1
|
Wang R, Pi Z, Zhu X, Wang X, Zhang H, Ji F, Tang H. Nicorandil-based hydrogel promotes bone defect reconstruction by targeting Hmox1. Colloids Surf B Biointerfaces 2024; 245:114299. [PMID: 39378704 DOI: 10.1016/j.colsurfb.2024.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND The local use of drugs to promote bone healing is still difficult to apply clinically. We aimed to construct a nicorandil-based hydrogel to promote local bone healing by promoting angiogenesis and inhibiting osteoclastogenesis. RESULTS In this study, we constructed a nicorandil-based hydrogel and used it to intervene in bone repair during bone defect reconstruction. The results showed that the nicorandil-based hydrogel significantly inhibited osteoclast differentiation and promoted angiogenesis in vitro. Furthermore, bone formation was significantly promoted by the use of a nicorandil-based hydrogel. Mechanistically, Hmox1 was directly targeted by nicorandil, and overexpression of Hmox1 was found to promote bone defect reconstruction. CONCLUSION Our study provides a fresh perspective and a potential therapeutic approach for the use of local nicorandil-based hydrogels to improve bone defect reconstruction.
Collapse
Affiliation(s)
- Renkai Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China; Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Zhilong Pi
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xiang Zhu
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xinzhe Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Zhang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Fang Ji
- Department of Orthopedics, The Ninth People's Hospital, Shanghai Jiaotong University, No.639 Manufacturing Bureau Road, Huangpu District, Shanghai, China.
| | - Hao Tang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Xu S, Cao X, Yu Z, He W, Pang Y, Lin W, Chen Z, Guo W, Lu X, Lin C. Nicorandil Inhibits Osteoclast Formation Base on NF-κB and p-38 MAPK Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front Pharmacol 2021; 12:726361. [PMID: 34566650 PMCID: PMC8455841 DOI: 10.3389/fphar.2021.726361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023] Open
Abstract
Osteolytic bone disorders are characterized by an overall reduction in bone mineral density which enhances bone ductility and vulnerability to fractures. This disorder is primarily associated with superabundant osteoclast formation and bone resorption activity. Nicorandil (NIC) is a vasodilatory anti-anginal drug with ATP-dependent potassium (KATP) channel openings. However, NIC is adopted to manage adverse cardiovascular and coronary events. Recent research has demonstrated that NIC also possesses anti-inflammatory peculiarity through the regulation of p38 MAPK and NF-κB signaling pathways. Both MAPK and NF-κB signaling pathways play pivotal roles in RANKL-induced osteoclast formation and bone resorption function. Herein, we hypothesized that NIC may exert potential biological effects against osteoclasts, and revealed that NIC dose-dependently suppressed bone marrow macrophage (BMM) precursors to differentiate into TRAP + multinucleated osteoclasts in vitro. Furthermore, osteoclast resorption assays demonstrated anti-resorptive effects exhibited by NIC. NIC had no impact on osteoblast differentiation or mineralization function. Based on Biochemical analyses, NIC relieved RANKL-induced ERK, NF-κB and p38 MAPK signaling without noticeable effects on JNK MAPK activation. However, the attenuation of NF-κB and p38 MAPK activation was sufficient to hamper the downstream induction of c-Fos and NFATc1 expression. Meanwhile, NIC administration markedly protected mice from ovariectomy (OVX)-induced bone loss through in vivo inhibition of osteoclast formation and bone resorption activity. Collectively, this work demonstrated the potential of NIC in the management of osteolytic bone disorders mediated by osteoclasts.
Collapse
Affiliation(s)
- Shenggui Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenxing Yu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichuan Pang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, National Clinical Research Center of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wang Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weizhong Guo
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Xiongwei Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengshou Lin
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| |
Collapse
|
3
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
4
|
Amano H, Iwaki F, Oki M, Aoki K, Ohba S. An osteogenic helioxanthin derivative suppresses the formation of bone-resorbing osteoclasts. Regen Ther 2019; 11:290-296. [PMID: 31667208 PMCID: PMC6813560 DOI: 10.1016/j.reth.2019.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Objective The helioxanthin derivative 4-(4-methoxyphenyl)thieno[2,3-b:5,4-c′]dipyridine-2-carboxamide (TH) is a low-molecular-weight compound that was identified through screening for osteogenic compounds that enhance the activity of mouse preosteoblastic MC3T3-E1 cells. In the present study, we found that TH suppressed osteoclast differentiation. Methods Using the hematopoietic stem cells of ddY mice, TH was added to the culture in the experimental group, and the number of osteoclasts was measured with rhodamine phalloidin staining and TRAP staining. In osteo assay, bone resorption area was compared by the von Kossa staining. Results Specifically, TH inhibited the cyclic guanosine monophosphate (cGMP)-degrading activity of phosphodiesterase (PDE), promoted nitric oxide (NO) production, and dose-dependently suppressed osteoclast differentiation in an osteoclast formation culture of mouse bone marrow cells. The NO-competitive guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) attenuated the suppressive activity of TH on osteoclast differentiation. Conclusion: Given the previously reported suppressive action of cGMP on osteoclastogenesis, our data suggest that TH negatively impacts osteoclast differentiation at least to some extent by stimulating NO production and inhibiting PDE activity, both of which lead to the upregulation of intracellular cGMP. This study supports the potential use of TH as a novel antiosteoporotic reagent that not only stimulates bone formation but also inhibits bone resorption.
Collapse
Affiliation(s)
- Hitoshi Amano
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Futoshi Iwaki
- Department of Oral and Maxillofacial Surgery, Kobe City Nishi-Kobe Medical Center, 5-7-1, Koujidai Nishi-ku, Kobe, 651-2273, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
5
|
Mada SB, Reddi S, Kumar N, Vij R, Yadav R, Kapila S, Kapila R. Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Sakai E, Morita M, Ohuchi M, Kido MA, Fukuma Y, Nishishita K, Okamoto K, Itoh K, Yamamoto M, Tsukuba T. Effects of deficiency of Kelch-like ECH-associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis. FASEB J 2017; 31:4011-4022. [PMID: 28515152 DOI: 10.1096/fj.201700177r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 12/24/2022]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) binds to nuclear factor E2 p45-related factor 2 (Nrf2), a transcription factor for antioxidant enzymes, to suppress Nrf2 activation. The role of oxidative stress in many diseases supports the possibility that processes that are associated with Nrf2 activation might offer therapeutic potential. Nrf2 deficiency induces osteoclastogenesis, which is responsible for bone loss, by activating receptor activator of NF-κB ligand (RANKL)-mediated signaling; however, the effects of Keap1 deficiency remain unclear. By using Keap1-deficient newborn mice, we observed that talus and calcaneus bone formation was partially retarded and that osteoclast number was reduced in vivo without severe gross abnormalities. In addition, Keap1-deficient macrophages were unable to differentiate into osteoclasts in vitrovia attenuation of RANKL-mediated signaling and expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), a key transcription factor that is involved in osteoclastogenesis. Furthermore, Keap1 deficiency up-regulated the expression of Mafb, a negative regulator of NFATc1. RANKL-induced mitochondrial gene expression is required for down-regulation of IFN regulatory factor 8 (IRF-8), a negative transcriptional regulator of NFATc1. Our results indicate that Keap1 deficiency down-regulated peroxisome proliferator-activated receptor-γ coactivator 1β and mitochondrial gene expression and up-regulated Irf8 expression. These results suggest that the Keap1/Nrf2 axis plays a critical role in NFATc1 expression and osteoclastogenic progression.-Sakai, E., Morita, M., Ohuchi, M., Kido, M. A., Fukuma, Y., Nishishita, K., Okamoto, K., Itoh, K., Yamamoto, M., Tsukuba, T. Effects of deficiency of Kelch-like ECH-associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis.
Collapse
Affiliation(s)
- Eiko Sakai
- Division of Dental Pharmacology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan;
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Ohuchi
- Department of Orthodontics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; and
| | - Yutaka Fukuma
- Division of Dental Pharmacology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhisa Nishishita
- Division of Dental Pharmacology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kuniaki Okamoto
- Division of Dental Pharmacology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Tsukuba
- Division of Dental Pharmacology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Zhou F, Shen Y, Liu B, Chen X, Wan L, Peng D. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro. Biochem Biophys Res Commun 2017; 484:820-826. [PMID: 28161640 DOI: 10.1016/j.bbrc.2017.01.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiation and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Yi Shen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Bo Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Xia Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Lu Wan
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Dan Peng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|