1
|
Li F, Zhuo L, Xie F, Luo H, Li Y, Lin H, Li X. Exploration of small molecule compounds targeting abdominal aortic aneurysm based on CMap database and molecular dynamics simulation. Vascular 2024:17085381241273289. [PMID: 39155144 DOI: 10.1177/17085381241273289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
OBJECTIVE The mitigation of abdominal aortic aneurysm (AAA) growth through pharmaceutical intervention offers the potential to avert the perils associated with AAA rupture and the subsequent need for surgical intervention. Nevertheless, the existing effective drugs for AAA treatment are limited, necessitating a pressing exploration for novel therapeutic medications. METHODS AAA-related transcriptome data were downloaded from GEO, and differentially expressed genes (DEGs) in AAA tissue were screened for GO and KEGG enrichment analyses. Small molecule compounds and their target proteins with negative connectivity to the AAA expression profile were predicted in the Connectivity Map (CMap) database. Molecular docking and molecular dynamics simulation were performed to predict the binding of the target protein to the small molecule compound, and the MM/GBSA method was used to calculate the binding free energy. Cluster analysis was performed using the cluster tool in the GROMACS package. An AAA cell-free model was built, and CETSA experiments were used to demonstrate the binding ability of small molecules to the target protein in cells. RESULTS A total of 2244 DEGs in AAA were obtained through differential analysis, and the DEGs were mainly enriched in the tubulin binding biological function and cell cycle pathway. The CMap results showed that Apicidin had a potential therapeutic effect on AAA with a connectivity score of -97.74, and HDAC4 was the target protein of Apicidin. Based on literature, HDAC4-Apicidin was selected as the subsequent research object. The lowest affinity of Apicidin-HDAC4 molecular docking was -8.218 kcal/mol. Molecular dynamics simulation results indicated that Apicidin-HDAC4 could form a stable complex. MM/GBSA analysis showed a total binding free energy of -55.40 ± 0.79 kcal/mol, and cluster analysis showed that there were two main conformational clusters during the binding process, accounting for 22.4% and 57.8%, respectively. Apicidin could form hydrogen bonds with surrounding residues for stable binding. CETSA experiment proved the stable binding ability of Apicidin and HDAC4. CONCLUSION Apicidin inhibited HDAC4 in AAA and exhibited favorable protein-ligand interactions and stability, making it a potential candidate drug for treating AAA.
Collapse
Affiliation(s)
- Fushan Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Liqing Zhuo
- Department of Electrocardiography, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Fangtao Xie
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Haiping Luo
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Ying Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Huyu Lin
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Xiaoguang Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| |
Collapse
|
2
|
Jiang A, Liu L, Wang J, Liu Y, Deng S, Jiang T. Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway. Cardiovasc Toxicol 2024; 24:587-597. [PMID: 38691303 DOI: 10.1007/s12012-024-09863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.
Collapse
MESH Headings
- Animals
- ADAM10 Protein/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Cell Proliferation/drug effects
- Male
- Rats, Sprague-Dawley
- Neointima
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Amyloid Precursor Protein Secretases/metabolism
- Cells, Cultured
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Hyperplasia
- Receptors, Notch/metabolism
- Receptor, Notch1/metabolism
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Disease Models, Animal
- Rats
- Coronary Restenosis/pathology
- Coronary Restenosis/etiology
- Coronary Restenosis/metabolism
- Coronary Restenosis/prevention & control
Collapse
Affiliation(s)
- Aihua Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Lin Liu
- Department of Gastroenterology, Hengyang Central Hospital, Hengyang, 421001, China
| | - Jianping Wang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Yinglan Liu
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Shanshan Deng
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Tao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
3
|
Liang X, Hu M, Yuan W, Liu Y, Li J, Bai C, Yuan Z. MicroRNA-4487 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting RAS p21 protein activator 1. Pathol Res Pract 2022; 234:153903. [DOI: 10.1016/j.prp.2022.153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
|
4
|
Cyclometalated Ru(II) β-carboline complexes induce cell cycle arrest and apoptosis in human HeLa cervical cancer cells via suppressing ERK and Akt signaling. J Biol Inorg Chem 2021; 26:793-808. [PMID: 34459988 DOI: 10.1007/s00775-021-01894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two new cyclometalated Ru(II)-β-carboline complexes, [Ru(dmb)2(Cl-Ph-βC)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine; Cl-Ph-βC = Cl-phenyl-9H-pyrido[3,4-b]indole; RuβC-3) and [Ru(bpy)2(Cl-Ph-βC)](PF6) (bpy = 2,2'-bipyridine; RuβC-4) were synthesized and characterized. The Ru(II) complexes display high cytotoxicity against HeLa cells, the stabilized human cervical cancer cell, with IC50 values of 3.2 ± 0.4 μM (RuβC-3) and 4.1 ± 0.6 μM (RuβC-4), which were considerably lower than that of non-cyclometalated Ru(II)-β-carboline complex [Ru(bpy)2(1-Py-βC)] (PF6)2 (61.2 ± 3.9 μM) by 19- and 15-folds, respectively. The mechanism studies indicated that both Ru(II) complexes could significantly inhibit HeLa cell migration and invasion, and effectively induce G0/G1 cell cycle arrest. The new Ru(II) complexes could also trigger apoptosis through activating caspase-3 and poly (ADP-ribose) polymerase (PARP), increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS) generation, decreasing mitochondrial membrane potential (MMP), and inducing cytochrome c release from mitochondria. Further research revealed that RuβC-3 could deactivate the ERK/Akt signaling pathway thus inhibiting HeLa cell invasion and migration, and inducing apoptosis. In addition, RuβC-3-induced apoptosis in HeLa cells was closely associated with the increase of intracellular ROS levels, which may act as upstream factors to regulate ERK and Akt pathways. More importantly, RuβC-3 exhibited low toxicity on both normal BEAS-2B cells in vitro and zebrafish embryos in vivo. Consequently, the developed Ru(II) complexes have great potential on developing novel low-toxic anticancer drugs.
Collapse
|
5
|
Li W, Ni H, Wu S, Han S, Chen C, Li L, Li Y, Gui F, Han J, Deng X. Targeting RIPK3 oligomerization blocks necroptosis without inducing apoptosis. FEBS Lett 2020; 594:2294-2302. [PMID: 32412649 DOI: 10.1002/1873-3468.13812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) is a central protein in necroptosis with great potential as a target for treating necroptosis-associated diseases, such as Crohn's disease. However, blockade of RIPK3 kinase activity leads to unexpected RIPK3-initiated apoptosis. Herein, we found that PP2, a known SRC inhibitor, inhibits TNF-α-induced necroptosis without initiating apoptosis. Further investigation showed that PP2 acts as an inhibitor of not only SRC but also RIPK3. PP2 does not disturb the integrity of the RIPK1-RIPK3-mixed lineage kinase domain-like pseudokinase (MLKL) necroptosome or the autophosphorylation of RIPK3 at T231/S232 but disrupts RIPK3 oligomerization, thereby impairing the phosphorylation and oligomerization of MLKL. These results demonstrate the essential role of RIPK3 oligomerization in necroptosis and suggest a potential RIPK3 oligomerization-targeting strategy for therapeutic development.
Collapse
Affiliation(s)
- Wenjuan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Hengxiao Ni
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Shaofeng Wu
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Shang Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Chang'an Chen
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Li Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Yunzhan Li
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Fu Gui
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| | - Jiahuai Han
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, China.,Cancer Research Center of Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Galeano Niño JL, Tay SS, Tearle JLE, Xie J, Govendir MA, Kempe D, Mazalo J, Drew AP, Colakoglu F, Kummerfeld SK, Proud CG, Biro M. The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. J Cell Sci 2020; 133:jcs238014. [PMID: 32041902 DOI: 10.1242/jcs.238014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
It has become increasingly evident that T cell functions are subject to translational control in addition to transcriptional regulation. Here, by using live imaging of CD8+ T cells isolated from the Lifeact-EGFP mouse, we show that T cells exhibit a gain in fluorescence intensity following engagement of cognate tumour target cells. The GFP signal increase is governed by Erk1/2-dependent distal T cell receptor (TCR) signalling and its magnitude correlates with IFN-γ and TNF-α production, which are hallmarks of T cell activation. Enhanced fluorescence was due to increased translation of Lifeact-EGFP protein, without an associated increase in its mRNA. Activation-induced gains in fluorescence were also observed in naïve and CD4+ T cells from the Lifeact-EGFP reporter, and were readily detected by both flow cytometry and live cell microscopy. This unique, translationally controlled reporter of effector T cell activation simultaneously enables tracking of cell morphology, F-actin dynamics and activation state in individual migrating T cells. It is a valuable addition to the limited number of reporters of T cell dynamics and activation, and opens the door to studies of translational activity and heterogeneities in functional T cell responses in situ.
Collapse
Affiliation(s)
- Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacqueline L E Tearle
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Matt A Govendir
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica Mazalo
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarah K Kummerfeld
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Frome Road, Adelaide
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Zhang B, Dong Y, Liu M, Yang L, Zhao Z. miR-149-5p Inhibits Vascular Smooth Muscle Cells Proliferation, Invasion, and Migration by Targeting Histone Deacetylase 4 (HDAC4). Med Sci Monit 2019; 25:7581-7590. [PMID: 31595884 PMCID: PMC6796703 DOI: 10.12659/msm.916522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies have demonstrated that microRNAs (miRNAs) have essential roles in biological functions of vascular smooth muscle cells (VSMCs). However, the function and related molecular mechanism of miR-149-5p in VSMCs remains unclear. MATERIAL AND METHODS We used MTT assay, Transwell assay, and wound-healing assay to measure the proliferation, invasion, and migration of VSMCs transfected with miR-149-5p mimics or inhibitors, respectively. Bioinformatics tools and luciferase assay were used to validate the relationship between miR-149-5p and histone deacetylase 4 (HDAC4). Rescue experiments were used to confirm the interaction of miR-149-5p and HDAC4 in regulating biological functions in VSMCs. RESULTS miR-149-5p was downregulated in PDGF-bb-induced VSMCs. It was also found that miR-149-5p overexpression suppressed proliferation, invasion, and migration of VSMCs, while miR-149-5p knockdown showed the opposite effects. Furthermore, HDAC4 was found to be a potential target of miR-149-5p, which rescued miR-149-5p-mediated proliferation, invasion, and migration in VSMCs. CONCLUSIONS We demonstrated that miR-149-5p can suppress biological functions of VSMCs by regulating HDAC4, which might provide a potent therapeutic target for VSMC growth-related diseases.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Yang Dong
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Ming Liu
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Lei Yang
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Zhuo Zhao
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| |
Collapse
|
8
|
Kumar Singh P, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed Pharmacother 2018; 108:1565-1571. [PMID: 30372858 DOI: 10.1016/j.biopha.2018.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022] Open
Abstract
Lck, a non-receptor src family kinase, plays a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation and differentiation. As a 56 KDa protein, Lck phosphorylates tyrosine residues of various proteins such as ZAP-70, ITK and protein kinase C. The structure of Lck is comprised of three domains, one SH3 in tandem with a SH2 domain at the amino terminal and the kinase domain at the carboxy terminal. Physiologically, Lck is involved in the development, function and differentiation of T-cells. Additionally, Lck regulates neurite outgrowth and maintains long-term synaptic plasticity in neurons. Given a major role of Lck in cytokine production and T cell signaling, alteration in expression and activity of Lck may result in various diseased conditions like cancer, asthma, diabetes, rheumatoid arthritis, psoriasis, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, atherosclerosis etc. This article provides evidence and information establishing Lck as one of the therapeutic targets in various inflammation mediated pathophysiological conditions.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Aanchal Kashyap
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
9
|
Lee J, Lee CY, Seo HH, Bazarragchaa B, Batdelger G, Choi S, Hwang KC, Lee S, Lim S. Extract of Oxytropis pseudoglandulosa inhibits vascular smooth muscle cell proliferation and migration via suppression of ERK1/2 and Akt signaling pathways1. Clin Hemorheol Microcirc 2018; 69:277-287. [PMID: 29660921 DOI: 10.3233/ch-189126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation and migration accelerate the development of occlusive vascular disease. Therefore, finding a means to control the aberrant proliferation and migration of VSMCs has own clinical significance. In the present study, we examined the feasibility of using extract from medicinal plant Oxytropis pseudoglandulosa (OG) to control pathologic proliferation and migration of VSMCs, which never have been tested. Our data indicate that the extract of OG significantly suppressed proliferation and migration of VSMCs without cytotoxic effect, suggesting the OG extract may be an alternative agent to effectively control the aberrant VSMC proliferation and migration without any serious adverse effect. These data suggest that the extract of OG may be a potent therapeutic agent for the treatment of occlusive vascular disease and warrant further studies to identify the major acting ingredient and to validate in vivo efficacy.
Collapse
Affiliation(s)
- Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | | | - Gantuya Batdelger
- Institute of General and Experimental Biology, Mongolian Academy of Sciences (MAS), Ulaanbaatar, Mongolia
| | - Sangho Choi
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
10
|
Ghosh S, Singharoy D, Bhattacharya SC. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:7-15. [PMID: 29358093 DOI: 10.1016/j.saa.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.
Collapse
Affiliation(s)
- Swadesh Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Dipti Singharoy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|