10020228] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Liver diseases represent a threat to human health and are a significant cause of mortality and morbidity worldwide. Autoimmune hepatitis (AIH) is a progressive and chronic hepatic inflammatory disease, which may lead to severe complications. Concanavalin A (Con A)-induced hepatic injury is regarded as an appropriate experimental model for investigating the pathology and mechanisms involved in liver injury mediated by immune cells as well as T cell-related liver disease. Despite the advances in modern medicine, the only available strategies to treat AIH, include the use of steroids either solely or with immunosuppressant drugs. Unfortunately, this currently available treatment is associated with significant side-effects. Therefore, there is an urgent need for safe and effective drugs to replace and/or supplement those in current use. Natural products have been utilized for treating liver disorders and have become a promising therapy for various liver disorders. In this review, the natural compounds and herbal formulations as well as extracts and/or fractions with protection against liver injury caused by Con A and the underlying possible mechanism(s) of action are reviewed. A total of 53 compounds from different structural classes are discussed and over 97 references are cited. The goal of this review is to attract the interest of pharmacologists, natural product researchers, and synthetic chemists for discovering novel drug candidates for treating immune-mediated liver injury.
Collapse
|
4
|
Wu YG, Wang KW, Zhao ZR, Zhang P, Liu H, Zhou GJ, Cheng Y, Wu WJ, Cai YH, Wu BL, Chen FY. A novel polysaccharide from Dendrobium devonianum serves as a TLR4 agonist for activating macrophages. Int J Biol Macromol 2019; 133:564-574. [PMID: 31004640 DOI: 10.1016/j.ijbiomac.2019.04.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
Dendrobium devonianum has been used as herbal medicines and nutraceutical products since ancient time in China. However, its chemical composition and pharmacological mechanisms are not fully known. In present studies, by chemical purification and characteristic identification, we discovered a novel polysaccharide from D. devonianum, which was designated as DvP-1 with molecular weights of 9.52 × 104 Da. DvP-1 is a homogeneous heteropolysaccharide consisting of D-mannose and d-glucose in the molar ration of 10.11: 1. The main glycosidic linkages were β-1, 4-Manp, which were substituted with acetyl groups at the O-2, O-3 and/or O-6 positions. DvP-1 was found to directly stimulate the activation of macrophages in vitro, as evidenced by inducing morphologic change, thereby promoting the production of cytokines TNF-α, IL-6 and NO, and enhancing the pinocytic activity of macrophages. By establishing a zebrafish model, we also found that DvP-1 could alleviate vinorelbine-induced decrease of macrophages in vivo. Further findings indicated that DvP-1 activated macrophages through several toll-like receptors (TLRs), but mainly through TLR4. DvP-1 served as a TLR4 agonist and induced ERK, JNK, p38, and IκB-α phosphorylation, suggesting the activation of MAPK and NFκB signaling pathways downstream of TLR4. These findings could help us further understand the immunomodulating effects of D. devonianum in Chinese medicines or health foods for immunocompromised persons. They also show the medicinal value of DvP-1 for the treatment of cancer and infectious diseases caused by TLR4 dysfunction.
Collapse
Affiliation(s)
- Yue-Guo Wu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Kui-Wu Wang
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zheng-Rong Zhao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Ping Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hua Liu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Gui-Jiao Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yan Cheng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Wen-Jie Wu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yi-Heng Cai
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Bei-Li Wu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Feng-Yang Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
5
|
Antiasthmatic Effects of Sanglong Pingchuan Decoction through Inducing a Balanced Th1/Th2 Immune Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2629565. [PMID: 29991953 PMCID: PMC6016219 DOI: 10.1155/2018/2629565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
Objective To investigate the antiasthmatic effects of Sanglong pingchuan decoction (SLPCD) and to explore its mechanisms of action. Methods The serum, bronchoalveolar lavage fluid (BALF), and lung tissues from OVA-induced allergic asthma mice were collected 24 h after the last administration. Lung pathological changes were observed by H&E staining. The inflammatory cells in BALF were counted by flow cytometry. The levels of total IgE in serum and cytokines in BALF were determined by ELISA. The expression levels of cytokine mRNA in lung were assayed by qRT-PCR. Results SLPCD significantly inhibited airway inflammation, reduced inflammatory cells in BALF, reduced the levels of total IgE in serum and Th2 cytokines (IL-10 and IL-13) in BALF, and downregulated the mRNA expression levels of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in lung of asthmatic mice. However, SLPCD remarkably elevated the level of Th1 cytokine IFN-γ in BALF and upregulated the mRNA expression levels of Th1 cytokines (IL-2 and IFN-γ) in lung of asthmatic mice. Conclusion SLPCD could attenuate airway inflammation and alleviate the pathogenesis in asthma mice through inducing a balanced Th1/Th2 response and could act as an effective drug for treatment of asthma.
Collapse
|
6
|
Du J, Chen X, Wang C, Sun H. Pathway analysis of global gene expression change in dendritic cells induced by the polysaccharide from the roots of Actinidia eriantha. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:141-152. [PMID: 29247698 DOI: 10.1016/j.jep.2017.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Actinidia eriantha Benth have been used clinically to treat a variety of cancers in traditional Chinese medicine. The polysaccharide from this drug (AEPS) was previously reported to be a potential antitumor agent with immunomodulatory activity. However, the mechanisms of its antitumor action in immunomodulation have not yet been well-defined. AIM OF THE STUDY To investigate the effects of AEPS on the phenotypic and functional maturation of dendritic cells and to explore the intracellular signaling mechanisms of its antitumor action in the immunomodulation. MATERIALS AND METHODS The effects of AEPS on the phagocytic activity, expression of surface molecules, mRNA and protein expression levels of cytokines and chemokines in mouse bone-marrow derived dendritic cells (BMDCs) were determined by flow cytometry, qRT-PCR and ELISA, respectively. The transcriptional profile induced by AEPS was established using oligonucleotide microarray, and Ingenuity Pathway Analysis (IPA) was used to identify potential signaling pathways. Western blotting, neutralization experiments and inhibition assay were performed to confirm signaling pathway involved in maturation of DCs induced by AEPS. Furthermore, we discussed the downstream effects of the action of AEPS using clustering, network and pathway mapping approaches. RESULTS AEPS could significantly reduced phagocytic activity, promoted expression of accessory and co-stimulatory molecules, and up-regulated the mRNA and protein expression levels of cytokines and chemokines in BMDCs. Microarray assay revealed that AEPS induced significantly differential expression of 452 genes including up-regulated cytokines (IL-6, IL-1β, TNF-α, IL-10, IL-12p40, IFN-β and IFN-γ), chemokines (MIP-1α, MIP-1β, CCL5, MDC and MCP-1), transcription factors (STAT1, STAT2, STAT5b, IRF1 and IRF7) and pattern recognition receptors (TLR3, DDX58, DHX58 and IFIH1) in the BMDCs. AEPS-induced production of TNF-α and IL-12p40 from BMDCs was inhibited by antibodies against TLR2 and TLR4. Furthermore, AEPS induced the phosphorylation of NF-κB p65 in a time-dependent manner, and BAY 11-7082, an inhibitor of NF-κB, remarkably suppressed the production of cytokines induced by AEPS. CONCLUSION AEPS triggers the phenotypic and functional maturation of DCs via TLR2/4 and NF-κB signaling pathway, resulting in augmented antitumor immune responses. Our results suggested that AEPS might be helpful in potentiating the efficiency of DC-based cancer immunotherapy. This study further expanded current knowledge on the mechanisms of antitumor action of AEPS.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Chenying Wang
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Li XY, Zhou LF, Gao LJ, Wei Y, Xu SF, Chen FY, Huang WJ, Tan WF, Ye YP. Cynanbungeigenin C and D, a pair of novel epimers from Cynanchum bungei, suppress hedgehog pathway-dependent medulloblastoma by blocking signaling at the level of Gli. Cancer Lett 2018; 420:195-207. [PMID: 29425683 DOI: 10.1016/j.canlet.2018.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Uncontrolled excessive activation of Hedgehog (Hh) signaling pathway is linked to a number of human malignant tumorigenesis. To obtain valuable Hh pathway inhibitors from natural product, in present study, a pair of novel epimers, Cynanbungeigenin C (CBC) and D (CBD) from the plant Cynanchum bungei Decne were chemically characterized by multiple spectroscopic data and chemical derivatization, and evaluated for their inhibition on Hh pathway. Mechanistically, CBC and CBD block Hh pathway signaling not through targeting Smo and Sufu, but at the level of Gli. In addition, both eipmers significantly suppress Hh pathway-dependent Ptch+/-; p53-/- medulloblastoma in vitro and in vivo. Furthermore, both CBC and CBD inhibited two Smo mutants induced Hh pathway activation, which suggested that they are potential compounds for the treatment of medulloblastoma with primary or acquired resistance to current Smo inhibitors. These results highlight the potential of CBC and CBD as effective lead compounds in the treatment of medulloblastoma and other Hh-dependent malignancy.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Li-Fei Zhou
- Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Li-Juan Gao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Yang Wei
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Shi-Fang Xu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Feng-Yang Chen
- Department of Basic Medical Science, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Wen-Jing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi-Ping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| |
Collapse
|
8
|
Chen FY, Zhou LF, Li XY, Xu SF, Gao LJ, Sun HX, Ye YP. Stephanthraniline A and Cyclosporine A Synergize to Inhibit T-cell Response in vitro and in vivo. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.266.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|