1
|
Eldesoqui M, Ali LS, Erfan OS, Dawood AF, Badawy AA, Ali SK, Mohammed ZA, Mahmoud AM, Embaby EM, El Nashar EM, Aldehri M, Zafrah H, Al-Zahrani NS, Soliman RHM. Dihydroartemisinin attenuates acetic acid-induced ulcerative colitis in rats: Suppression of inflammation and modulation of NFκβ/TNF-α/RIPK1-mediated necroptosis and apoptosis. Tissue Cell 2025; 94:102791. [PMID: 39978210 DOI: 10.1016/j.tice.2025.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease characterized by the overproduction of reactive oxygen species (ROS) and the release of inflammatory mediators. Dihydroartemisinin (DHA) is a semi-synthetic active metabolite of artemisinin that has anti-inflammatory, antioxidant, and anti-fibrotic properties. OBJECTIVE This study aimed to assess the therapeutic benefits of DHA on acetic acid(AA) -induced UC in rats, with particular emphasis on its anti-inflammatory effects and its influence on NFκB/TNF-α/RIPK1 necroptotic pathways. METHODS Eighteen rats were allocated into control, acetic acid-induced colitis (AA), and DHA-treated (AA+DHA) groups. Colitis was caused by rectal instillation of 5 % acetic acid. DHA was supplied via intraperitoneal injection. Histological, biochemical studies of oxidative stress, inflammatory and anti-inflammatory mediators, Western blotting for TNF-α, RIPK1, and caspase 3, and immunohistochemical assessment of NFκB, TNF-α, and RIPK1, were conducted. RESULTS DHA treatment markedly diminished macroscopic damage, disease activity index, histopathology scores, and malondialdehyde (MDA) levels, enhancing glutathione (GSH) levels. Additionally, DHA decreased serum TNF-α and IL-6 and increased IL-10. Western blotting and immunohistochemistry investigations validated the reduced expression of TNF-α, RIPK1, and caspase 3 in DHA-treated rats. CONCLUSION DHA demonstrates protective properties against acetic acid-induced UC by decreasing oxidative stress and inflammation, modifying TNF-α activity to regulate apoptotic and necroptotic pathways. So, DHA may be a favorable therapeutic alternative for the management of ulcerative colitis.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O.Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Lashin S Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Omnia S Erfan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Abdelnaser A Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Sahar K Ali
- Department of clinical pharmacology, faculty of medicine, Zagazig university, Zagazig 44519, Egypt.
| | - Zeinab A Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Alia Mohamed Mahmoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Postal code (62529), Saudi Arabia.
| | - Majed Aldehri
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Postal code (62529), Saudi Arabia.
| | - Hind Zafrah
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha Postal code (62529), Saudi Arabia.
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine; King Khalid University, Abha, Postal code (62529), Saudi Arabia.
| | | |
Collapse
|
2
|
Liu H, Zhao W, Chen H, Wu H, Li X, Su A, Lu Y. Highland Barley Improves DSS-Induced Ulcerative Colitis in C57BL/6J Mice. Food Sci Nutr 2025; 13:e70132. [PMID: 40330205 PMCID: PMC12053120 DOI: 10.1002/fsn3.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/19/2025] [Accepted: 03/01/2025] [Indexed: 05/08/2025] Open
Abstract
The prevalence of ulcerative colitis (UC) increases with unhealthy eating habits. Both surgery and medication have the potential to treat the condition, but they may also have more negative effects. This study investigated the anti-inflammatory mechanism of 20% and 40% doses of different highland barley (HB) components (whole grain, peeled, and bran) in a 2% dextran sulfate sodium induced UC mouse model. The results showed that supplementation with a 20% dose of peeled HB restored body weight, disease activity index, colon length, serum interleukin-1β and interleukin-10 levels, liver glutathione peroxidase content, and superoxide dismutase activity to normal levels in mice compared to UC mice. Moreover, the damage caused by UC to the mice's colon was significantly reduced, and the relative expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α were all significantly downregulated. Additionally, it increased the abundance of Bacteroidota and Firmicutes, improving the balance of gut microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Wen Zhao
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Hongzhou Chen
- Anhui Guo Tai Zhong Xin Testing Technology Co., LtdHefeiChina
| | - Hongya Wu
- Lixiahe Institute of Agricultural SciencesYangzhouChina
| | - Xiangfei Li
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| | - Anxiang Su
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| | - Yingjian Lu
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| |
Collapse
|
3
|
Kim J, Kang C, Yoo JW, Yoon IS, Jung Y. N-Succinylaspartic-Acid-Conjugated Riluzole Is a Safe and Potent Colon-Targeted Prodrug of Riluzole against DNBS-Induced Rat Colitis. Pharmaceutics 2023; 15:2638. [PMID: 38004616 PMCID: PMC10675528 DOI: 10.3390/pharmaceutics15112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.
Collapse
Affiliation(s)
| | | | | | | | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (J.K.); (C.K.); (J.-W.Y.); (I.-S.Y.)
| |
Collapse
|
4
|
Barakat EH, Akl MA, Ibrahim MF, Mohamed Dawaba H, Afouna MI. Formulation and optimization of theophylline-loaded enteric-coated spanlastic nanovesicles for colon delivery; Ameliorate acetic acid-induced ulcerative colitis. Int J Pharm 2023; 643:123253. [PMID: 37473974 DOI: 10.1016/j.ijpharm.2023.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Treatment of colon diseases presents one of the most significant obstacles to drug delivery due to the inability to deliver sufficient drug concentration selectively to the colon. The goal of the proposed study was to develop, optimize, and assess an effective colon target delivery system of theophylline-based nanovesicles (TP-NVs) surrounded by a biodegradable polymeric shell of chitosan (CS) and Eudragit L100 (EL100) for the treatment of ulcerative colitis (UC). TP-loaded nanovesicles were fabricated using the ethanol injection method and coated with CS and EL100, respectively. We used a 32-factorial design approach to optimize the concentration of CS and EL100 to minimize particle size (PS) and maximize the cumulative amount of theophylline released (CTR) after 24 h. The optimized formulation was described using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and in vitro release. In-vivo quantification of theophylline in the gastrointestinal tract and in-vivo targeting potential in a rat model of acetic acid-induced colitis were also thoroughly evaluated. The characteristics of the optimal formula predicted by the 32-factorial design approach corresponded exceptionally well with the measured PS of 271.3 nm, the zeta potential of -39.9 mV, and CTR of 3.95, and a 99.93% after 5 and 24 h, respectively. Notably, the in vivo results in the rat model of colitis showed that the formulation with an optimized coat significantly improved theophylline distribution to the colon and markedly decreased the expression of interleukin-6 and ulcerative lesions compared to a pure theophylline solution. These outcomes elucidated the feasibility of a 32-factorial design to detect the crucial interactions between the study's components. Our findings suggested that enteric-coated nanovesicles formulations with optimal coat compositions of 0.2693% (w/v) and 0.75% (w/v) of CS and EL100, respectively, were promising carriers for colonic delivery of theophylline, a rate-limiting step in the treatment of UC.
Collapse
Affiliation(s)
- Elsaied H Barakat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq.
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamdy Mohamed Dawaba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia Governorate, Egypt
| | - Mohsen I Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
5
|
Cellat M, Tekeli İO, Türk E, Aydin T, Uyar A, İşler CT, Gökçek İ, Etyemez M, Güvenç M. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats. Biotech Histochem 2023; 98:255-266. [PMID: 37165766 DOI: 10.1080/10520295.2023.2176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Increased pro-inflammatory cytokines and oxidative stress contribute to the pathophysiology of ulcerative colitis (UC). Inula viscosa is a plant with antioxidant and anti-inflammatory properties. We investigated the effect of an ethanolic extract of I. viscosa on an experimental UC model created using acetic acid. Rats were divided into four groups of eight: group 1, control; group 2, 3% acetic acid group; group 3, 100 mg/kg sulfasalazine + 3% acetic acid group; group 4, 400 mg/kg I. viscosa + 3% acetic acid. I. viscosa and sulfasalazine were administered by oral gavage and 3% acetic acid was administered per rectum. We found that I. viscosa treatment decreased colon malondialdehyde, tumor necrosis factor-α, interleukin-1 beta and nuclear factor kappa B levels; it increased reduced glutathione, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and kelch-like ECH-associated protein 1 levels and glutathione peroxidase enzyme activity. Group 1 colon exhibited normal histological structure. Slight inflammatory cell infiltration and edema and insignificant slight erosion in crypts were detected in colon tissues of group 4. We found that I. viscosa reduced oxidative stress and inflammation, which was protective against UC by inducing the Nrf-2/Keap-1/HO-1 pathway in the colon.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
6
|
Park S, Kang C, Kim J, Ju S, Yoo JW, Yoon IS, Kim MS, Lee J, Jung Y. A Colon-Targeted Prodrug of Riluzole Improves Therapeutic Effectiveness and Safety upon Drug Repositioning of Riluzole to an Anti-Colitic Drug. Mol Pharm 2022; 19:3784-3794. [PMID: 36043999 DOI: 10.1021/acs.molpharmaceut.2c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3β (GSK3β) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3β in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.
Collapse
Affiliation(s)
- Sohee Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Changyu Kang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Kowalski K, Mulak A. Small intestinal bacterial overgrowth in Alzheimer's disease. J Neural Transm (Vienna) 2021; 129:75-83. [PMID: 34797427 PMCID: PMC8738624 DOI: 10.1007/s00702-021-02440-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
The results of animal studies and clinical data support the gut microbiota contribution to the pathogenesis of Alzheimer’s disease (AD). The aim of this pilot study was to evaluate the prevalence of small intestinal bacterial overgrowth (SIBO) and fecal markers of intestinal inflammation and permeability in AD patients. The study was conducted in 45 AD patients and 27 controls. Data on comorbidities, pharmacotherapy, and gastrointestinal symptoms were acquired from medical records and a questionnaire. SIBO was evaluated using lactulose hydrogen breath test. Fecal calprotectin and zonulin levels were assessed by ELISA assays. The positive result of SIBO breath test was found in 49% of the AD patients and 22% of the controls (p = 0.025). The comparative analysis between SIBO-positive and SIBO-negative AD patients with respect to the degree of cognitive impairment, comorbidities and used medications did not reveal any statistically significant difference, except for less common heartburn in SIBO-positive AD patients than in SIBO-negative ones (9 vs 35%, p = 0.038). The median fecal calprotectin and zonulin levels in the AD group compared to the control group amounted to 43.1 vs 64.2 µg/g (p = 0.846) and 73.5 vs 49.0 ng/ml (p = 0.177), respectively. In the AD patients there was no association between the presence of SIBO and fecal calprotectin level. Patients with AD are characterized by higher prevalence of SIBO not associated with increased fecal calprotectin level that may be related to anti-inflammatory effect of cholinergic drugs used in the treatment of AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.
| |
Collapse
|
8
|
Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol 2021; 910:174455. [PMID: 34461125 DOI: 10.1016/j.ejphar.2021.174455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that was initially indicated for the treatment of moderate to severe Alzheimer's disease. It is now also considered for a variety of other pathologies in which activation of NMDA receptors apparently contributes to the pathogenesis and progression of disease. In addition to the central nervous system (CNS), NMDA receptors can be found in non-neuronal cells and tissues that recently have become an interesting research focus. Some studies have shown that glutamate signaling plays a role in cell transformation and cancer progression. In addition, these receptors may play a role in cardiovascular disorders. In this review, we focus on the most recent findings for memantine with respect to its pharmacological effects in a range of diseases, including inflammatory disorders, cardiovascular diseases, cancer, neuropathy, as well as retinopathy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hamid Soraya
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Effects of ShenLing BaiZhu San Supplementation on Gut Microbiota and Oxidative Stress in Rats with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3960989. [PMID: 34630607 PMCID: PMC8500740 DOI: 10.1155/2021/3960989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the effect of gut microbiota and antioxidation of Shenling Baizhu San (SLBZS) as a supplement in a rat model of ulcerative colitis (UC) induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Acute intestinal inflammation was induced in 40 male SD rats aged 4 weeks with 100 mg/kg TNBS, and then three dosages of SLBZS (0.5 g/kg, 1 g/kg, and 1.5 g/kg) were administered for eight days, respectively. Faecal microbiome composition was assessed by 16S rRNA high-throughput sequencing. The result indicated that SLBZS could reduce the diversity of gut microbiota and increased its abundance. At the genus level, the relative abundance of SCFAs producing bacteria including Prevotella and Oscillospira increased, while the relative abundance of opportunistic pathogens including Desulfovibrio and Bilophila decreased. Meanwhile, SLBZS could improve the lesions of colon and significantly reduce the level of MPO, increase the levels of SOD and CAT in rats' serum. These findings revealed that SLBZS was effective and possessed anticolitic activities in a rat model of UC by reducing macroscopical and microscopical colon injury, enhancing antioxidant capacity, and regulating gut microbiota.
Collapse
|
10
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Semiz A, Ozgun Acar O, Cetin H, Semiz G, Sen A. Suppression of Inflammatory Cytokines Expression with Bitter Melon ( Momordica Charantia) in TNBS-instigated Ulcerative Colitis. J Transl Int Med 2020; 8:177-187. [PMID: 33062594 PMCID: PMC7534491 DOI: 10.2478/jtim-2020-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVE This study was aimed to elucidate the molecular mechanism of Momordica charantia (MCh), along with a standard drug prednisolone, in a rat model of colitis induced by trinitrobenzene sulfonic acid (TNBS). METHODS After the induction of the experimental colitis, the animals were treated with MCh (4 g/kg/day) for 14 consecutive days by intragastric gavage. The colonic tissue expression levels of C-C motif chemokine ligand 17 (CCL-17), interleukin (IL)-1β, IL-6, IL-23, interferon-γ (IFN-γ), nuclear factor kappa B (NF-kB), and tumor necrosis factor-α (TNF-α), were determined at both mRNA and protein levels to estimate the effect of MCh. Besides, colonic specimens were analyzed histopathologically after staining with hematoxylin and eosin. RESULTS The body weights from TNBS-instigated colitis rats were found to be significantly lower than untreated animals. Also, the IFN-γ, IL-1β, IL-6, Il-23, TNF-α, CCL-17, and NF-kB mRNA and protein levels were increased significantly from 1.86-4.91-fold and 1.46-5.50-fold, respectively, in the TNBS-instigated colitis group as compared to the control. Both the MCh and prednisolone treatment significantly reduced the bodyweight loss. It also restored the induced colonic tissue levels of IL-1β, IL-6, IFN-γ, and TNF-α to normal levels seen in untreated animals. These results were also supported with the histochemical staining of the colonic tissues from both control and treated animals. CONCLUSION The presented data strongly suggests that MCh has the anti-inflammatory effect that might be modulated through vitamin D metabolism. It is the right candidate for the treatment of UC as an alternative and complementary therapeutics.
Collapse
Affiliation(s)
- Asli Semiz
- Pamukkale University, Faculty of Technology, Department of Biomedical Engineering, Denizli20070, Turkey
| | - Ozden Ozgun Acar
- Pamukkale University, Seed Breeding & Genetic Application and Research CentreDenizli20070, Turkey
| | - Hulya Cetin
- Pamukkale University, Faculty of Medicine, Basic Medical Sciences-Histology and Embryology, Denizli20070, Turkey
| | - Gurkan Semiz
- Pamukkale University, Faculty of Arts and Sciences, Biology Department, 20070Denizli, Turkey
| | - Alaattin Sen
- Pamukkale University, Faculty of Arts and Sciences, Biology Department, 20070Denizli, Turkey
- Abdullah Gul University, Faculty of Life and Natural Sciences, Department of Molecular Biology and Genetics, 38080Kayseri, Turkey
| |
Collapse
|
12
|
Pingkui Enema Alleviates TNBS-Induced Ulcerative Colitis by Regulation of Inflammatory Factors, Gut Bifidobacterium, and Intestinal Mucosal Barrier in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3896948. [PMID: 32831864 PMCID: PMC7428901 DOI: 10.1155/2020/3896948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
Background Ulcerative colitis (UC) is a chronic recurrent inflammation of the colon, and clinical outcome of UC is still unsatisfied. Pingkui enema, a traditional Chinese medicine prescription, has been safely applied for the treatment of diarrhea and dysentery in clinic for many years. However, its mechanism is still elusive. The present study is designed to investigate the effect of Pingkui enema on trinitrobenzene sulfonic acid- (TNBS-) induced ulcerative colitis (UC) and possible mechanism in rats. Methods UC was induced by intracolonic instillation of TNBS in male Sprague-Dawley rats, which were treated with different dosages of Pingkui enema (low, medium, and high) or sulfasalazine for ten days. Survival rate was calculated. A clinical disease activity score was evaluated. Histological colitis severity was analyzed by hematoxylin-eosin (HE) staining. Content of Bifidobacterium in intestinal tissue was analyzed by RT-PCR. Concentration of IL-8, IL-13, TNF-α, D-lactic acid (D-LA), and diamine oxidase (DAO) in serum and contents of adhesin and receptor of Bifidobacterium adhesion in rat intestinal mucus were measured by ELISA. Results The results showed that Pingkui enema treatment with high dosage markedly improved the survival rate compared with untreated and sulfasalazine treated groups. All dosages of Pingkui enema reduced pathological score. High dosage of Pingkui enema and sulfasalazine treatments significantly reduced the serum concentration of IL-8, TNF-α, D-LA, and DAO and markedly increased the serum concentration of IL-13. In addition, high-dose Pingkui enema and sulfasalazine treatments increased gut content of Bifidobacterium, gut mucus expressions of adhesin, and adhesin receptor of Bifidobacterium. Conclusions Pingkui enema has therapeutic effect on TNBS-induced UC, and possible mechanism may be via regulation of gut probiotics (Bifidobacterium) and inflammatory factors and protection of intestinal mucosal barrier.
Collapse
|
13
|
Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci Rep 2019; 9:10176. [PMID: 31308463 PMCID: PMC6629650 DOI: 10.1038/s41598-019-46671-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is among the most challenging human diseases. Nanotechnology has incontestable promising outcomes in inflammatory bowel diseases. This study aimed to investigate the therapeutic effect of naked gold nanoparticles (AuNPs) on dextran sodium sulphate (DSS) induced ulcerative colitis in mice. We also examined the expression of interleukin-17 (IL-17) following AuNPs treatment. Mice were randomly divided into control, DSS and DSS+ AuNPs groups. Severity of colitis was assessed by disease activity index (DAI) measurement. At the end of the experiment, the final body weights were recorded. The colon was dissected and processed for histopathological examinations by light and electron microscopes. Colon homogenates were prepared for assay of tissue malondialdehyde (MDA) and real-time PCR analysis of IL-17A. Immunohistochemical localization of IL-17A was carried out. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) detector were used to detect the presence of AuNPs in the colonic tissue of DSS+ AuNPs groups. Our results showed that AuNPs effectively targeted the colonic tissue, and reduced changes induced by DSS. The underlying mechanisms could be related to anti-oxidant effect (as evident by decreasing tissue MDA) and anti-inflammatory potential of AuNPs. Our study draws attention to as a novel therapeutic strategy for treating UC.
Collapse
|
14
|
Rofaeil RR, Gaber SS. Gastroprotective effect of memantine in indomethacin-induced peptic ulcer in rats, a possible role for potassium channels. Life Sci 2019; 217:164-168. [DOI: 10.1016/j.lfs.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023]
|
15
|
Lopes de Oliveira GA, Alarcón de la Lastra C, Rosillo MÁ, Castejon Martinez ML, Sánchez-Hidalgo M, Rolim Medeiros JV, Villegas I. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem Biol Interact 2018; 297:25-33. [PMID: 30365937 DOI: 10.1016/j.cbi.2018.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
Ulcerative colitis is an idiopathic inflammatory bowel disease characterized by intestinal inflammation; blocking this inflammatory process may be the key to the development of new naturally occurring anti-inflammatory drugs, with greater efficiency and lower side effects. The objective of this study is to explore the effects of bergenin (BG) in TNBS (2,4,6-trinitrobenzenesulfonic acid)-induced acute colitis model in rats in order to assist in the studies for the development of novel natural product therapies for inflammatory bowel disease. 48 Wistar rats were randomized into six groups: (i) Control and (ii) TNBS control; (iii) 5-ASA 100 mg/kg/day (iv) BG 12 mg/kg/day (v) BG 25 mg/kg/day and (vi) BG 50 mg/kg/day. Colitis was induced by instillation of TNBS. Colitis was evaluated by an independent observer who was blinded to the treatment. Our results revealed that bergenin decreased the macroscopic and microscopic damage signs of colitis, and reduced the degree of neutrophilic infiltration in the colon tissue; also, it was capable to down-regulate COX-2, iNOS, IkB-α, and pSTAT3 protein expression. Similarly, using a protocol for indirect ELISA quantification of cytokines, bergenin treatment reduced IL-1β, IFN-γ and IL-10 levels, and inhibited both canonical (IL-1) and non-canonical (IL-11) NLRP3/ASC inflammasome signaling pathways in TNBS-induced acute colitis. Conclusion: Our study has provided evidence that administration of bergenin reduced the damage caused by TNBS in an experimental model of acute colitis in rats, reduced levels of pro-inflammatory proteins and cytokines probably by modulation of pSTAT3 and NF-κB signaling and blocking canonical and non-canonical NLRP3/ASC inflammasome pathways.
Collapse
Affiliation(s)
- Guilherme Antônio Lopes de Oliveira
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO) Federal University of Piauí, São Sebastião Street 2819, 64202-020, Parnaíba, PI, Brazil
| | - Catalina Alarcón de la Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Maria Ángeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Maria Luisa Castejon Martinez
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain
| | - Jand Venes Rolim Medeiros
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network (RENORBIO) Federal University of Piauí, São Sebastião Street 2819, 64202-020, Parnaíba, PI, Brazil.
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012, Seville, Spain.
| |
Collapse
|
16
|
Ghasemi-Pirbaluti M, Motaghi E, Najafi A, Hosseini MJ. The effect of theophylline on acetic acid induced ulcerative colitis in rats. Biomed Pharmacother 2017; 90:153-159. [DOI: 10.1016/j.biopha.2017.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023] Open
|
17
|
Ghasemi-Pirbaluti M, Motaghi E, Bozorgi H. The effect of menthol on acute experimental colitis in rats. Eur J Pharmacol 2017; 805:101-107. [PMID: 28322843 DOI: 10.1016/j.ejphar.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 01/24/2023]
Abstract
Menthol is an aromatic compound with high antiinflammatory activity. The purpose of the current research is to investigate the effectiveness of menthol on acetic acid induced acute colitis in rats. Animals were injected with menthol (20 and 50 and 80mg/kg, i.p.) 24h prior to induction of colitis for 3 consecutive days. Menthol at medium and higher doses similar to dexamethasone as a reference drug significantly reduced body weight loss, macroscopic damage score, ulcer area, colon weight, colon length and improved hematocrit in rats with colitis. The histopathological examination also confirmed anti-colitic effects of menthol. Menthol also reduced significantly the colonic levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and myeloperoxidase (MPO) activity in inflamed colons. Thus, the findings of the current study provide evidence that menthol may be beneficial in patients suffering from acute ulcerative colitis.
Collapse
Affiliation(s)
| | - Ehsan Motaghi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Homan Bozorgi
- Department of Pharmacology, School of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
18
|
The effect of sodium valproate on acetic acid-induced colitis in rats. Inflammopharmacology 2016; 25:137-145. [DOI: 10.1007/s10787-016-0304-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/10/2016] [Indexed: 01/22/2023]
|