1
|
Zhen WJ, Zhang Y, Fu WD, Fu XL, Yan X. Role of immune-related endoplasmic reticulum stress genes in sepsis-induced cardiomyopathy: Novel insights from bioinformatics analysis. PLoS One 2024; 19:e0315582. [PMID: 39671358 PMCID: PMC11642931 DOI: 10.1371/journal.pone.0315582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The current study aims to elucidate the key molecular mechanisms linked to endoplasmic reticulum stress (ERS) in the pathogenesis of sepsis-induced cardiomyopathy (SIC) and offer innovative therapeutic targets for SIC. METHODS The study downloaded dataset GSE79962 from the Gene Expression Omnibus database and acquired the ERS-related gene set from GeneCards. It utilized weighted gene co-expression network analysis (WGCNA) and conducted differential expression analysis to identify key modules and genes associated with SIC. The SIC hub genes were determined by the intersection of WGCNA-based hubs, DEGs, and ERS-related genes, followed by protein-protein interaction (PPI) network construction. Enrichment analyses, encompassing GO, KEGG, GSEA, and GSVA, were performed to elucidate potential biological pathways. The CIBERSORT algorithm was employed to analyze immune infiltration patterns. Diagnostic and prognostic models were developed to assess the clinical significance of hub genes in SIC. Additionally, in vivo experiments were conducted to validate the expression of hub genes. RESULTS Differential analysis revealed 1031 differentially expressed genes (DEGs), while WGCNA identified a hub module with 1327 key genes. Subsequently, 13 hub genes were pinpointed by intersecting with ERS-related genes. NOX4, PDHB, SCP2, ACTC1, DLAT, EDN1, and NSDHL emerged as hub ERS-related genes through the protein-protein interaction network, with their diagnostic values confirmed via ROC curves. Diagnostic models incorporating five genes (NOX4, PDHB, ACTC1, DLAT, NSDHL) were validated using the LASSO algorithm, highlighting only the prognostic significance of serum PDHB levels in predicting the survival of septic patients. Additionally, decreased PDHB mRNA and protein expression levels were observed in the cardiac tissue of septic mice compared to control mice. CONCLUSIONS This study elucidated the interplay between metabolism and the immune microenvironment in SIC, providing fresh perspectives on the investigation of potential SIC pathogenesis. PDHB emerged as a significant biomarker of SIC, with implications on its progression through the regulation of ERS and metabolism.
Collapse
Affiliation(s)
- Wan-Jing Zhen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan Zhang
- Department of Anesthesiology, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, Hunan Province, China
| | - Wei-Dong Fu
- Department of Anesthesiology, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, Hunan Province, China
| | - Xiao-Lei Fu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, Hunan Province, China
| | - Xin Yan
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, Hunan Province, China
| |
Collapse
|
2
|
Erciyes D, Bora ES, Tekindal MA, Erbaş O. Demonstration of the Protective Effect of Vinpocetine in Diabetic Cardiomyopathy. J Clin Med 2024; 13:4637. [PMID: 39200779 PMCID: PMC11354616 DOI: 10.3390/jcm13164637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) poses a significant risk for heart failure in individuals with diabetes, yet its underlying mechanisms remain incompletely understood. Elevated blood sugar levels initiate harmful processes, including apoptosis, collagen accumulation, and fibrosis in the heart. Vinpocetine, a derivative of Vinca minor L., has demonstrated diverse pharmacological effects, including vasodilation, anti-inflammatory properties, and enhanced cellular metabolism. This study aims to investigate Vinpocetine's protective and remodeling effects in diabetic cardiomyopathy by evaluating biochemical and histopathological parameters. Methods: Twenty-one adult male Wistar rats were induced with diabetes using streptozocin and divided into Diabetes and Diabetes + Vinpocetine groups. Histopathological analyses, TGF-β1 immunoexpression, and measurements of plasma markers (TGF-β, pro-BNP, Troponin T) were performed. Biochemical analyses included HIF-1 alpha and neuregulin-1β quantification and evaluation of lipid peroxidation. Results: Vinpocetine significantly reduced cardiac muscle thickness, TGF-β1 expression, and plasma in diabetic rats. HIF-1 alpha and neuregulin-1β levels increased with Vinpocetine treatment. Histopathological observations confirmed reduced fibrosis and structural abnormalities in Vinpocetine-treated hearts. Conclusions: This study provides comprehensive evidence supporting the protective effects of Vinpocetine against diabetic cardiomyopathy. Vinpocetine treatment improved cardiac morphology, immunohistochemistry, and modulation of biochemical markers, suggesting its potential as a therapeutic intervention to attenuate the negative impact of diabetes on heart function.
Collapse
Affiliation(s)
- Demet Erciyes
- Department of Cardiology, Faculty of Medicine, Demiroğlu Bilim University, 34394 Istanbul, Türkiye;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, 35620 Izmir, Türkiye
| | - Mustafa Agah Tekindal
- Department of Basic Medical Sciences Biostatistics, Faculty of Medicine, İzmir Katip Çelebi Unıversity, 35620 Izmir, Türkiye;
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, 34394 Istanbul, Türkiye;
| |
Collapse
|
3
|
Al-Wahaibi L, Abdel-Rahman MH, El-Adl K, Youssif BGM, Bräse S, Abdel-Aziz SA. New Diaryl-1,2,4-triazolo[3,4- a]pyrimidine Hybrids as Selective COX-2/sEH Dual Inhibitors with Potent Analgesic/Anti-inflammatory and Cardioprotective Properties. ACS OMEGA 2024; 9:33494-33509. [PMID: 39130606 PMCID: PMC11307993 DOI: 10.1021/acsomega.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 08/13/2024]
Abstract
COX-2-selective drugs were withdrawn from the market just a few years after their development due to cardiovascular side effects. As a result, developing a selective COX-2 inhibitor as an anti-inflammatory agent with cardioprotective characteristics has become a prominent objective in medicinal chemistry. New 15 diaryl-1,2,4-triazolo[3,4-a]pyrimidine hybrids 8a-o were synthesized and investigated in vitro as dual COX-2/sEH inhibitors. Compounds 8b, 8m, and 8o have the highest potency and selectivity as COX-2 inhibitors (IC50 = 15.20, 11.60, and 10.50 μM, respectively; selectivity index (COX-1/COX-2) = 13, 20, and 25, respectively), compared to celecoxib (COX-2; IC50 = 42 μM; SI = 8). The 5-LOX inhibitory activity of compounds 8b, 8m, and 8o was further examined in vitro. Compounds 8m and 8o, the most effective COX-2 selective inhibitors, demonstrated stronger 5-LOX inhibitory action than the reference quercetin, with IC50 values of 2.90 and 3.05 μM, respectively. Additionally, compounds 8b, 8m, and 8o were the most potent dual COX-2/sEH inhibitors, with IC50 values against sEH of 3.20, 2.95, and 2.20 nM, respectively, and were equivalent to AUDA (IC50 = 1.2 nM). In vivo investigations also demonstrated that these compounds were the most efficacious as analgesic/anti-inflammatory derivatives with a high cardioprotective profile against cardiac biomarkers and inflammatory cytokines. The docking data analysis inquiry helped better understand the binding mechanisms of the most active hybrids within the COX-2 active site and supported their COX-2 selectivity. Compounds 8b, 8m, and 8o exhibited a similar orientation to rofecoxib and celecoxib, with a larger proclivity to enter the selectivity side pocket than the reference compounds.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mostafa H. Abdel-Rahman
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy(Boys), Al-Azhar University, Assiut 71524, Egypt
| | - Khaled El-Adl
- Department
of Chemistry, Faculty of Pharmacy, Heliopolis
University for Sustainable Development, 11785 El Salam City, Cairo, Egypt
- Department
of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys) Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Bahaa G. M. Youssif
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute
of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute
of Technology, 76131 Karlsruhe, Germany
| | - Salah A. Abdel-Aziz
- Department
of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys) Al-Azhar University, Assiut 71524, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| |
Collapse
|
4
|
Huang S, Cai J, Ma L, Zhang Q, Sun Y, Zhang Q, Qin L. Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS One 2024; 19:e0289894. [PMID: 38181063 PMCID: PMC10769069 DOI: 10.1371/journal.pone.0289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 01/07/2024] Open
Abstract
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Collapse
Affiliation(s)
- Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Wu Z, Xia Y, Wang C, Lu W, Zuo H, Wu D, Li Y, Guo R, Lu J, Zhang L. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve. Biomed Pharmacother 2023; 162:114600. [PMID: 36996679 DOI: 10.1016/j.biopha.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yiqiu Xia
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaofan Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Wenjun Lu
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Han Zuo
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yu Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Rui Guo
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| |
Collapse
|
7
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
8
|
Lu Z, Wu D, Wang Z, Zhang H, Du Y, Wang G. Diminazene aceturate mitigates cardiomyopathy by interfering with renin-angiotensin system in a septic rat model. BMC Pharmacol Toxicol 2022; 23:44. [PMID: 35787308 PMCID: PMC9251020 DOI: 10.1186/s40360-022-00584-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background There were limited studies investigating treatments of septic cardiomyopathy (SCM), which is a common complication during sepsis. A septic rat model created by cecal ligation and puncture (CLP) was used to investigate the effects of diminazene aceturate (DIZE) in SCM. Methods A total of 151 Wistar rats were randomly assigned into the sham, CLP, or CLP + DIZE group. Data evaluated postoperatively at 6, 12, 24, and 48 hours included: cardiac function; plasma concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6, angiotensin-(1–7) [Ang-(1–7)], angiotensin II (AngII), troponin I, and brain natriuretic peptide; expression levels of myocardial Ang-(1–7), angiotensin-converting enzyme (ACE), ACE2, and angiotensin type 1 and Mas receptors; and histological changes. Results We found that the CLP + DIZE group had a lower mortality compared to the CLP group (38.5% versus 61.5%) within 48 h postoperatively, although without statistical significance. In contrast to the sham group, the CLP group had decreased cardiac functions, increased myocardial injuries, and higher TNF-α levels, which were ameliorated in the CLP + DIZE group. Furthermore, administration of DIZE could reverse the decreases of myocardial Ang-(1–7) and ACE2 expressions in the CLP group, which finally minimized the myocardial microstructure disruptions. Conclusions It was concluded that DIZE could mitigate the development of SCM and preserve cardiac function during sepsis possibly by interfering with the renin-angiotensin system through promoting myocardial ACE2 expression and restoring local Ang-(1–7) levels. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00584-4.
Collapse
Affiliation(s)
- Zhaoqing Lu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Di Wu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hanyu Zhang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yufan Du
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
9
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
10
|
Abdel‐Aziz SA, Taher ES, Lan P, El‐Koussi NA, Salem OIA, Gomaa HAM, Youssif BGM. New pyrimidine/thiazole hybrids endowed with analgesic, anti‐inflammatory, and lower cardiotoxic activities: Design, synthesis, and COX‐2/sEH dual inhibition. Arch Pharm (Weinheim) 2022; 355:e2200024. [DOI: 10.1002/ardp.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Salah A. Abdel‐Aziz
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy Al‐Azhar University Assiut Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Deraya University Minia Egypt
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Al‐Azhar University Assiut Egypt
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou China
| | - Nawal A. El‐Koussi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Deraya University Minia Egypt
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Ola I. A. Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| |
Collapse
|
11
|
Chen M, Li J, Wang J, Le Y, Liu C. SMYD1 alleviates septic myocardial injury by inhibiting endoplasmic reticulum stress. Biosci Biotechnol Biochem 2021; 85:2383-2391. [PMID: 34601561 DOI: 10.1093/bbb/zbab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a major complication of sepsis. SET and MYND domain containing 1 (SMYD1) has central importance in heart development, and its role in SIC has not been identified. Herein, we found that the expression of SMYD1 was downregulated in myocardial tissues of SIC patients (from GEO database: GSE79962) and lipopolysaccharide (LPS)-induced SIC rats, and LPS-induced H9c2 cardiomyocytes. We used LPS-stimulated H9c2 cells that mimic sepsis in vitro to explore the function of SMYD1 in SIC. MTT assay, LDH and CK-MB release assay, flow cytometry, and ELISA assay showed that SMYD1 overexpression enhanced cell viability, alleviated cell injury, impeded apoptosis, and reduced the level of proinflammatory factors and NF-κB activation under the condition of LPS stimulation. Moreover, SMYD1 exerted protective effect on H9c2 cells stimulated with LPS through relieving endoplasmic reticulum (ER) stress. In conclusion, overexpression of SMYD1 alleviates cardiac injury through relieving ER stress during sepsis.
Collapse
Affiliation(s)
- Meixue Chen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Li
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuan Le
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunfeng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Chen L, Tian Q, Shi Z, Qiu Y, Lu Q, Liu C. Melatonin Alleviates Cardiac Function in Sepsis-Caused Myocarditis via Maintenance of Mitochondrial Function. Front Nutr 2021; 8:754235. [PMID: 34708067 PMCID: PMC8542660 DOI: 10.3389/fnut.2021.754235] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has been shown to have a cardioprotective effect against myocarditis. However, the mechanisms underlying the protective role of melatonin (MLT) in sepsis-induced myocarditis are yet to be revealed. In this study, MLT was administrated to mice, 14 days before cecal ligation puncture surgery. Echocardiography results showed that MLT alleviated cardiac dysfunction in sepsis-induced myocarditis. Furthermore, MLT reduced cardiac inflammation by inhibiting the expression of Il-1α, Il-1β, Il-6, and Mcp-1 messenger RNA (mRNA) levels. The RNA sequencing (RNA-seq) assays with heart tissues showed that MLT maintains the mitochondrial function in sepsis-caused myocarditis. Additionally, the production of reactive oxygen species (ROS) in heart tissues was suppressed by MLT. Taken together, in evaluating the therapeutic effect of MLT on sepsis-induced myocarditis, the results showed that MLT alleviated cardiac damage by regulating mitochondrial function and mitochondrial ROS.
Collapse
Affiliation(s)
- Liyang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Tian
- Intensive Care Unit of Wuhan Asia Heart Hospital, Wuhan, China
| | - Zhiguang Shi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Qiu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
13
|
Amin NH, Hamed MIA, Abdel-Fattah MM, Abusabaa AHA, El-Saadi MT. Design, synthesis and mechanistic study of novel diarylpyrazole derivatives as anti-inflammatory agents with reduced cardiovascular side effects. Bioorg Chem 2021; 116:105394. [PMID: 34619468 DOI: 10.1016/j.bioorg.2021.105394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
Novel diarylpyrazole (5a-d, 6a-e, 12, 13, 14, 15a-c and 11a-g) derivatives were designed, synthesized and evaluated for their dual COX-2/sEH inhibitory activities via recombinant enzyme assays to explore their anti-inflammatory activities and cardiovascular safety profiles. Comprehensively, the structures of the synthesized compounds were established via spectral and elemental analyses, followed by the assessment of both their in vitro COX inhibitory and in vivo anti-inflammatory activities. The most active compounds as COX inhibitors were further evaluated for their in vitro 5-LOX and sEH inhibitory activities, alongside with their in vivo analgesic and ulcerogenic effects. Compounds 6d and 11f showed excellent inhibitory activities against both COX-2 and sEH (COX-2 IC50 = 0.043 and 0.048 µM; sEH IC50 = 83.58 and 83.52 μM, respectively). Moreover, the compounds demonstrated promising results as anti-inflammatory and analgesic agents with considerable ED50 values and gastric safety profiles. Remarkably, the most active COX inhibitors 6d and 11f possessed improved cardiovascular safety profiles, if compared to celecoxib, as shown by the laboratory evaluation of both essential cardiac biochemical parameters (troponin-1, prostacyclin, tumor necrosis factor-α, lactate dehydrogenase, reduced glutathione and creatine kinase-M) and histopathological studies. On the other hand, docking simulations confirmed that the newly synthesized compounds displayed sufficient structural features required for binding to the target COX-2 and sEH enzymes. Also, in silico ADME studies prediction and drug-like properties of the compounds revealed favorable oral bioavailability results. Collectively, the present work could be featured as a promising future approach towards novel selective COX-2 inhibitors with declined cardiovascular risks.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| |
Collapse
|
14
|
Xu H, An X, Tian J, Fu M, Wang Q, Li C, He X, Niu L. Angiotensin-(1-7) protects against sepsis-associated left ventricular dysfunction induced by lipopolysaccharide. Peptides 2021; 144:170612. [PMID: 34298021 DOI: 10.1016/j.peptides.2021.170612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Sepsis-induced myocardial dysfunction is a major cause of death. The present study explored whether angiotensin (Ang)-(1-7), an important biologically active peptide of the renin-angiotensin system, could improve cardiac dysfunction and attenuate inflammation and apoptosis. Experiments were carried out in mice and in neonatal rat cardiomyocytes (NRCMs) treated with lipopolysaccharide (LPS) or Ang-(1-7). Angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and Mas receptor (MasR) expressions were reduced in the mouse left ventricular and NRCM treated with LPS. Ang-(1-7) increased the ejection fraction and fractional shortening of left ventricular, which were reduced upon LPS injection in mice. Ang-(1-7) pre-treatment reversed LPS-induced decreases of α-myosin heavy chain (MHC) and β-MHC, and increases of S100 calcium binding protein A8 (S100A8) and S100A9 in the mouse left ventricular. The LPS-induced increases of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the mouse left ventricular and NRCMs were inhibited by Ang-(1-7) administration. Ang-(1-7) treatment reversed the increases of cleaved-caspase 3, cleaved-caspase 8 and Bax, and the decrease of Bcl2 induced by LPS in the mouse left ventricular and NRCMs. The increases of MAPKs pathway induced by LPS in NRCMs were inhibited by Ang-(1-7). These results indicate that Ang-(1-7) protects against sepsis-associated left ventricular dysfunction induced by LPS, and increases cardiac contractility via attenuating inflammation and apoptosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Fu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingwen Wang
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunli Li
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuhua He
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
15
|
Hendawy OM, Gomaa HAM, Alzarea SI, Alshammari MS, Mohamed FAM, Mostafa YA, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Novel 1,5-diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects. Bioorg Chem 2021; 116:105302. [PMID: 34464816 DOI: 10.1016/j.bioorg.2021.105302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.
Collapse
Affiliation(s)
- O M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutariah S Alshammari
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, United Kingdom.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
16
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
17
|
Discovery of novel urea-diarylpyrazole hybrids as dual COX-2/sEH inhibitors with improved anti-inflammatory activity and highly reduced cardiovascular risks. Eur J Med Chem 2020; 205:112662. [DOI: 10.1016/j.ejmech.2020.112662] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022]
|
18
|
Liu T, Liu J, Tian C, Wang H, Wen M, Yan M. LncRNA THRIL is upregulated in sepsis and sponges miR-19a to upregulate TNF-α in human bronchial epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2020; 17:31. [PMID: 32944003 PMCID: PMC7488348 DOI: 10.1186/s12950-020-00259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) have been demonstrated to play critical roles in various diseases. Our bioinformatics analysis showed that lncRNA TNFα and heterogenous nuclear ribonucleoprotein L (hnRNPL) related immunoregulatory LincRNA (THRIL) may interact with miR-19a, which targets TNF-α. This study aimed to explore the role of THRIL, an enhancer of LPS-induced inflammatory, in sepsis. Methods Research subjects of the present study included 66 sepsis patients and 66 healthy volunteers. The expression levels of THRIL, miR-19a and TNF-α in plasma samples from these participants were determined by RT-qPCR. The interaction between THRIL and miR-19a was explored by performing overexpression experiments in human bronchial epithelial cells (HBEpCs). The roles of THRIL, miR-19a and TNF-α in regulating the apoptosis of HBEpCs were analyzed by cell apoptosis assay. Results We found that THRIL was upregulated in sepsis patients. THRIL is predicted to interact with miR-19a, and the interaction was confirmed by dual-luciferase activity assay. However, THRIL and miR-19a did not affect the expression of each other. Instead, overexpression of THRIL resulted in the increased expression levels of TNF-α, a downstream target of miR-19a in HBEpCs. In HBEpCs, LPS treatment induced the overexpression of THRIL. Cell apoptosis analysis showed that overexpression of THRIL and TNF-α promoted the apoptosis of HBEpCs induced by LPS, while overexpression of miR-19a played an opposite role. Overexpression of THRIL attenuated the effects of overexpression of miR-19a. Conclusion Therefore, THRIL is upregulated in sepsis and may sponge miR-19a to upregulate TNF-α, thereby promoting lung cell apoptosis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Jingbin Liu
- Department of Respiratory Medicine, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Chunhua Tian
- Department of Nephrology, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), No.20 Shaoxian Road, Kundulun District, Baotou City, 014032 Inner Mongolia China
| | - Hongyuan Wang
- Department of Dental department, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Min Wen
- Department of Pharmacy, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Mingyu Yan
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| |
Collapse
|
19
|
Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L, Zhong L. Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 2020; 21:2311-2320. [PMID: 32236630 PMCID: PMC7185085 DOI: 10.3892/mmr.2020.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
Neuregulin-1 (NRG-1) is a type of epidermal growth factor‑like protein primarily distributed in the nervous and cardiovascular systems. When sepsis occurs, the incidence of cardiac dysfunction in myocardial injury is high and the mechanism is complicated. It directly causes myocardial cell damage, whilst also causing damage to the structure and function of myocardial cells, weakening of endothelial function and coronary microcirculation, autonomic dysfunction, and activation of myocardial inhibitory factors. Studies investigating NRG‑1 have been performed using a variety of methods, including in vitro models, and animal and human clinical trials; however, the results are not consistent. NRG‑1/ErbBs signaling is involved in a variety of cardiac processes, from the development of the myocardium and cardiac conduction systems to the promotion of angiogenesis in cardiomyocytes, and in cardio‑protective effects during injury. NRG‑1 may exert a multifaceted cardiovascular protective effect by activating NRG‑1/ErbBs signaling and regulating multiple downstream signaling pathways, thereby improving myocardial cell dysfunction in sepsis, and protecting cardiomyocytes and endothelial cells. It may alleviate myocardial microvascular endothelial injury in sepsis; its anti‑inflammatory effects inhibit the production of myocardial inhibitory factors in sepsis, improve myocardial ischemia, decrease oxidative stress, regulate the disruption to the homeostasis of the autonomic nervous system, improve diastolic function, and offer protective effects at multiple target sites. As the mechanism of action of NRG‑1 intersects with the pathways involved in the pathogenesis of sepsis, it may be applicable as a treatment strategy to numerous pathological processes in sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Abstract
Purpose of Review To briefly review epidemiology and pathophysiology of SICM and provide a more extensive review of the data on diagnostic and management strategies. Recent Findings SICM is likely underdiagnosed and that has mortality implications. Current evidence supports speckle tracking echocardiography to identify decreased contractility irrespective of left ventricular ejection fraction for the diagnosis of SICM. There continues to be a dearth of large clinical trials evaluating the treatment of SICM and current consensus focuses on supportive measures such as vasopressors and inotropes. Summary Sepsis is a significant cause of mortality, and sepsis-induced cardiomyopathy has both prognostic and management implications for these patients. Individualized work-up and management of these patients is crucial to improving outcomes.
Collapse
Affiliation(s)
- Michael L'Heureux
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA.
| | - Michael Sternberg
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lisa Brath
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA
| | - Jeremy Turlington
- Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Markos G Kashiouris
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA
| |
Collapse
|
21
|
Shin DG, Kang MK, Seo YB, Choi J, Choi SY, Choi S, Cho JR, Lee N. Factors associated with abnormal left ventricular ejection fraction (decreased or increased) in patients with sepsis in the intensive care unit. PLoS One 2020; 15:e0229563. [PMID: 32155161 PMCID: PMC7064219 DOI: 10.1371/journal.pone.0229563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is known to show cardiac dysfunction in patients with sepsis. Both a decrease or an increase in ejection fraction (EF), an indicator of cardiac function, can occur. The purpose of this study was to identify factors associated with abnormal left ventricular (LV) function measured by EF in patients with sepsis in the intensive care unit (ICU). METHODS This was a retrospective study performed from November 2016 to December 2018. Three-hundred and sixty-six patients (mean age, 73 ± 13 years; 191 [52%] men) admitted to the ICU with sepsis were included. Patients were classified into three categories according to LV EF (group 1 -[EF<50%, n = 36], group 2 -[50≤EF<70%, n = 252], and group 3 -[EF≥70%, n = 78]). Echocardiographic assessment was performed within 48 hours of diagnosis of sepsis. We analyzed clinical factors including mortality, echocardiographic findings, and laboratory parameters. RESULTS Decreased LV EF occurred in 36 (10%) patients and hyper-dynamic EF developed in 78 (21%) patients. Of 366 patients, 103 (28%) patients died. Baseline characteristics were similar in the three groups, except female sex an indicator of abnormal EF. Mortality rates were also similar in the three groups; however, mortality rates were significantly higher in patients with abnormal EF (decreased or increased vs. normal). Echocardiographic parameters were significantly different in the three groups, in terms of LV systolic parameters and chamber size. Small left atrium (LA) and small LV were significantly associated with abnormal EF (especially in patients with increased EF). High brain natriuretic peptide was associated with decreased EF. Among these factors, female sex and small LA were significantly associated with abnormal EF in the multiple regression analysis. CONCLUSION Our findings highlight that female sex and small cardiac size are associated with abnormal EF, and therefore, death. Therefore, female patients and patients with small LA should be monitored closely when they present with sepsis.
Collapse
Affiliation(s)
- Dong Geum Shin
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Min-Kyung Kang
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
- * E-mail:
| | - Yu Bin Seo
- Division of Infection, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Jaehuk Choi
- Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Seon Yong Choi
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Seonghoon Choi
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Jung Rae Cho
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Namho Lee
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| |
Collapse
|
22
|
Kang W, Cheng Y, Zhou F, Wang L, Zhong L, Li HT, Wang X, Dang S, Wang X. Neuregulin‑1 protects cardiac function in septic rats through multiple targets based on endothelial cells. Int J Mol Med 2019; 44:1255-1266. [PMID: 31432099 PMCID: PMC6713419 DOI: 10.3892/ijmm.2019.4309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism underlying sepsis-induced cardiac dysfunction is loss of endothelial barrier function. Neuregulin-1 (NRG-1) exerts its functions on multiple targets. The present study aimed to identify the protective effects of NRG-1 in myocardial cells, including endothelial, anti-inflammatory and anti-apoptotic effects. Subsequent to lipopolysaccharide (LPS)-induced sepsis, rats were administered with either a vehicle or recombinant human NRG-1 (rhNRG-1; 10 µg/kg/day) for one or two days. H9c2 cardio-myoblasts were subjected to LPS (10 µg/ml) treatment for 12 and 24 h with or without rhNRG-1 (1 µg/ml). Survival rates were recorded at 48 h following sepsis induction. The hemo-dynamic method was performed to evaluate cardiac function, and myocardial morphology was observed. Von Willebrand Factor levels were detected using an immunofluorescence assay. Serum levels of tumor necrosis factor α, interleukin-6, intercellular cell adhesion molecule-1 and vascular endothelial growth factor were detected using an enzyme-linked immuno-sorbent assay; the reductase method was performed to detect serum nitric oxide levels. Apoptosis rates were determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Ras homolog family member A (RhoA) and Rho-associated protein kinase 1 (ROCK1) protein levels were assessed using western blotting. Transmission electron microscopy was used to observe endothelial cells and myocardial ultrastructure changes. Results revealed that NRG-1-treated rats displayed less myocardial damage compared with sham rats. NRG-1 administration strengthened the barrier function of the vasculature, reduced the secretion of endothelial-associated biomarkers and exerted anti-inflammatory and anti-apoptotic effects. In addition, NRG-1 inhibited RhoA and ROCK1 signaling. The results revealed that NRG-1 improves cardiac function, increases the survival rate of septic rats and exerts protective effects via multiple targets throughout the body. The present results contribute to the development of a novel approach to reverse damage to myocardial and endothelial cells during sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570100, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Song Dang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Xie J, Zhang L, Fan X, Dong X, Zhang Z, Fan W. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Exp Ther Med 2019; 18:779-785. [PMID: 31281454 PMCID: PMC6591494 DOI: 10.3892/etm.2019.7657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the current study was to investigate the regulatory effect of miR-146a on the toll-like receptor 4 (TLR-4)/NF-κB pathway and therefore inflammation in septic cardiomyopathy. A total of 60 healthy male Sprague Dawley rats were equally divided into a control, LPS, miR-146a agonist and miR-146a inhibitor group. Blood samples were collected from rats 24 h after intraperitoneal lipopolysaccharide injection and myocardial tissues were subsequently collected. After hematoxylin and eosin staining of rat myocardial tissues, the degree of inflammatory cell infiltration and myocardial damage was observed. The content of certain myocardial injury markers were also observed, including cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), creatine kinase myocardial bound (CK-MB) and myoglobin (Mb). Western blot analysis was performed to detect the expression of NF-κB/TLR-4, tumor necrosis factor (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in myocardial tissues. Reverse transcription-quantitative (RT-q) PCR was used to detect the expression of miR-146a, TNF-α, interleukin (IL)-1α and IL-1β mRNA in myocardial tissues. In the LPS group, myocardial interstitial tissue edema occurred, with enlarged and loosely arranged cardiomyocytes. Compared with the sepsis model group, myocardial interstitial tissue edema was relieved in the miR-146a agonist group, but was aggravated in the miR-146a inhibition group. The serum levels of cTnI, BNP, CK-MB, Mb, NF-κB, TLR-4, TNF-α and ICAM-1 in the sepsis model group were higher than those in the control group. In the miR-146a agonist group, levels of myocardial injury markers were lower than those in the sepsis model group, but were higher in the miR-146a inhibition group. The results of RT-qPCR demonstrated that the expression of miR-146a, TNF-α, IL-1α and IL-1β in the sepsis model group were upregulated compared with the control group. In addition, miR-146a expression in the miR-146a agonist group and the miR-146a inhibition group was increased, but TNF-α, IL-1α and IL-1β mRNA was downregulated. miR-146a may regulate the TLR-4/NF-κB signaling pathway via negative feedback mechanisms, leading to the improvement of the inflammatory response and cardiac dysfunction in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jin Xie
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Lina Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoyan Fan
- Department of Obstetrics, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoqing Dong
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Zhe Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
24
|
Wu J, Liu H, Chu T, Jiang P, Li ST. Neuregulin-1β attenuates sepsis-induced diaphragm atrophy by activating the PI3K/Akt signaling pathway. J Muscle Res Cell Motil 2019; 40:43-51. [PMID: 30989579 DOI: 10.1007/s10974-019-09512-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the protective effects of neuregulin-1β (NRG-1β) on sepsis-induced diaphragm atrophy and the possible underlying mechanisms. Sprague-Dawley rats were randomly divided into sham, sepsis and NRG groups. Sepsis was induced by cecal ligation and puncture (CLP). In the NRG group, rats received tail vein injections of NRG-1β (10 μg/kg) every 12 h for 72 h after CLP. At 3 days after surgery, diaphragm contractile forces were measured by determining the force-frequency curve and muscle fiber areas by hematoxylin-eosin staining. Moreover, the NRG-1 expression level in the diaphragm was detected by Western blotting. Furthermore, the proteins in the PI3K/Akt signaling pathway and its downstream Akt-mTOR and Akt-FOXO axes were detected by Western blotting analysis. In L6 myotubes treated with lipopolysaccharide (LPS) and NRG-1β, PI3K/Akt signaling pathway-related protein expression was further determined using the PI3K inhibitor LY294002. Exogenous NRG-1β could compensate for sepsis-induced diminished NRG-1 in the diaphragm and attenuate the reduction in diaphragm contractile forces and muscle fiber areas during sepsis. Moreover, NRG-1β treatment could activate the PI3K/Akt signaling pathway in the diaphragm during sepsis. The inhibition of p70S6K and 4E-BP1 on the Akt-mTOR axis and the increased expression of Murf1 on the Akt-FOXO axis were reversed after NRG-1 treatment. In addition, NRG-1β could activate the PI3K/Akt signaling pathway in L6 myotubes treated with LPS, while the PI3K inhibitor LY294002 blocked the effects of NRG-1β. NRG-1 expression in the diaphragm was reduced during sepsis, and exogenously administered recombinant human NRG-1β could attenuate sepsis-induced diaphragm atrophy by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, 438 Jie Fang Road, Zhenjiang, 212001, Jiangsu, China
| | - Hua Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Hai Ning Road, Shanghai, 200080, China.,Department of Anesthesiology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Ting Chu
- Department of Stomatology, Affiliated People's Hospital of Jiangsu University, 8 Dian Li Road, Zhenjiang, 212002, Jiangsu, China
| | - Peng Jiang
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, 438 Jie Fang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Hai Ning Road, Shanghai, 200080, China.
| |
Collapse
|
25
|
Pascual-Gil S, Abizanda G, Iglesias E, Garbayo E, Prósper F, Blanco-Prieto MJ. NRG1 PLGA MP locally induce macrophage polarisation toward a regenerative phenotype in the heart after acute myocardial infarction. J Drug Target 2018; 27:573-581. [DOI: 10.1080/1061186x.2018.1531417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S. Pascual-Gil
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - G. Abizanda
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Iglesias
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Garbayo
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - F. Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - M. J. Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
26
|
Xu X, Liu Q, He S, Zhao J, Wang N, Han X, Guo Y. Qiang-Xin 1 Formula Prevents Sepsis-Induced Apoptosis in Murine Cardiomyocytes by Suppressing Endoplasmic Reticulum- and Mitochondria-Associated Pathways. Front Pharmacol 2018; 9:818. [PMID: 30104976 PMCID: PMC6077999 DOI: 10.3389/fphar.2018.00818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis is reported to be an unusual systemic reaction to infection, accompanied by multiple-organ failure. Sepsis-induced cardiomyopathy (SIC), defined as damages and dysfunction of the heart, is essential in the pathogenesis of sepsis. Traditional Chinese formula, which has long been used to improve the situation of patients through multitarget regulation, is now gradually being used as complementary therapy. The present study aimed to investigate the effect of Qiang-Xin 1 (QX1) formula, a traditional Chinese herbal medicine designed for cardiac dysfunction, on cecal ligation puncture (CLP)-induced heart damage and its underlying mechanisms in mice. Survival test first showed that an oral administration of QX1 formula significantly increased the 7-days survival of septic mice from 22 to 40%. By estimating the secretion of serum cytokines, QX1 treatment dramatically inhibited the excessive production of interleukin-1β and tumor necrosis factor-α. Immunohistochemical staining illustrated that the expression of c-Jun N-terminal kinase, caspase-12, and high-mobility group box 1 was downregulated in cardiomyocytes of the QX1-treated group compared with that of the CLP surgery group. Western blotting confirmed that the activation of essential caspase family members, such as caspase-3, caspase-9, and caspase-12, was prohibited by treatment with QX1. Moreover, the abnormal expression of key regulators of endoplasmic reticulum (ER) and mitochondria-associated apoptosis in cardiomyocytes of septic mice, including CHOP, GRP78, Cyt-c, Bcl-2, Bcl-XL, and Bax, was effectively reversed by treatment with QX1 formula. This study provided a new insight into the role of QX1 formula in heart damage and potential complementary therapeutic effect of traditional Chinese medicine on sepsis.
Collapse
Affiliation(s)
- Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xuyang Han
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
27
|
Luo Q, Liu G, Chen G, Guo D, Xu L, Hang M, Jin M. Apelin protects against sepsis‑induced cardiomyopathy by inhibiting the TLR4 and NLRP3 signaling pathways. Int J Mol Med 2018; 42:1161-1167. [PMID: 29749463 DOI: 10.3892/ijmm.2018.3665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/02/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qiancheng Luo
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R.�China
| | - Guorong Liu
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Lei Xu
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Min Hang
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Mingming Jin
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R.�China
| |
Collapse
|
28
|
Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-Induced Cardiomyopathy: Mechanisms and Treatments. Front Immunol 2017; 8:1021. [PMID: 28970829 PMCID: PMC5609588 DOI: 10.3389/fimmu.2017.01021] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a lethal syndrome with a high incidence and a weighty economy burden. The pathophysiology of sepsis includes inflammation, immune dysfunction, and dysfunction of coagulation, while sepsis-induced cardiomyopathy (SIC), defined as a global but reversible dysfunction of both sides of the heart induced by sepsis, plays a significant role in all of the aspects above in the pathogenesis of sepsis. The complex pathogenesis of SIC involves a combination of dysregulation of inflammatory mediators, mitochondrial dysfunction, oxidative stress, disorder of calcium regulation, autonomic nervous system dysregulation, and endothelial dysfunction. The treatments for SIC include the signal pathway intervention, Chinese traditional medicine, and other specific therapy. Here, we reviewed the latest literatures on the mechanisms and treatments of SIC and hope to provide further insights to researchers and create a new road for the therapy of sepsis.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
|