1
|
Papanikolaou IC, Chytopoulos K, Kaitatzis D, Kostakis N, Bogiatzis A, Steiropoulos P, Drakopanagiotakis F. Phenotypes and Endotypes in Sarcoidosis: Unraveling Prognosis and Disease Course. Biomedicines 2025; 13:287. [PMID: 40002701 PMCID: PMC11853411 DOI: 10.3390/biomedicines13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Sarcoidosis is a multi-system granulomatous disease of unknown etiology. In genetically susceptible individuals, the precipitating factors generate, via immunity mechanisms, a host granulomatous response. The granuloma, for unknown reasons thus far, may resolve or may persist and lead to organ damage and fibrosis. Infectious agents, occupational exposure, obesity, smoking and genetic factors are implicated in the pathogenesis of sarcoidosis. Macrophages are important in granuloma formation, and their M1/M2 phenotype is associated with the prognosis of the disease. CD4+ T helper cells play a central role in the pathogenesis of sarcoidosis. The major contributors appear to be Th1 and Th17.1 cells, whose microenvironmental behavior is dictated by the secretions of macrophages and dendritic cells. Higher levels of Th1 and Th17.1 cells are associated with chronic disease and resistance to corticosteroid treatment. In recent years, advances in the phenotyping of sarcoidosis with the help of HRCT, PET-CT and lung function tests have provided us with a better understanding of the disease. Genetic phenotyping performed by the GenPhenReSa consortium and the SAGA study has led to the recognition of new, distinct phenotypes. The reconstitution of dysregulated autophagy through persistent m-TORC-1 pathways may be a new treatment target in sarcoidosis.
Collapse
Affiliation(s)
| | - Konstantinos Chytopoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| | - Dimitrios Kaitatzis
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| | - Nikolaos Kostakis
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| | - Anastasios Bogiatzis
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| | - Fotios Drakopanagiotakis
- Department of Pneumonology, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece (P.S.)
| |
Collapse
|
2
|
Chioma OS, Wiggins Z, Rea S, Drake WP. Infectious and non-infectious precipitants of sarcoidosis. J Autoimmun 2024; 149:103239. [PMID: 38821769 PMCID: PMC11607178 DOI: 10.1016/j.jaut.2024.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Sarcoidosis is a chronic inflammatory disease that can affect any organ in the body. Its exact cause remains unknown, but it is believed to result from a combination of genetic and environmental factors. Some potential causes of sarcoidosis include genetics, environmental triggers, immune system dysfunction, the gut microbiome, sex, and race/ethnicity. Genetic mutations are associated with protection against disease progression or an increased susceptibility to more severe disease, while exposure to certain chemicals, bacteria, viruses, or allergens can trigger the formation of immune cell congregations (granulomas) in different organs. Dysfunction of the immune system, including autoimmune reactions, may also contribute. The gut microbiome and factors such as being female or having African American, Scandinavian, Irish, or Puerto Rican heritage are additional contributors to disease outcome. Recent research has suggested that certain drugs, such as anti-Programmed Death-1 (PD-1) and antibiotics such as tuberculosis (TB) drugs, may raise the risk of developing sarcoidosis. Hormone levels, particularly higher levels of estrogen and progesterone in women, have also been linked to an increased likelihood of sarcoidosis. The diagnosis of sarcoidosis involves a comprehensive assessment that includes medical history, physical examination, laboratory tests, and imaging studies. While there is no cure for sarcoidosis, the symptoms can often be effectively managed through various treatment options. Treatment may involve the use of medications, surgical interventions, or lifestyle changes. These disparate factors suggests that sarcoidosis has multiple positive and negative exacerbants on disease severity, some of which can be ameliorated and others which cannot.
Collapse
Affiliation(s)
- Ozioma S Chioma
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - ZaDarreyal Wiggins
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wonder P Drake
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Huang Y, Gou T, Li W, Han F. Unraveling the immune functions of large yellow croaker Tmem208 in response to Pseudomonas plecoglossicida: Insights from cloning, expression profiling, and transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109584. [PMID: 38670411 DOI: 10.1016/j.fsi.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Tao Gou
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wanbo Li
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
4
|
Chen C, Luo N, Dai F, Zhou W, Wu X, Zhang J. Advance in pathogenesis of sarcoidosis: Triggers and progression. Heliyon 2024; 10:e27612. [PMID: 38486783 PMCID: PMC10938127 DOI: 10.1016/j.heliyon.2024.e27612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Sarcoidosis, a multisystemic immune disease, significantly impacts patients' quality of life. The complexity and diversity of its pathogenesis, coupled with limited comprehensive research, had hampered both diagnosis and treatment, resulting in an unsatisfactory prognosis for many patients. In recent years, the research had made surprising progress in the triggers of sarcoidosis (genetic inheritance, infection and environmental factors) and the abnormal regulations on immunity during the formation of granuloma. This review consolidated the latest findings on sarcoidosis research, providing a systematic exploration of advanced studies on triggers, immune-related regulatory mechanisms, and clinical applications. By synthesizing previous discoveries, we aimed to offer valuable insights for future research directions and the development of clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Fuqiang Dai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Xiaoqing Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, China
| |
Collapse
|
5
|
The Correlation between Periodontal Parameters and Cell-Free DNA in the Gingival Crevicular Fluid, Saliva, and Plasma in Chinese Patients: A Cross-Sectional Study. J Clin Med 2022; 11:jcm11236902. [PMID: 36498477 PMCID: PMC9741438 DOI: 10.3390/jcm11236902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: To investigate the correlation between periodontal parameters and cell-free DNA (cfDNA) concentrations in gingival crevicular fluid (GCF), saliva, and plasma. Methods: Full mouth periodontal parameters, including probing depth (PD), bleeding on probing (BOP), and plaque index (PI) were recorded from 25 healthy volunteers, 31 patients with untreated gingivitis, and 25 patients with untreated periodontitis. GCF, saliva, and plasma samples were collected from all subjects. Extraction and quantification assays were undertaken to determine cfDNA concentrations of each sample. Results: GCF and salivary cfDNA levels were increased with aggravation of periodontal inflammation (GCF p < 0.0001; saliva p < 0.001). Plasma cfDNA concentrations in patients with periodontitis were significantly higher than those in healthy volunteers and patients with gingivitis. GCF and salivary cfDNA were positively correlated with mean PD, max PD, BOP, and mean PI (p < 0.0001), whereas plasma cfDNA was not correlated with BOP (p = 0.099). Conclusion: GCF, saliva, and plasma concentrations of cfDNA were significantly elevated in patients with periodontal disease. There were also positive correlations between cfDNA levels in GCF and saliva and periodontal parameters.
Collapse
|
6
|
Yang C, Deng X, Wu L, Jiang T, Fu Z, Li J. Morusin Protected Ruminal Epithelial Cells against Lipopolysaccharide-Induced Inflammation through Inhibiting EGFR-AKT/NF-κB Signaling and Improving Barrier Functions. Int J Mol Sci 2022; 23:ijms232214428. [PMID: 36430903 PMCID: PMC9695078 DOI: 10.3390/ijms232214428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Using phytogenic extracts for preventing or treating rumen epithelial inflammatory injury is a potential alternative to antibiotic use due to their residue-free characteristics. In this study, the efficacy of Morus root bark extract Morusin on ruminal epithelial cells (RECs) against pathogenic stimulus was investigated for the first time. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative real-time polymerase chain reaction (qPCR) results showed that the Morusin did not affect the cell viability of RECs and exerted anti-inflammatory effects in a concentration-dependent manner. Transcriptome analysis further revealed that the Morusin significantly downregulated the inflammatory-response-related cell signaling, while it upregulated the cell-proliferation-inhibition- and barrier-function-related processes in RECs upon lipopolysaccharide (LPS) stimulation. The epidermal growth factor receptor (EGFR) blocking and immunoblotting analysis further confirmed that the Morusin suppressed LPS-induced inflammation in RECs by downregulating the phosphorylation of protein kinase B (AKT) and nuclear factor-kappaB (NF-κB) p65 protein via inhibiting the EGFR signaling. These findings demonstrate the protective roles of Morusin in LPS-induced inflammation in RECs.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linjun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianrui Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
7
|
Zhang Q, Huang H, Zhang M, Fang C, Wang N, Jing X, Guo J, Sun W, Yang X, Xu Z. Exome Sequencing Reveals Genetic Variability and Identifies Chronic Prognostic Loci in Chinese Sarcoidosis Patients. Front Oncol 2022; 12:910227. [PMID: 35860586 PMCID: PMC9289133 DOI: 10.3389/fonc.2022.910227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sarcoidosis is an inflammatory disease characterized by non-caseating granuloma formation in various organs, with several recognized genetic and environmental risk factors. Despite substantial progress, the genetic determinants associated with its prognosis remain largely unknown. Objectives This study aimed to identify the genetic changes involved in sarcoidosis and evaluate their clinical relevance. Methods We performed whole-exome sequencing (WES) in 116 sporadic sarcoidosis patients (acute sarcoidosis patients, n=58; chronic sarcoidosis patients, n=58). In addition, 208 healthy controls were selected from 1000 G East Asian population data. To identify genes enriched in sarcoidosis, Fisher exact tests were performed. The identified genes were included for further pathway analysis using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, we used the STRING database to construct a protein network of rare variants and Cytoscape to identify hub genes of signaling pathways. Results WES and Fisher’s exact test identified 1,311 variants in 439 protein-coding genes. A total of 135 single nucleotide polymorphisms (SNPs) on 30 protein-coding genes involved in the immunological process based on the GO and KEGG enrichment analysis. Pathway enrichment analysis showed osteoclast differentiation and cytokine–cytokine receptor interactions. Three missense mutations (rs76740888, rs149664918, and rs78251590) in two genes (PRSS3 and CNN2) of immune-related genes showed significantly different mutation frequencies between the disease group and healthy controls. The correlation of genetic abnormalities with clinical outcomes using multivariate analysis of the clinical features and mutation loci showed that the missense variant (rs76740888, Chr9:33796673 G>A) of PRSS3 [p=0.04, odds ratio (OR) = 2.49] was significantly associated with chronic disease prognosis. Additionally, the top two hub genes were CCL4 and CXCR4 based on protein–protein interaction (PPI) network analysis. Conclusion Our study provides new insights into the molecular pathogenesis of sarcoidosis and identifies novel genetic alterations in this disease, especially PRSS3, which may be promising targets for future therapeutic strategies for chronic sarcoidosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Chuling Fang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Guo
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Sun
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Yang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuojun Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Zuojun Xu,
| |
Collapse
|
8
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
9
|
Mertz P, Jeannel J, Guffroy A, Lescuyer S, Korganow AS, Rondeau-Lutz M, Weber JC. Granulomatous manifestations associated with COVID19 infection: Is there a link between these two diseases? Autoimmun Rev 2021; 20:102824. [PMID: 33864942 PMCID: PMC8056977 DOI: 10.1016/j.autrev.2021.102824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Philippe Mertz
- Internal Medicine department, Strasbourg University Hospital, Strasbourg, France.
| | - Juliette Jeannel
- Internal Medicine department, Strasbourg University Hospital, Strasbourg, France
| | - Aurélien Guffroy
- Clinical Immunology department, National Reference Center for Rare Autoimmune Diseases (RESO), ERN RITA, Strasbourg University Hospital, Strasbourg, France
| | - Sylvain Lescuyer
- Internal Medicine department, Strasbourg University Hospital, Strasbourg, France
| | - Anne Sophie Korganow
- Clinical Immunology department, National Reference Center for Rare Autoimmune Diseases (RESO), ERN RITA, Strasbourg University Hospital, Strasbourg, France
| | | | | |
Collapse
|
10
|
El Jammal T, Jamilloux Y, Gerfaud-Valentin M, Valeyre D, Sève P. Refractory Sarcoidosis: A Review. Ther Clin Risk Manag 2020; 16:323-345. [PMID: 32368072 PMCID: PMC7173950 DOI: 10.2147/tcrm.s192922] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/22/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcoidosis is a multi-system disease of unknown etiology characterized by granuloma formation in various organs (especially lung and mediastinohilar lymph nodes). In more than half of patients, the disease resolves spontaneously. When indicated, it usually responds to corticosteroids, the first-line treatment, but some patients may not respond or tolerate them. An absence of treatment response is rare and urges for verifying the absence of a diagnosis error, the good adherence of the treatment, the presence of active lesions susceptible to respond since fibrotic lesions are irreversible. That is when second-line treatments, immunosuppressants (methotrexate, leflunomide, azathioprine, mycophenolate mofetil, hydroxychloroquine), should be considered. Methotrexate is the only first-line immunosuppressant validated by a randomized controlled trial. Refractory sarcoidosis is not yet a well-defined condition, but it remains a real challenge for the physicians. Herein, we considered refractory sarcoidosis as a disease in which second-line treatments are not sufficient to achieve satisfying disease control or satisfying corticosteroids tapering. Tumor necrosis alpha inhibitors, third-line treatments, have been validated through randomized controlled trials. There are currently no guidelines or recommendations regarding refractory sarcoidosis. Moreover, criteria defining non-response to treatment need to be clearly specified. The delay to achieve response to organ involvement and drugs also should be defined. In the past ten years, the efficacy of several immunosuppressants beforehand used in other autoimmune or inflammatory diseases was reported in refractory cases series. Among them, anti-CD20 antibodies (rituximab), repository corticotrophin injection, and anti-JAK therapy anti-interleukin-6 receptor monoclonal antibody (tocilizumab) were the main reported. Unfortunately, no clinical trial is available to validate their use in the case of sarcoidosis. Currently, other immunosuppressants such as JAK inhibitors are on trial to assess their efficacy in sarcoidosis. In this review, we propose to summarize the state of the art regarding the use of immunosuppressants and their management in the case of refractory or multidrug-resistant sarcoidosis.
Collapse
Affiliation(s)
- Thomas El Jammal
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| | - Yvan Jamilloux
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
| | | | - Dominique Valeyre
- Department of Pneumology, Assistance Publique - Hôpitaux de Paris, Hôpital Avicenne et Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pascal Sève
- Department of Internal Medicine, Lyon University Hospital, Lyon, France
- Hospices Civils de Lyon, Pôle IMER, Lyon, F-69003, France, University Claude Bernard Lyon 1, HESPER EA 7425, LyonF-69008, France
| |
Collapse
|
11
|
Liassides C, Papadopoulos A, Siristatidis C, Damoraki G, Liassidou A, Chrelias C, Kassanos D, Giamarellos-Bourboulis EJ. Single nucleotide polymorphisms of Toll-like receptor-4 and of autophagy-related gene 16 like-1 gene for predisposition of premature delivery: A prospective study. Medicine (Baltimore) 2019; 98:e17313. [PMID: 31577725 PMCID: PMC6783216 DOI: 10.1097/md.0000000000017313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the impact of carriage of single nucleotide polymorphisms (SNPs) of the Toll-like receptor-4 (TLR4) and of autophagy-related gene 16-like-1 (ATG16L1) in preterm delivery (PTD).A prospective cohort of 145 pregnant women was studied. Women were prospectively followed-up until delivery. Genotyping for rs4986790 (Asp299Gly transition) and rs4986791 (Thr399Ile transition) of TLR4 and for rs2241880 of ATG16L1 was done by PCR-restriction fragment length polymorphism. The primary study endpoint was the impact of carriage of minor alleles of TLR4 on early PTD before gestational week 32. Associations with human chorionic gonadotrophin (hCG) were also analyzed. Peripheral blood mononuclear cells were isolated from 15 healthy women and stimulated for cytokine production.No difference in clinical characteristics was observed between women delivering full term and preterm. The frequency of early PTD was 25% among women carrying minor alleles of TLR4 and 6.8% among women carrying major alleles (P: .032). Odds ratios for PTD were 3.85 among women carrying the GG genotype of rs2241880 and major alleles of TLR4 and 0.26 among carriers of GG genotype and minor alleles of TLR4 (P: .030). The co-presence of GG genotype of rs2241880 and hCG above 70 U/L was an independent variable for PTD. Stimulated production of interleukin-6 was greater among women with GG genotypes of rs2241880.Minor alleles of SNPs of TLR4 predispose to early PTD. The GG genotype of rs2241880 of ATG16L1 is associated with PTD when hCG is supra-elevated.
Collapse
Affiliation(s)
| | | | - Charalampos Siristatidis
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | | | - Charalampos Chrelias
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Kassanos
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | |
Collapse
|
12
|
Yang H, Lv H, Li H, Ci X, Peng L. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun Signal 2019; 17:62. [PMID: 31186013 PMCID: PMC6558832 DOI: 10.1186/s12964-019-0366-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Oxidative stress and the resulting inflammation are essential pathological processes in acute lung injury (ALI). Nuclear factor erythroid 2-related factor 2 (Nrf2), a vital transcriptional factor, possesses antioxidative potential and has become a primary target to treat many diseases. Oridonin (Ori), isolated from the plant Rabdosia Rrubescens, is a natural substance that possesses antioxidative and anti-inflammatory effects. Our aim was to study whether the anti-inflammatory and antioxidant effects of Ori on LPS-induced ALI were mediated by Nrf2. Methods MTT assays, Western blotting analysis, a mouse model, and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which Ori exerts a protective effect on LPS-induced lung injury in RAW264.7 cells and in a mouse model. Results Our results indicated that Ori increased the expression of Nrf2 and its downstream genes (HO-1, GCLM), which was mediated by the activation of Akt and MAPK. Additionally, Ori inhibited LPS-induced activation of the pro-inflammatory pathways NLRP3 inflammasome and NF-κB pathways. These two pathways were also proven to be Nrf2-independent by the use of a Nrf2 inhibitor. In keeping with these findings, Ori alleviated LPS-induced histopathological changes, the enhanced production of myeloperoxidase and malondialdehyde, and the depleted expression of GSH and superoxide dismutase in the lung tissue of mice. Furthermore, the expression of LPS-induced NLRP3 inflammasome and NF-κB pathways was more evident in Nrf2-deficient mice but could still be reversed by Ori. Conclusions Our results demonstrated that Ori exerted protective effects on LPS-induced ALI via Nrf2-independent anti-inflammatory and Nrf2-dependent antioxidative activities.
Collapse
Affiliation(s)
- Huahong Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China.,Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China
| | - Hongming Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China. .,Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China.
| |
Collapse
|
13
|
Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, Guo M, Deng G. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 2017; 8:68153-68164. [PMID: 28978105 PMCID: PMC5620245 DOI: 10.18632/oncotarget.19249] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|