1
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Rajaraman S, Balakrishnan R, Deshmukh D, Ganorkar A, Biswas S, Pulya S, Ghosh B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med Chem 2023; 15:885-908. [PMID: 37227732 DOI: 10.4155/fmc-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance. Based on the crystal structures and the key residues at the active site, HDAC8 inhibitors have been designed along the canonical pharmacophore. This article details the importance, recent advancements, and the structural and functional aspects of HDAC8 with special emphasis on the medicinal chemistry aspect of HDAC8 inhibitors that will help in developing novel epigenetic therapeutics.
Collapse
Affiliation(s)
- Srinidhi Rajaraman
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Ranjani Balakrishnan
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Dhruv Deshmukh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Abhiram Ganorkar
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
4
|
MicroRNAs as prospective biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma. Mol Biol Rep 2023; 50:1895-1912. [PMID: 36520359 DOI: 10.1007/s11033-022-08137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroblastomas, the most prevalent malignant solid neoplasms of childhood, originate from progenitor cells of the sympathetic nervous system. Their genetic causation is diverse and involves multiple molecular mechanisms. This review highlights multiple roles of microRNA in neuroblastoma pathogenesis and discusses the prospects of harnessing these important natural regulator molecules as biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma.
Collapse
|
5
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
6
|
Tang H, Liang Y, Shen H, Cai S, Yu M, Fan H, Ding K, Wang Y. Discovery of a 2,6-Diarylpyridine-Based Hydroxamic Acid Derivative as Novel Histone Deacetylase 8 and Tubulin Dual Inhibitor for the Treatment of Neuroblastoma. Bioorg Chem 2022; 128:106112. [DOI: 10.1016/j.bioorg.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
7
|
Design, Synthesis and Biological Characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with Anti-Neuroblastoma Activity. Int J Mol Sci 2022; 23:ijms23147535. [PMID: 35886887 PMCID: PMC9322761 DOI: 10.3390/ijms23147535] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells.
Collapse
|
8
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
9
|
Liu D, Tang X, Huang Z, Wen J, Zhou Y. Histone deacetylase HDAC2 regulates microRNA-125a expression in neuroblastoma. Brain Behav 2022; 12:e2401. [PMID: 35060363 PMCID: PMC8865159 DOI: 10.1002/brb3.2401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is an infrequent childhood malignancy of the peripheral sympathetic nervous system and is accountable for about 10% of pediatric tumors. microRNA (miR)-125a has been implicated to serve as a tumor suppressor in various cancers. Herein, we set out to ascertain whether miR-125a exerts antitumor effects in NB. METHODS Downregulated miRNAs were identified by miRNA microarray analysis of NB tissues and paracancerous tissues. The expression of miR-125a in NB tissues and cells was detected by reverse transcription-quantitative (RT-q) PCR, followed by prognostic analysis. Gene Ontology (GO) enrichment analysis was performed on target genes of differentially expressed miRNAs. Cell proliferation, apoptosis, and differentiation were detected by cell counting kit-8 (CCK-8), Hoechst staining, immunofluorescence, and western blot. NB cells were injected into nude mice to detect tumorigenic, apoptotic, and differentiation activities in vivo. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) were carried out to verify the binding relationship between miR-125a and PHOX2B or histone deacetylases 2 (HDAC2), respectively. Finally, rescue experiments were conducted. RESULTS miR-125a was downregulated in NB tissues and cells, which was associated with poor prognosis. miR-125a reduced NB cell proliferation and augmented apoptosis and differentiation. NB cells with miR-125a overexpression decreased cell tumorigenesis and increased apoptosis and differentiation in xenograft tumor tissues. miR-125a targeted PHOX2B, which was highly expressed in NB tissues and cells. HDAC2, highly expressed in NB tissues and cells, repressed miR-125a transcription through histone deacetylation. Overexpression of HDAC2 or PHOX2B rescued the effects of miR-125a on NB cell proliferation, apoptosis, and differentiation. CONCLUSION HDAC2 inhibited miR-125a transcription through deacetylation, and miR-125a suppressed NB development through binding to PHOX2B.
Collapse
Affiliation(s)
- Denghui Liu
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, P.R. China
| | - Xianglian Tang
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, P.R. China
| | - Zhao Huang
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, P.R. China
| | - Jiabing Wen
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, P.R. China
| | - Yuxiang Zhou
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, P.R. China
| |
Collapse
|
10
|
Tsai CY, Ko HJ, Chiou SJ, Lai YL, Hou CC, Javaria T, Huang ZY, Cheng TS, Hsu TI, Chuang JY, Kwan AL, Chuang TH, Huang CYF, Loh JK, Hong YR. NBM-BMX, an HDAC8 Inhibitor, Overcomes Temozolomide Resistance in Glioblastoma Multiforme by Downregulating the β-Catenin/c-Myc/SOX2 Pathway and Upregulating p53-Mediated MGMT Inhibition. Int J Mol Sci 2021; 22:ijms22115907. [PMID: 34072831 PMCID: PMC8199487 DOI: 10.3390/ijms22115907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of β-catenin was reversed by proteasome inhibitor via the β-catenin/ GSK3β signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the β-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yu-Ling Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chung Hou
- New Drug Research & Development Center, NatureWise Biotech & Medicals Corporation, Taipei 112, Taiwan;
| | - Tehseen Javaria
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
| | - Zi-Yi Huang
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
| | - Tsung-I Hsu
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan; (T.-I.H.); (J.-Y.C.)
| | - Jian-Ying Chuang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan; (T.-I.H.); (J.-Y.C.)
| | - Aij-Lie Kwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
| | - Tsung-Hsien Chuang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Immunology Research Center, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chi-Ying F. Huang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| | - Yi-Ren Hong
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| |
Collapse
|
11
|
HDAC8 Activates AKT through Upregulating PLCB1 and Suppressing DESC1 Expression in MEK1/2 Inhibition-Resistant Cells. Cells 2021; 10:cells10051101. [PMID: 34064422 PMCID: PMC8147860 DOI: 10.3390/cells10051101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibition of the RAF-MEK1/2-ERK signaling pathway is an ideal strategy for treating cancers with NRAS or BRAF mutations. However, the development of resistance due to incomplete inhibition of the pathway and activation of compensatory cell proliferation pathways is a major impediment of the targeted therapy. The anthrax lethal toxin (LT), which cleaves and inactivates MEKs, is a modifiable biomolecule that can be delivered selectively to tumor cells and potently kills various tumor cells. However, resistance to LT and the mechanism involved are yet to be explored. Here, we show that LT, through inhibiting MEK1/2-ERK activation, inhibits the proliferation of cancer cells with NRAS/BRAF mutations. Among them, the human colorectal tumor HT-29 and murine melanoma B16-BL6 cells developed resistance to LT in 2 to 3 days of treatment. These resistant cells activated AKT through a histone deacetylase (HDAC) 8-dependent pathway. Using an Affymetrix microarray, followed by qPCR validation, we identified that the differential expression of the phospholipase C-β1 (PLCB1) and squamous cell carcinoma-1 (DESC1) played an important role in HDAC8-mediated AKT activation and resistance to MEK1/2-ERK inhibition. By using inhibitors, small interference RNAs and/or expression vectors, we found that the inhibition of HDAC8 suppressed PLCB1 expression and induced DESC1 expression in the resistant cells, which led to the inhibition of AKT and re-sensitization to LT and MEK1/2 inhibition. These results suggest that targeting PLCB1 and DESC1 is a novel strategy for inhibiting the resistance to MEK1/2 inhibition.
Collapse
|
12
|
Adewole KE, Ishola AA, Omolaso BO. Identification of potential histone deacetylase inhibitory biflavonoids from Garcinia kola (Guttiferae) using in silico protein-ligand interaction. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Overactivity of histone deacetylases (HDACs) is the underlying cause of some cancers, thus, inhibiting their overactivities is a rational treatment option. However, endeavors to employ current anti-HDACs agents in cancer treatment have yielded limited success. Consequently, there is need to explore anti-HDACs natural products, especially from plants sources, because of the intimate relationship plant products and drug discovery have enjoyed over the centuries. To identify possible HDACs inhibitors, Garcinia kola (Guttiferae) seed-derived compounds were screened in silico for HDAC-inhibitory tendencies because of their reported anticancer potentials. Fifteen G. kola-derived compounds and givinostat were docked with five selected HDACs using AutodockVina, while the binding interactions of the compounds with high binding affinities for the five HDACs were viewed with Discovery Studio Visualizer BIOVIA, 2016. Results indicated that four of the compounds studied, including amentoflavone, Garcinia biflavonoid 1, Garcinia biflavonoid 2 and kolaflavanone have higher binding propensity for all the five HDACs relative to givinostat, the standard HDAC inhibitor. This study indicated that inhibition of HDAC might be another key mechanism accountable for the bioactivities of G. kola and its intrinsic compounds. The results from this study implied that the compounds could be further investigated as drugable HDAC inhibitors with potential pharmacological applications in the treatment of cancers.
Collapse
Affiliation(s)
- Kayode E. Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| | - Ahmed A. Ishola
- Central Research Laboratories Limited , University Road , Ilorin , Kwara State , Nigeria
| | - Blessing O. Omolaso
- Department of Physiology, Faculty of Basic Medical Sciences , University of Medical Sciences , Ondo City , Ondo State , Nigeria
| |
Collapse
|
13
|
Circular RNA circPVT1 Contributes to Doxorubicin (DXR) Resistance of Osteosarcoma Cells by Regulating TRIAP1 via miR-137. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7463867. [PMID: 33981772 PMCID: PMC8088374 DOI: 10.1155/2021/7463867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Background Chemoresistance is a major obstacle to the treatment of osteosarcoma patients. Circular RNA (circRNA) circPVT1 has been reported to be related to the doxorubicin (DXR) resistance in osteosarcoma. This study is designed to explore the role and mechanism of circPVT1 in the DXR resistance of osteosarcoma. Methods circPVT1, microRNA-137 (miR-137), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of ATP-binding cassette, subfamily C, member 1 (ABCC1), multidrug resistance-associated protein 1 (MRP-1), cleaved- (c-) caspase-3, B-cell lymphoma-2 (Bcl-2), and TRIAP1 were examined by a western blot assay. Cell viability, proliferation, and apoptosis were detected by cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays, severally. The binding relationship between miR-137 and circPVT1 or TRIAP1 was predicted by starbase 3.0 and then verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circPVT1 in osteosarcoma tumor growth and drug resistance was examined by the xenograft tumor model in vivo. Results. circPVT1 and TRIAP1 were highly expressed, and miR-137 was decreased in DXR-resistant osteosarcoma tissues and cells. Moreover, circPVT1 knockdown could boost DXR sensitivity by inhibiting DXR-caused proliferation and DXR-induced apoptosis in DXR-resistant osteosarcoma cells in vitro. The mechanical analysis discovered that circPVT1 acted as a sponge of miR-137 to regulate TRIAP1 expression. circPVT1 silencing increased the drug sensitivity of osteosarcoma in vivo. Conclusion. circPVT1 boosted DXR resistance of osteosarcoma cells partly by regulating the miR-137/TRIAP1 axis, hinting a promising therapeutic target for the osteosarcoma treatment.
Collapse
|
14
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-Coding RNAs Participate in the Pathogenesis of Neuroblastoma. Front Oncol 2021; 11:617362. [PMID: 33718173 PMCID: PMC7945591 DOI: 10.3389/fonc.2021.617362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is one of the utmost frequent neoplasms during the first year of life. This pediatric cancer is believed to be originated during the embryonic life from the neural crest cells. Previous studies have detected several types of chromosomal aberrations in this tumor. More recent studies have emphasized on expression profiling of neuroblastoma samples to identify the dysregulated genes in this type of cancer. Non-coding RNAs are among the mostly dysregulated genes in this type of cancer. Such dysregulation has been associated with a number of chromosomal aberrations that are frequently detected in neuroblastoma. In this study, we explain the role of non-coding transcripts in the malignant transformation in neuroblastoma and their role as biomarkers for this pediatric cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Wang B, Xu L, Zhang J, Cheng X, Xu Q, Wang J, Mao F. LncRNA NORAD accelerates the progression and doxorubicin resistance of neuroblastoma through up-regulating HDAC8 via sponging miR-144-3p. Biomed Pharmacother 2020; 129:110268. [PMID: 32563146 DOI: 10.1016/j.biopha.2020.110268] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs) often caused aberrant cell behaviors. In the present study, we focused on the role of long noncoding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in the development of neuroblastoma (NB). The enrichment of NORAD, miRNA-144-3p (miR-144-3p) and histone deacetylase 8 (HDAC8) was measured by quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, chemoresistance, apoptosis, metastasis and autophagy of NB cells were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, transwell migration and invasion assays and Western blot assay, respectively. The target relationship between miR-144-3p and NORAD or HDAC8 was predicted by Starbase software and validated through dual-luciferase reporter assay, RIP and RNA-pull down assays. The protein expression of HDAC8 was measured by Western blot assay. Murine xenograft model was used to verify the function of NORAD in vivo. We found that the level of NORAD was up-regulated in NB tissues and cells, and the level of NORAD was negatively correlated with the prognosis of NB patients. NORAD promoted the proliferation, metastasis and doxorubicin (DOX) resistance while inhibited the apoptosis and autophagy of NB cells. MiR-144-3p was a target of NORAD in NB cells, and NORAD accelerated the progression and DOX resistance of NB through sponging miR-144-3p. HDAC8 was a direct target of miR-144-3p in NB cells, and miR-144-3p suppressed the progression of NB through down-regulating HDAC8. NORAD up-regulated the expression of HDAC8 through sponging miR-144-3p in NB cells. NORAD accelerated the growth of NB tumors at least partly through miR-144-3p/HDAC8 signaling in vivo. In conclusion, NORAD promoted the progression and DOX resistance of NB through miR-144-3p/HDAC8 axis in vivo and in vitro.
Collapse
Affiliation(s)
- Baiqi Wang
- Department of Oncology Hematology, the Second Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Lili Xu
- Department of Oncology Hematology, the Second Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Ju Zhang
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Xinru Cheng
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Qianya Xu
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Jian Wang
- Department of Emergency, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Fengxia Mao
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China.
| |
Collapse
|
18
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 PMCID: PMC7250367 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
19
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
20
|
Santos-Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer 2019; 10:119-133. [PMID: 31798765 PMCID: PMC6872666 DOI: 10.18632/genesandcancer.197] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent chemotherapy drug used as a first-line treatment for glioblastoma multiforme (GBM). O6-methyl-guanine DNA methyltransferase (MGMT) repairs DNA damage induced by TMZ; hence, elevated MGMT levels usually correlate with TMZ resistance. MGMT promoter methylation is a key regulatory mechanism for MGMT expression and is important in overcoming TMZ therapy resistance. To date, little is known about how MGMT expression is regulated beyond promoter methylation. In this work, we show an alternative mechanism by which MGMT levels are regulated independent of its promoter methylation status. We found that inhibition of the histone deacetylase HDAC8 by either HDAC8-specific inhibitor PCI34051 or HDAC8 shRNA decreases MGMT levels in GBM cell lines. Furthermore, the proteasome receptor ADRM1 participates in this MGMT regulation by interacting with HDAC8. Interestingly, this interaction is disrupted by TMZ exclusively in TMZ sensitive cells, suggesting that this MGMT regulatory pathway might be inactivated in TMZ resistant cells. Consequently, HDAC8 inhibition in GBM cell lines increases DNA damage and cell cycle arrest and, eventually, decreases cell viability, likely due to the decrease in MGMT protein levels.
Collapse
Affiliation(s)
- Irene Santos-Barriopedro
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Sonali Bahl
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
21
|
Menbari M, Rahimi K, Ahmadi A, Mohammadi‐Yeganeh S, Elyasi A, Darvishi N, Hosseini V, Abdi M. miR‐483‐3p suppresses the proliferation and progression of human triple negative breast cancer cells by targeting the
HDAC8
>oncogene. J Cell Physiol 2019; 235:2631-2642. [DOI: 10.1002/jcp.29167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad‐Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics‐Gene Expression and Gene Medicine Aarhus University Aarhus Denmark
- Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Samira Mohammadi‐Yeganeh
- Medical Nanotechnology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
- Department of Clinical Biochemistry, Faculty of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
22
|
Implication for Cancer Stem Cells in Solid Cancer Chemo-Resistance: Promising Therapeutic Strategies Based on the Use of HDAC Inhibitors. J Clin Med 2019; 8:jcm8070912. [PMID: 31247937 PMCID: PMC6678716 DOI: 10.3390/jcm8070912] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to therapy in patients with solid cancers represents a daunting challenge that must be addressed. Indeed, current strategies are still not effective in the majority of patients; which has resulted in the need for novel therapeutic approaches. Cancer stem cells (CSCs), a subset of tumor cells that possess self-renewal and multilineage differentiation potential, are known to be intrinsically resistant to anticancer treatments. In this review, we analyzed the implications for CSCs in drug resistance and described that multiple alterations in morphogenetic pathways (i.e., Hippo, Wnt, JAK/STAT, TGF-β, Notch, Hedgehog pathways) were suggested to be critical for CSC plasticity. By interrogating The Cancer Genome Atlas (TCGA) datasets, we first analyzed the prevalence of morphogenetic pathways alterations in solid tumors with associated outcomes. Then, by highlighting epigenetic relevance in CSC development and maintenance, we selected histone deacetylase inhibitors (HDACi) as potential agents of interest to target this subpopulation based on the pleiotropic effects exerted specifically on altered morphogenetic pathways. In detail, we highlighted the role of HDACi in solid cancers and, specifically, in the CSC subpopulation and we pointed out some mechanisms by which HDACi are able to overcome drug resistance and to modulate stemness. Although, further clinical and preclinical investigations should be conducted to disclose the unclear mechanisms by which HDACi modulate several signaling pathways in different tumors. To date, several lines of evidence support the testing of novel combinatorial therapeutic strategies based on the combination of drugs commonly used in clinical practice and HDACi to improve therapeutic efficacy in solid cancer patients.
Collapse
|
23
|
Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Jubierre L, Jiménez C, Rovira E, Soriano A, Sábado C, Gros L, Llort A, Hladun R, Roma J, Toledo JSD, Gallego S, Segura MF. Targeting of epigenetic regulators in neuroblastoma. Exp Mol Med 2018; 50:1-12. [PMID: 29700278 PMCID: PMC5938021 DOI: 10.1038/s12276-018-0077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/13/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Approximately 15,000 new cases of pediatric cancer are diagnosed yearly in Europe, with 8–10% corresponding to neuroblastoma, a rare disease with an incidence of 8–9 cases per million children <15 years of age. Although the survival rate for low-risk and intermediate-risk patients is excellent, half of children with high-risk, refractory, or relapsed tumors will be cured, and two-thirds of the other half will suffer major side effects and life-long disabilities. Epigenetic therapies aimed at reversing the oncogenic alterations in chromatin structure and function are an emerging alternative against aggressive tumors that are or will become resistant to conventional treatments. This approach proposes targeting epigenetic regulators, which are proteins that are involved in the creation, detection, and interpretation of epigenetic signals, such as methylation or histone post-translational modifications. In this review, we focused on the most promising epigenetic regulators for targeting and current drugs that have already reached clinical trials. Treatments that target chromatin, the combination of DNA and proteins, are emerging as alternative ways to treat aggressive neuroblastomas, cancers of neural tissue. Altering the structure and function of chromatin is a form of “epigenetic therapy”, treatment that affects inheritable molecular signals controlling the activity of genes, rather than targeting the genes directly. Researchers in Spain led by Miguel Segura at the Vall d’Hebron Research Institute in Barcelona review progress in developing epigenetic therapies for neuroblastomas. A growing body of fundamental research and evidence from clinical trials suggest this approach could open promising new avenues to treating aggressive and drug-resistant cancers. The authors recommend an increased effort to identify and explore the activities of small molecules that could form the basis of effective epigenetic therapies for various cancers.
Collapse
Affiliation(s)
- Luz Jubierre
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Eric Rovira
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Constantino Sábado
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Luis Gros
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Anna Llort
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Raquel Hladun
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
25
|
Heimburg T, Kolbinger FR, Zeyen P, Ghazy E, Herp D, Schmidtkunz K, Melesina J, Shaik TB, Erdmann F, Schmidt M, Romier C, Robaa D, Witt O, Oehme I, Jung M, Sippl W. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J Med Chem 2017; 60:10188-10204. [DOI: 10.1021/acs.jmedchem.7b01447] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tino Heimburg
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Fiona R. Kolbinger
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Patrik Zeyen
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Ehab Ghazy
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Daniel Herp
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Karin Schmidtkunz
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Jelena Melesina
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Tajith Baba Shaik
- Département
de Biologie Structurale Intégrative, Institut de Génétique
et Biologie Moléculaire et Cellulaire (IGBMC), Université
de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Frank Erdmann
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Matthias Schmidt
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Christophe Romier
- Département
de Biologie Structurale Intégrative, Institut de Génétique
et Biologie Moléculaire et Cellulaire (IGBMC), Université
de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Dina Robaa
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Olaf Witt
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Department
of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center, 69120 Heidelberg, Germany
| | - Ina Oehme
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
26
|
Vittorio O, Le Grand M, Makharza SA, Curcio M, Tucci P, Iemma F, Nicoletta FP, Hampel S, Cirillo G. Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 2017; 122:176-185. [PMID: 29129733 DOI: 10.1016/j.ejpb.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ± 0.6 and 18.4 ± 0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ± 0.7 and 22.9 ± 1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.
Collapse
Affiliation(s)
- Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Sami A Makharza
- College of Pharmacy and Medical Sciences, Hebron University, Hebron, Palestine
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
27
|
Current updates on microRNAs as regulators of chemoresistance. Biomed Pharmacother 2017; 95:1000-1012. [DOI: 10.1016/j.biopha.2017.08.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
|
28
|
Duan H, Zhou K, Zhang Y, Yue P, Wang T, Li Y, Qiu D, Wu J, Hua Y, Wang C. HDAC2 was involved in placental P-glycoprotein regulation both in vitro and vivo. Placenta 2017; 58:105-114. [PMID: 28962688 DOI: 10.1016/j.placenta.2017.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Placental P-glycoprotein (P-gp) plays a significant role in regulating drugs' transplacental transfer rates. Investigations on placental P-gp regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the epigenetic regulation of placental P-gp is rare. Our previous study has demonstrated that HDACs inhibition could up-regulate placental P-gp and HDAC1/2/3 might be involved in this process. The present study was carried out to further explore whether HDAC1/2/3 were indeed involved in the regulation of placental P-gp or not and screen out the subtype engaged in this process. METHODS BeWo and JAR cells were transfected with HDAC1/2/3 specific siRNA. After 48 h of transfection, cells were harvested for real-time quantitative PCR (qRT-PCR), Western blot, immunofluorescence and fluorescent dye efflux assay to evaluate P-gp expression, localization, and efflux activity, respectively. Hdac2 siRNA was intraperitoneally injected to pregnant mice every 48 h from E7.5 to E15.5 and digoxin was administered by gavages 1 h prior to euthanasia at E16.5. Placental Hdac1/2/3 and P-gp expression were determined by qRT-PCR and Western blot. Maternal plasma and fetal-unit digoxin concentrations were detected by enzyme-multiplied immunoassay. RESULTS In vitro, HDAC2 inhibition could significantly elevate P-gp expression and reduce intracellular accumulation of P-gp substrates (DiOC2 (3) and Rh 123) both in BeWo and JAR, while knockdown of HDAC1/3 had no influence on P-gp expression and its efflux activity. Additionally, in vivo, Hdac2 silencing in pregnant mice also elevated placental P-gp expression and decreased digoxin transplacental transfer rate. CONCLUSION HDAC2 inhibition could result in induction of placental P-gp expression and functionality both in vitro and in vivo.
Collapse
Affiliation(s)
- Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Yue
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dajian Qiu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinlin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China.
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|