1
|
Monton C, Suksaeree J. The Box-Behnken Design for Optimizing HPLC Separation and Validation of Astilbin in Lysiphyllum strychnifolium Stems. SCIENTIFICA 2024; 2024:6177990. [PMID: 39742088 PMCID: PMC11688138 DOI: 10.1155/sci5/6177990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025]
Abstract
The goal of the research was to use BBD, a productive RSM approach, to enhance the HPLC separation and validation of astilbin in Lysiphyllum strychnifolium stems. The percentage of acetonitrile (ACN), flow rate, and temperature were among the independent parameters that determined how much the chromatographic condition chosen from factor-level screens lowered the t R of astilbin. The six dependent variables were t R , PA, k', Rs, N, and As. The following HPLC settings were optimal for astilbin separation: 19% ACN at t 0-t 15, 0.8 mL/min flow rate, and 25°C temperature, resulting in a 26-min reduction in working time. This resulted in a separation success rate of 68.57%. Findings revealed the following sequence for t R , PA, k', Rs, N, and As: 12.108 ± 0.010 min, 78,845,108 ± 420,267, 2.510 ± 0.003, 2.141 ± 0.024, 10,945 ± 80, and 0.991 ± 0.005. The limit of detection was 0.10 μg/mL, while the limit of quantitation was 0.20 μg/mL. The calibration curve was constructed using concentrations ranging from 0.39 to 50 μg/mL, with an R 2 value of 0.9991, indicating excellent linearity. The intraday and interday precision RSD values were 0.069%-1.892% and 0.993%-3.229%, respectively. Recovery values were between 95.56% and 105.57%, confirming the method's accuracy. Astilbin was found at 175.51 ± 7.80 μg in L. strychnifolium stem extracts; its actual concentration was 3.51 ± 0.16%. The usefulness of astilbin as a chemical marker in L. strychnifolium stems may therefore be determined based on the criteria that have been established using this information.
Collapse
Affiliation(s)
- Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
| | - Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
| |
Collapse
|
2
|
Wu A, Zhao C. Astilbin Induces Apoptosis in Oral Squamous Cell Carcinoma through p53 Reactivation and Mdm-2 Inhibition. DOKL BIOCHEM BIOPHYS 2024; 518:429-441. [PMID: 39196525 DOI: 10.1134/s1607672924600374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a frequently occurring malignancy in the head and neck region. The most commonly mutated gene in OSCC is the tumor suppressor gene p53 (TP53), linked to lower survival and treatment resistance in OSCC patients. Astilbin is a flavonoid amongst several herbal treatments with a variety of pharmacological actions mainly including antioxidant, anti-inflammatory, and anti-cancer characteristics. This study evaluated the effects of astilbin on proliferation of OSCC cell lines SCC90 and SCC4 (bearing a p53 mutation) in relevance to p53 and Mdm-2 pathways. Astilbin inhibited the proliferation of SCC4 and SCC90 cells in a dose- and time-dependent manner. The IC50 values for both the cell lines were about 75 μM for astilbin. A p53 activator (RITA) was used to determine the effects of astilbin on p53 activity, and the results demonstrated synergistic reduction in cell growth. However, when combined with pifithrin-α (a p53 inhibitor), astilbin demonstrated a strong inhibition of its response. Astilbin reduced the mitochondrial membrane potential in SCC4 cells, which is a sign of apoptotic activity. Astilbin decreased the amounts of Mdm-2 (negative regulator of p53) and increased the expression of the p53 gene and protein. In a p53-dependent manner, astilbin suppressed the ability of SCC4 cells to form colonies and heal wounds. This was followed by the induction of mitochondrial intrinsic apoptosis via the activation of caspases 9 and 3, cleavage of PARP, and the suppression of pro-apoptotic Bid. Astilbin-induced p53-mediated apoptosis in OSCC cells as herbal medicinal ingredients.
Collapse
Affiliation(s)
- Aimin Wu
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China
| | - Chungang Zhao
- School of Medicine, JingChu University of Technology, 448000, JingMen, Hubei, China.
| |
Collapse
|
3
|
Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q, Zhang Z. Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115847. [PMID: 38118333 DOI: 10.1016/j.ecoenv.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Cadmium (Cd) is a dangerous heavy metal with high toxicity that is known to impair development. Astilbin (ASB) is a protective flavonoid compound. We aimed to explore whether ASB can antagonize the myocardial developmental toxicity of Cd exposure. Cd (2 µg) and/or ASB (0.002 µg) were injected into embryonized eggs that were 1 day old. Histological examinations revealed Cd-induced ventricular dilation, reduced wall thickness, and disrupted myocardial fiber connections, while co-administration of ASB mitigated these effects. Electron microscopy confirmed ASB's ability to counteract Cd-induced myocardial cell myofibril damage. Real-time quantitative PCR (QRT-PCR) and western blot (WB) molecular investigations revealed that Cd increased endoplasmic reticulum stress in myocardial tissue and primary cardiomyocytes, as shown by raised expression of stress-related genes (GRP78, XBP1, GRP94, ATF4, ATF6, IRE1, and CHOP). Moreover, Cd disrupted calcium homeostasis, affecting important genes linked to Ca2+ channels and causing an excess of Ca2+ in the cytoplasm. In addition, we detected genes related to development and differentiation-related genes in myocardial tissue and primary cardiomyocytes. The results showed that the downregulation of transcription factors in the IrxA cluster, Mefs, and Tbxs families after Cd exposure indicated that cardiac transcription was hindered and cardiac markers (TnnT2, TnnC1, Gata4, Gata6, and Nkx2-5) were abnormally expressed. ASB successfully mitigated these disturbances. During the cell cycle, primary cardiomyocytes undergo growth arrest in flow cytometry. These results suggest that the maturation and differentiation of cardiomyocytes are inhibited after Cd exposure, and ASB has an antagonistic effect on Cd. The present study indicated that Cd could trigger developmental cardiotoxicity in chicken embryos and primary cardiomyocytes by endoplasmic reticulum stress and Ca2+ overload, respectively, while ASB has an antagonistic effect.
Collapse
Affiliation(s)
- Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xingxi Zhu
- Macao Polytechnic University, Macao 999078, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yangyang Li
- China Agricultural University, Beijing 10000, PR China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
4
|
Chen J, Huang Z, Cao X, Chen X, Zou T, You J. Plant-Derived Polyphenols as Nrf2 Activators to Counteract Oxidative Stress and Intestinal Toxicity Induced by Deoxynivalenol in Swine: An Emerging Research Direction. Antioxidants (Basel) 2022; 11:2379. [PMID: 36552587 PMCID: PMC9774656 DOI: 10.3390/antiox11122379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The contamination of deoxynivalenol (DON) in feed is a global problem, which seriously threatens the productivity efficiency and welfare of farm animals and the food security of humans. Pig is the most sensitive species to DON, and is readily exposed to DON through its grain-enriched diet. The intestine serves as the first biological barrier to ingested mycotoxin, and is, therefore, the first target of DON. In the past decade, a growing amount of attention has been paid to plant-derived polyphenols as functional compounds against DON-induced oxidative stress and intestinal toxicity in pigs. In this review, we systematically updated the latest research progress in plant polyphenols detoxifying DON-induced intestinal toxicity in swine. We also discussed the potential underlying mechanism of action of polyphenols as Nrf2 activators in protecting against DON-induced enterotoxicity of swine. The output of this update points out an emerging research direction, as polyphenols have great potential to be developed as feed additives for swine to counteract DON-induced oxidative stress and intestinal toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Shi M, Yue Y, Ma C, Dong L, Chen F. Pasteurized Akkermansia muciniphila Ameliorate the LPS-Induced Intestinal Barrier Dysfunction via Modulating AMPK and NF-κB through TLR2 in Caco-2 Cells. Nutrients 2022; 14:nu14040764. [PMID: 35215413 PMCID: PMC8879293 DOI: 10.3390/nu14040764] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Akkermansia muciniphila is well known for the amelioration of inflammatory responses and restoration of intestinal barrier function. The beneficial effect of A. muciniphila occurred through contacting Toll-like receptor 2 (TLR2) on intestinal epithelial cells by wall components. In this case, the downstream mechanism of pasteurized A. muciniphila stimulating TLR2 for ameliorated intestinal barrier function is worth investigating. In this study, we evaluated the effect of live and pasteurized A. muciniphila on protecting the barrier dysfunction of Caco-2 intestinal epithelial cells induced by lipopolysaccharide (LPS). We discovered that both live and pasteurized A. muciniphila could attenuate an inflammatory response and improve intestinal barrier integrity in Caco-2 monolayers. We demonstrated that A. muciniphila enhances AMP-activated protein kinase (AMPK) activation and inhibits Nuclear Factor-Kappa B (NF-κB) activation through the stimulation of TLR2. Overall, we provided a specific mechanism for the probiotic effect of A. muciniphila on the intestinal barrier function of Caco-2 cells.
Collapse
Affiliation(s)
- Mengxuan Shi
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Yunshuang Yue
- Beijing DaBeiNong Biotechnology Co., Ltd., Beijing 100193, China
| | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Li Dong
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
- Correspondence: ; Tel.: +86-10-6273-7645
| |
Collapse
|
6
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
7
|
Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Hisada M, Hiranuma M, Nakashima M, Goda N, Tenno T, Hiroaki H. High dose of baicalin or baicalein can reduce tight junction integrity by partly targeting the first PDZ domain of zonula occludens-1 (ZO-1). Eur J Pharmacol 2020; 887:173436. [PMID: 32745606 DOI: 10.1016/j.ejphar.2020.173436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-β (TGF-β) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Collapse
Affiliation(s)
- Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Minami Hiranuma
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mio Nakashima
- Department of Biological Sciences, Faculty of Science, Nagoya University, Japan
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; Department of Biological Sciences, Faculty of Science, Nagoya University, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan.
| |
Collapse
|
9
|
Sharma A, Gupta S, Chauhan S, Nair A, Sharma P. ASTILBIN: A PROMISING UNEXPLORED COMPOUND WITH MULTIDIMENSIONAL MEDICINAL AND HEALTH BENEFITS. Pharmacol Res 2020; 158:104894. [PMID: 32407960 DOI: 10.1016/j.phrs.2020.104894] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many flavonoids have various beneficial actions like anti-inflammatory, anti-carcinogenic properties and many other clinical conditions. Astilbin is one such flavanoid compound having many physiological as well as pharmacological actions. PURPOSE To summarize the important findings from the research conducted using astilbin having significance to its physiological and pharmacological activities as well as the patents filed using astilbin. STUDY DESIGN Systematic review and compilation of the collected literature. METHOD An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct and Google Scholar etc. All the article available in the English language that used our compound of interest i.e. astilbin, on the basis of inclusion criteria decided were retrieved from these databases, thoroughly reviewed and were summarized. RESULT It has been established that astilbin can play a vital in the management of diseases associated with immune system. It also possesses antibacterial, anti-oxidative and hepatoprotective activity. CONCLUSION These researches provide evidence that astilbin possesses great potential and thus can be utilized in the management of various disorders, thus establishing itself as a potential candidate for novel drug development. Also, there is still room for research on astilbin like it can be evaluated for anticancer potential, protective effect in various diabetic complications and many more. Overall observations from data suggested that astilbin is a promising compound and proved its efficacy in every preclinical study which is conducted till date. Some of the pharmacological activity is still unexplored. After successful preclinical trials, astilbin can go for further clinical trials.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemeed to be University), Mullana, (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemeed to be University), Mullana, (Ambala), Haryana, India.
| | - Samrat Chauhan
- Department of Pharmacology, M. M. College of Pharmacy, M. M. (Deemeed to be University), Mullana, (Ambala), Haryana, India
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Prerna Sharma
- Department of Pharmacognosy, M M School of Pharmacy, M M University, Sadupur, Ambala, Haryana, India
| |
Collapse
|
10
|
Shi J, Zhao XH. Influence of the Maillard-type caseinate glycation with lactose on the intestinal barrier activity of the caseinate digest in IEC-6 cells. Food Funct 2019; 10:2010-2021. [DOI: 10.1039/c8fo02607f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycated caseinate digest of the Maillard-type shows lower capability than the caseinate digest to enhance the intestinal barrier function of IEC-6 cells.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
11
|
|